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Abstract: Research on the human activity recognition could be utilized for the monitoring of elderly
people living alone to reduce the cost of home care. Video sensors can be easily deployed in the
different zones of houses to achieve monitoring. The goal of this study is to employ a linear-map
convolutional neural network (CNN) to perform action recognition with RGB videos. To reduce
the amount of the training data, the posture information is represented by skeleton data extracted
from the 300 frames of one film. The two-stream method was applied to increase the accuracy of
recognition by using the spatial and motion features of skeleton sequences. The relations of adjacent
skeletal joints were employed to build the direct acyclic graph (DAG) matrices, source matrix, and
target matrix. Two features were transferred by DAG matrices and expanded as color texture images.
The linear-map CNN had a two-dimensional linear map at the beginning of each layer to adjust the
number of channels. A two-dimensional CNN was used to recognize the actions. We applied the
RGB videos from the action recognition datasets of the NTU RGB+D database, which was established
by the Rapid-Rich Object Search Lab, to execute model training and performance evaluation. The
experimental results show that the obtained precision, recall, specificity, F1-score, and accuracy were
86.9%, 86.1%, 99.9%, 86.3%, and 99.5%, respectively, in the cross-subject source, and 94.8%, 94.7%,
99.9%, 94.7%, and 99.9%, respectively, in the cross-view source. An important contribution of this
work is that by using the skeleton sequences to produce the spatial and motion features and the DAG
matrix to enhance the relation of adjacent skeletal joints, the computation speed was faster than the
traditional schemes that utilize single frame image convolution. Therefore, this work exhibits the
practical potential of real-life action recognition.

Keywords: linear-map convolutional neural network; direct acyclic graph; action recognition; spatial
feature; temporal feature

1. Introduction

Recently, the lifespans of the world’s population are increasing, and society is grad-
ually aging. According to the report of the United Nations [1], the number of elderly
people (over 65) in the world in 2019 was 703 million, and this is estimated to double to
1.5 billion by 2050. From 1990 to 2019, the proportion of the global population over 65 years
old increased from 6% to 9%, and the proportion of the elderly population is expected to
further increase to 16% by 2050. In Taiwan, the report of the National Development Council
indicated that the elderly population with age over 65 will exceed 20% of the national
population at 2026 [2].
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Taiwan will enter a super-aged society in 2026. This means that the labor manpower
will gradually decrease in the future. Thus, the cost of home care for elders will significantly
increase. In homecare, the monitoring of elderly people living alone is a major issue. The
behaviors of their activities have a high relation with their physical and mental health [3,4].
Therefore, how to use artificial intelligence (AI) techniques to reduce the cost of home care
is an important challenge.

The recognition of body activities has two major techniques. One is physical sensors,
like accelerometers [5,6], gyroscopes [7], and strain gauges [8], which have the advantage
that they can be worn on the body to monitor dangerous activities throughout the day and
the disadvantage that few activities can be recognized. Therefore, the physical sensors are
typically not used to identify the daily activities. Another technique is the charge-coupled
device (CCD) camera [9,10], which has the advantage of being able to recognize many daily
activities and the disadvantage that it can only be used to monitor the activities of people
in a local area. Thus, it is suitable to be used in a home environment.

Many previous studies have used deep learning techniques to recognize daily activi-
ties, including two-stream convolutional neural networks (CNNs), long short-term memory
networks (LSTMNs), and three-dimensional CNNs (3D CNNs). For the two-stream CNN,
Karpathy et al. used context stream and fovea streams to train a CNN [11]. The two streams
proposed by Simonyan et al. were spatial and temporal streams, which represent the static
and dynamic frames of each action’s film [12]; however, the spending time for each action
was different.

Thus, Wang et al. proposed a time segment network to normalize the spatial and
temporal streams [13]. Jiang et al. used two streams as the input combined with CNN and
LSTMN [14]. Ji et al. proposed 3D CNN to obtain the features of the spatial and temporal
streams [15]. The two-stream methods using image and optical flow to represent the spatial
and temporal streams had a better performance for recognizing activities compared with
the one-stream methods. However, the weakness is that its doubled data amount requires
more time to train the model.

Studies have used skeletal data as the common input feature for human action recogni-
tion [16–18], where the 3D skeletal data were typically obtained by use of the depth camera.
In these studies, the number of recognized actions was less than 20 [17], and the skeletal
data had to be processed to extract the features. Machine learning methods were used in
these studies. The spatiotemporal information of skeleton sequences was exploited using
recurrent neural networks (RNNs) [19,20].

Both the amount of data and recognized actions were less than in the video datasets [16–20].
An RNN tends to overemphasize the temporal information and ignore the spatial informa-
tion, leading to low accuracy. However, the advantage of methods employing skeletal data
is that these requires less training data and training time compared to those using image
data. Hou et al. used a CNN to recognize actions with skeletal features [21]. Therefore,
an effective method to encode the spatiotemporal information of a skeleton sequence into
color texture images that could be recognized by a CNN is a relevant issue.

A directed acyclic graph (DAG) consists of a combination of nodes and edges. Each
node points to another node by an edge. These directions do not become a circle graph that
will end at the extremities. DAGs are usually used to represent causal relations amongst
variables, and they are also used extensively to determine which variables need to be
controlled for confounding in order to estimate causal effects [22]. The physical posture of
people can be described by the positions of the skeletal joints. The adjacent joints have a
causal relation when the body is moving. Thus, we can define the DAG of skeletal joints to
explain the relations of physical skeletons.

This study aims to recognize the daily activities with films recorded by CCD cameras.
To reduce the large amount of data for model training, we transferred body images to phys-
ical postures with an open system, AlphaPose [23]. The posture information is the skeleton
sequences captured from the films of actions to build the spatial and motion features. These
features all include both the spatial and temporal characteristics of actions. The relations of
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adjacent joints were used to build direct acyclic graph (DAG) matrices, the source matrix,
and the target matrix.

These features are expanded by the DAG matrices as color texture images. The
linear-map CNN has a two-dimensional linear map at the beginning of each layer to
adjust the number of channels. Then, a two-dimensional CNN is used to recognize the
actions. A structure with two streams was used to increase the accuracy of the action
recognition. The datasets (NTU RGB+D) used in this study is an open source supported by
Rapid-Rich Object Search Lab, National Technological University, Singapore [18].

In our work, a total of 49 actions, including daily actions, medical conditions, and mu-
tual actions, were considered for action recognition. The total number of films was 46,452
for the cross-subject and cross-view sources. Of the cross-subject sources, 32,928 films
were used for training, and 13,524 films were used for testing. Of the cross-view sources,
30,968 films were used for training, and 15,484 were used for testing. The experimental re-
sults show that the performance of our method was better than those in the previous studies.

2. Methods

Figure 1 shows the flowchart of action recognition in this study, which has three
phases. In the feature phase, RGB images were processed by AlphaPose [23] to obtain
the coordinate values of the skeletal joints of the subject in an image as a vector. A film
contained 300 images that were used to build a posture matrix as the feature. We defined
the spatial features and motion features by the coordinate values of the skeletal joints for
each film. Spatial features are the position information of skeletons and joints, and motion
features are the optical-flow information of skeletons and joints.

Each feature was expanded into two features of source and target by DAGs. In the
recognition phase, a 10-layer linear-map CNN was used to recognize the activities. The
cross-subject and cross-view evaluations were used to test the performance of this linear-
map CNN. In the output phase, the results of the spatial and motion features were fused to
show the recognized actions.

Figure 1. The flowchart of the action recognition in this study.

2.1. NTU RGB+D Dataset

The datasets of action recognition supported by the Rapid-Rich Object Search Lab,
National Technological University, Singapore [24] were used in the study. There were
56,880 files, including 60 action classes. Each file consists of RGB, depth, and skeleton data
of human actions. All actions were recorded by three Kinect V2 cameras. The size of the
RGB images was 1920 × 1080. There were 40 classes for daily actions, 9 classes for medical
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conditions, and 11 classes for mutual actions. Forty distinct subjects were invited for this
data collection.

The physical activities of only a single person were recognized, and the sample size
of 46,452, including the 49 physical activities, was used in this study. To ensure standard
evaluations for all the reported results on the benchmark, two types of action classification
evaluation (cross-subject evaluation, and cross-view evaluation) were used [24]. In the
cross-subject evaluation, the sample sizes for training and testing sets were 40,320 and
16,560, respectively. In the cross-view evaluation, the sample sizes for training and testing
sets were 37,920 and 18,960, respectively.

2.2. Spatial and Motion Features

The RGB images were processed by the AlphaPose [23] to obtain the coordinate values
of skeleton joints of people in the image, and the format is shown in Equation (1).

pose = {(x0, y0, c0, · · · , xM, yM, cM) ‖ M = 17} (1)

where xi and yi are the coordinate values of ith joint, ci is the confidence score, and M is
the index of the joints. According to the coordinate values of the joints, the spatial and
motion variables were defined, as shown in Table 1. n is the index of the frames. The spatial
variables are the joint data (vi), and skeleton data (si,j). The motion variables are the motion
data of the joints and skeleton (mvi and msi). Thus, there are four features in this study, Fv,
Fs, Fmv, and Fms. Table 2 shows the indexes and definition of 18 joints and 17 edges in the
body. The 17 edges, ei, are defined as the relations between two adjacent joints, i-1th and
ith.

Table 1. The indexes of the joints and relations between every two adjacent joints at the 17 edges.

Spatial Variables

Joint Data Skeleton Data
vi(n) = (xi(n), yi(n)) si,j(n) =

(
xi(n)− xj(n), yi(n)− yj(n)

)
Motion Variables

Joint-Motion Data Skeleton-Motion Data
mvi(n) = vi(n + 1)− vi(n) msi = si,i+1(n + 1)− si,i+1(n)

2.3. Directed Acyclic Graph

DAG was used to describe the relations of 18 joints. The nodes of DAG represent the
joints, and the flows represent the edges. Each edge has a source joint and a target joint.
Thus, two DAG matrices, the source matrix and target matrix, can be defined. If the ith
joint is the source point of the jth edge, the element (j, i) of the source matrix is set as 1.
Otherwise, the element (j, i) is set as 0.

The target matrix is set as the source matrix. Then, each row of the source and target
matrices is normalized to avoid overvalues. To match the size of feature, e(0, 0) = 1 is
defined as a virtual edge. The sizes of the source and target matrices are 18 × 18. Figure 2a
is the source matrix, S, color-none is 0, color-black is 1, and color-original is 0.25. Figure 2b
is the target matrix, T.
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Table 2. The indexes and positions of the joints and edges for the skeletal data.

Index Joint Position Index Joint Position Indexe of Joints and Edges

0 Nose 9 Right knee
1 Neck 10 Right ankle
2 Right shoulder 11 Left femur
3 Right elbow 12 Left knee
4 Right wrist 13 Left ankle
5 Left shoulder 14 Right eye
6 Left elbow 15 Left eye
7 Left wrist 16 Right ear

8 Right femur 17 Left ear

Figure 2. (a) Source matrix, (b) Target matrix. Color-none is 0, color-black is 1, and color-orange
is 0.25.

2.4. Input Features

We used 300 frames for every film. The joint data built the joint feature (Fv), the
skeleton data built the skeleton feature (Fs), the joint-motion data built the joint-motion
feature (Fmv), and the skeleton-motion data built the skeleton-motion feature (Fms). Figure 3
shows the contents of a feature with x and y values of a data. Thus, the information of the
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film was reduced to four 600 × 18 matrices for four features, Fv, Fs, Fmv, and Fms. The Fv
was expanded by the DAG matrix into two features, Fvin and Fvout.

Fvin = Fv × ST (2)

Fvout = Fv × TT (3)

Fs was expanded by the DAG matrix to Fsin and Fsout; Fmv was expanded to Fmvin and
Fmvout; and Fms was expanded to Fmsin and Fmsout. Table 3 shows the contents of the spatial
feature (Fspatial) and motion feature (Fmotion). Fsaptial is the combination of Fspatial-joint and
Fspatial_skeleton. Fmotion is the combination of Fmotion-joint and Fmotion_skeleton. We used the two
features (Fspatial and Fmotion) to evaluate the performance of the linear-map CNN.

Table 3. The channel contents of the input features.

Fspatial (1200,18,3) Fspatial_joint (600,18,3) (Fv, Fsin, Fsout)
Fspatial_skeleton (600,18,3) (Fs, Fvin, Fvout)

Fmotion (1200,18,3) Fmotion_joint (600,18,3) (Fmv, Fmsin, Fmsout)
Fmotion_skeleton (600,18,3) (Fms, Fmvin, Fmvout)

Figure 3. One feature built by the joint data, skeleton data, joint-motion data, or skeleton-motion data, with the size
of 600 × 18.

2.5. Linear-Map CNN

Figure 4 shows the structure of a 10-layer linear-map CNN. The linear-map was used
to adjust the number of channels at the beginning of each layer. Batch normalization (BN)
can overcome the disappearance of the learning gradient and, thus, use a larger learning
rate. In the CNN, the kernel size is a 9 × 1 matrix, the stride is (1,1), and the padding
is (4,0). In the input feature, columns represent the different joints, and rows represent
the time sequence of the actions. The relation of the adjacent joints was enhanced by the
DAG matrix. Thus, the kernel of convolution is a 9 × 1 matrix. Table 4 shows the detailed
information of the linear-map CNN. The output layer has 49 nodes representing the 49
action classes. The optimal method was momentum. The batch number is 32.
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Table 4. The parameters of linear-map CNN in each layer.

Linear BN AF Conv2d BN AF

L1 In feature (600,18,3),
Out features (600,18,64) 64 ReLu (600,18,64), kernel = (9,1),

stride = (1,1), padding = (4,0) 64 ReLu

L2 In feature (600,18,192),
Out features (600,18,64) 64 ReLu (600,18,64), kernel = (9,1),

stride = (1,1), padding = (4,0) 64 ReLu

L3 In feature (600,18,192),
Out features (600,18,64) 64 ReLu (600,18,64), kernel = (9,1),

stride = (1,1), padding = (4,0) 64 ReLu

L4 In feature (600,18,192),
Out features (600,18,64) 64 ReLu (600,18,64), kernel = (9,1),

stride = (1,1), padding = (4,0) 64 ReLu

L5 In feature (600,18,192),
Out features (600,18,128) 128 ReLu (600,18,128), kernel = (9,1),

stride = (2,1), padding = (4,0) 128 ReLu

L6 In feature (300,18,384),
Out features (300,18,128) 128 ReLu (300,18,128), kernel = (9,1),

stride = (1,1), padding = (4,0) 128 ReLu

L7 In feature (300,18,384),
Out features (300,18,128) 128 ReLu (300,18,128), kernel = (9,1),

stride = (1,1), padding = (4,0) 128 ReLu

L8 In feature (300,18,384),
Out features (300,18,256) 256 ReLu (300,18,256), kernel = (9,1),

stride = (2,1), padding = (4,0) 256 ReLu

L9 In feature (150,18,768),
Out features (150,18,256) 256 ReLu (150,18,256), kernel = (9,1),

stride = (1,1), padding = (4,0) 256 ReLu

L10 In feature (150,18,768),
Out features (150,18,256) 256 ReLu (150,18,256), kernel = (9,1),

stride = (1,1), padding = (4,0) 256 ReLu

Flatten Input 512
Output 49 Softmax

Figure 4. The structure of the 10-layer linear-map CNN.

2.6. Statistical Analysis

According to our proposed method, a film is considered as true positive (TP) when
the classification action is correctly identified; false positive (FP) when the classification
action is incorrectly identified; true negative (TN) when the action classification is correctly
rejected, and false-negative (FN) when the action classification is incorrectly rejected. Here,
the performance of the proposed method was evaluated using these parameters,

Precision(%) =
TP

TP + FP
× 100%, (4)
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Recall(%) =
TP

TP + FN
× 100%, (5)

Speci f icity(%) =
TN

TN + FP
× 100%, (6)

F1score =
2× Precision× Recall

Precision + Recall
× 100%, (7)

Accuracy(%) =
TP + TN

TP + TN + FP + FN
× 100%. (8)

3. Results

In this study, the hardware employed was CPU Intel Core i7-8700 and GPU GeForce
GTX1080. The operating system was Ubuntu 16.04LTS software, the development system
was Anaconda 3 at python 3.7 version, the tool of deep learning was Pytorch 1.10, and the
compiler was Jupyter Notebook. We evaluated the performance of DAG with the cross-
subject and cross-view sources, and four features (Fspatial_joint, Fspatial-skeleton, Fmotion_joint,
and Fmotion_skeleton). At last, we used the two-stream concept, class score fusion for Fspatial
and Fmotion, to evaluate the performance of the proposed method with cross-subject and
cross-view sources.

Table 5 shows the results without the DAG transfer. The best feature is Fspatial under
the cross-subject source, which resulted in an accuracy and F1-score of 99.3% and 82.8%,
respectively. There were 10 actions with recall rates below 70%: 0, 4, 9, 10, 11, 16, 28, 29,
43, and 48. The worst feature is Fmotion under the cross-subject source, its accuracy and
F1-score are 99.2% and 79.6%, respectively. There are 11 actions with recall rates below
70%: 3, 10, 11, 16, 24, 28, 29, 31, 36, 43, and 45. Table 6 shows the results with the DAG
transfer. The best feature was Fspatial under the cross-view source; its accuracy and F1-score
were 99.9% and 96.2%, respectively.

Only four actions, 10, 11, 28, and 29, had recall rates below 70%. The worst feature
was Fmotion under the cross-subject source, which obtained an accuracy and F1-score of
99.1% and 79.1%, respectively. There were 10 actions with recall rates below 70%: 2, 10, 11,
16, 28, 29, 31, 43, 44, and 45. We found that the DAG transfer could significantly improve
the recognition rate of different actions, not only for spatial features but also for motion
features. Table 7 shows the results of class score fusion with and without DAG transfer. We
found that the performance of DAG transfer used in the cross-view source was better than
used in the cross-subject source, with an accuracy of 99.9% vs. 99.5% and F1-score of 94.7%
vs. 86.3%. The recall rates for all 49 actions were not below 70%.

We used the two-dimensional joint and skeleton features to perform the training and
testing of the linear-map CNN, which could reduce the running time more than those
using two- or three-dimensional joint and skeleton images. Table 8 shows the training and
testing time with and without DAG transfer. We found that the GPU could process about
30 frames/second (fps) in the training phase, and process about 125 fps in the testing phase.
Although the DAG transfer required time to process, the delay time was about 30 min in
the training phase. The maximum testing time was 141 s.
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Table 5. The results without the DAG transfer.

Feature
(Epochs)

Precision
(100%)

Recall
(100%)

Specificity
(100%)

F1-Score
(100%)

Accuracy
(100%)

Actions
(Recall < 70%)

Cross-subject
Fspatial
(70) 84.2% 82.8% 99.7% 82.8% 99.3% 0, 4, 9, 10, 11, 16, 28, 29, 43, 48

Fmotion
(65) 80.8% 79.7% 99.6% 79.6% 99.2% 3, 10, 11, 16, 24, 28, 29, 31, 36, 43, 45

Cross-view
Fspatial
(90) 86.4% 82.0% 99.7% 81.6% 99.3% 4, 9, 11, 16, 18, 28, 43, 44

Fmotion
(20) 82.9% 79.7% 99.7% 79.7% 99.2% 4, 9, 10, 11, 28, 29, 31, 32

Table 6. The results with the DAG transfer.

Feature
(Epochs)

Precision
(100%)

Recall
(100%)

Specificity
(100%)

F1-Score
(100%)

Accuracy
(100%)

Actions
(Recall < 70%)

Cross-subject
Fspatial
(65) 86.9% 86.0% 99.9% 86.2% 99.4% 10, 11, 28

Fmotion
(35) 80.6% 78.7% 99.7% 79.1% 99.1% 2, 10, 11, 16, 28, 29, 31, 43, 44, 45

Cross-view
Fspatial
(65) 94.3% 94.3% 99.9% 94.2% 99.9% 10, 11, 28, 29

Fmotion
(65) 90.9% 90.2% 99.9% 90.4% 99.7% 10, 11, 28, 29

Table 7. The results of class score fusion with and without DAG transfer.

Precision
(100%)

Recall
(100%)

Specificity
(100%)

F1-Score
(100%)

Accuracy
(100%)

Actions
(Recall < 70%)

Cross-subject
Non
GAD 85.7% 85.0% 99.8% 85.0% 99.4% 10, 11, 16, 28, 29, 31

GAD 86.9% 86.1% 99.9% 86.3% 99.5% 10, 11, 28, 29

Cross-view
Non
GAD 89.8% 87.3% 99.8% 87.3% 99.6% 5, 10, 12, 29

GAD 94.8% 94.7% 99.9% 94.7% 99.9%

Table 8. The training and testing time with and without DAG transfer.

Without DAG

Date Source Feature Epoch Time: Day: Hr.:
Min.:Sec. Fps

Train Cross-subject Spatial 120 1:12:41:00 30

Motion 92 1:04::04:00 30

Train Cross-view Spatial 120 1:11:39:00 30

Motion 92 1:02:55:00 30

Test Cross-subject Spatial 0:00:02:01 125

Motion 0:00:01:57 125

Test Cross-view Spatial 0:00:02:18 125

Motion 0:00:02:19 125
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Table 8. Cont.

With DAG

Train Cross-subject Spatial 120 1:13:27:00 30

Motion 92 1:04:29:00 30

Cross-view Spatial 120 1:11:05:00 30

Motion 92 1:03:30:00 30

Test Cross-subject Spatial 0:00:02:03 125

Motion 0:00:02:03 125

Cross-view Spatial 0:00:02:21 125

Motion 0:00:02:19 125

4. Discussion

In this study, we used DAG transfer and the two-stream method to improve the
accuracy of action recognition. When the input features were transferred with the DAG
matrices, the precision, recall, specificity, F1-score, and accuracy were improved by 1.2%,
1.1%, 0.1%, 1.3%, and 0.1%, respectively, for the cross-subject source, and were improved by
9.1%, 7.4%, 0.1%, 7.4%, and 0.5%, respectively, for the cross-view source. In the two-stream
method, previous studies have typically used the spatial and temporal, or optical flow
features to perform the active score fusion [11–14]. They also proved that the performance
of two streams was better than one stream.

We used joint and skeleton sequences as the spatial motion features that had temporal
characteristics. We utilized 300 frames to describe an action. Thus, the spatial feature of
one action included the spatial and temporal characters. However, the motion relations of
the joints and skeletons were different from one action to another. Therefore, we defined
the motion variables, mvi and msi, as shown in Table 1, to establish the motion features.

Our results also show that the precision, recall, specificity, F1-score, and accuracy
of the two streams were improved by 0% vs. 6.3%, 0.1% vs. 7.4%, 0% vs. 0.2%, 0.1%
vs. 7.1%, and 0.1% vs. 0.4%, over spatial and motion streams with the DAG transfer in
the cross-subject source, and improved by 0.5% vs. 3.9%, 0.4% vs. 4.5%, 0% vs. 0%, 0.5%
vs. 4.3%, and 0% vs. 0.2% in the cross-view source.

The comparison of our results with the previous studies under the recall rate is shown
in Table 9. These studies all used cross-subject and cross-view sources from the NTU
RGB+D database to recognize actions and also used three-dimensional characteristics of
each posture as the input features [19,25–31]. Our method had the best recall rates of 86.1%
and 94.7% in the cross-subject and cross-view sources.

We analyzed the actions with lower recall rates in the cross-subject and cross-view
sources in Tables 5–7. The four actions that often had lower recall rates were A10 (reading),
A11 (writing), A28 (phone call), and A29 (playing with laptop). Figure 5a is the posture of
reading, and Figure 5b is the posture of writing. The subject is standing up, looking down,
and holding something. The difference between the two images is only in the gestures of
two hands. However, according to the description of the body posture in Table 2, only the
right and left wrist joints are marked, which cannot show the gestures of two hands.

The postures of the subject making a phone call (in Figure 5c) and using the laptop (in
Figure 5d)) had the same problem. The difference between the two images was also in the
gestures of the two hands. These actions were difficult to recognize using spatial features,
such as the movement trajectories of the arms, elbows, and wrists. Thus, the results of our
method with the DAG transfer and two-stream method in Table 7 show that no action had
a lower recall rate in the cross-view source.
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Table 9. These studies all used cross-subject and cross-view sources in the NTU RGB+D database to
recognize the actions, which also used the three-dimensional characteristics of each posture as the
input features [19,25–31]. Our method had the best recall rates in the cross-subject and cross-view
sources at 86.1% and 94.7%.

Methods
Recall Rate (%)

Cross-Subject Cross-View

Lie Group [25] 50.1 52.8
HBRNN [19] 59.1 64.0

Deep RNN [26] 59.29 64.09
Deep LSTM [26] 60.7 67.3

Part-aware LSTM [26] 62.9 70.3
ST-LSTM + Trust Gate [27] 69.2 77.7

Two-stream RNN [28] 71.3 79.5
Clips + CNN + MTLN [29] 79.6 84.8

ST-GCN [30] 81.5 88.3
SR-TSL [31] 84.8 92.4

Proposed DAG + linear-map CNN 86.1 94.7

Figure 5. (a) the posture of reading, (b) the posture of writing, (c) the posture of making a phone call,
(d) the posture of using the laptop.

5. Conclusions

The large scale of the collected data in the NTU RGB+D database enabled us to
apply the posture-driven learning method for action recognition. The posture information
represented by the skeleton data was obtained from the 300 frames of the film. The joint
and skeleton sequences were used to build spatial and motion features that included the
spatial and temporal characteristics of the actions. The relations of the adjacent skeletal
joints were used to build the DAG matrices.

The spatial or motion features were expanded by DAG matrices as color texture
images. The expanded features all indicated that the relations between adjacent joints were
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enhanced. Our method effectively reduced the amount of data for training the linear-map
CNN, and its performance was superior to the previous schemes using deep learning
methods. Notably, since the computation speed can reach around 125 fps in the testing
phase with GPU, our scheme could be used to monitor the daily activities of elders in real
time in home care applications.
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