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Abstract: Periodic inspection of false ceilings is mandatory to ensure building and human safety.
Generally, false ceiling inspection includes identifying structural defects, degradation in Heating,
Ventilation, and Air Conditioning (HVAC) systems, electrical wire damage, and pest infestation.
Human-assisted false ceiling inspection is a laborious and risky task. This work presents a false
ceiling deterioration detection and mapping framework using a deep-neural-network-based object
detection algorithm and the teleoperated ‘Falcon’ robot. The object detection algorithm was trained
with our custom false ceiling deterioration image dataset composed of four classes: structural defects
(spalling, cracks, pitted surfaces, and water damage), degradation in HVAC systems (corrosion,
molding, and pipe damage), electrical damage (frayed wires), and infestation (termites and rodents).
The efficiency of the trained CNN algorithm and deterioration mapping was evaluated through
various experiments and real-time field trials. The experimental results indicate that the deterioration
detection and mapping results were accurate in a real false-ceiling environment and achieved an
89.53% detection accuracy.

Keywords: defect detection; Faster R-CNN; deep learning; object detection; IoRT; inspection robot

1. Introduction

False ceiling inspection is one of the most required inspections for essential mainte-
nance and repair tasks in commercial buildings. Generally, a false ceiling is built with
material such as Gypsum board, Plaster of Paris, and Poly Vinyl Chloride (PVC) and used
to hide ducting, messy wires, and Heating, Ventilation, and Air Conditioning (HVAC)
systems. However, poor construction and the use of substandard material in false ceilings
require periodic inspection to avoid deterioration. Structural defects, degradation in HVAC
systems, electrical damage, and infestation are common potential building and human
safety hazards. Human visual inspection is a common technique used by building main-
tenance companies, where trained safety inspectors will audit the environment of a false
ceiling. However, deploying human visual inspection for a false ceiling environment has
many practical challenges. It requires a highly skilled inspector to access a complex false
ceiling environment. Workforce shortage due to safety issues and low wages is another
challenge faced by false ceiling maintenance companies. These facts highlight the need
for an automated, cost-effective, and exhaustive inspection of false ceilings to prevent
such risks.

Hence, the aim of this research is to automate the inspection process to detect and map
various deterioration factors in false ceiling environments. Further, the literature survey
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(Section 2) confirms a research gap between robot-assisted inspection and deep learning
frameworks for false ceiling inspection and maintenance. Thus, this work presents an
automated false ceiling inspection framework using a convolutional neural network trained
with our false ceiling deterioration image dataset composed of four classes, structural
defects (spalling, cracks, pitted surfaces, and water damage), degradation in HVAC systems
(corrosion, molding, and pipe damage), electrical damage (frayed wires), and infestations
(termites and rodents). Further, the inspection task is performed with the help of our
in-house-developed crawl class robot, known as the ‘Falcon’, with a deterioration mapping
function using Ultra-Wideband (UWB) modules. The deterioration mapping function
marks the class of deteriorations with locations on a map for the inspection and maintenance
of false ceilings.

This manuscript is organized as follows; after explaining the importance and contribu-
tions of the study in Section 1, Section 2 presents a literature review, and Section 3 presents
an overview of the proposed system. Section 4 discusses the experimental setup and the
results. Section 5 includes a discussion. Section 6 concludes.

2. Related Work

In recent years, various semi- or fully automated techniques have been reported in the
literature for narrow and enclosed space inspections for building maintenance tasks. Here,
computer vision algorithms were used for automatically detecting defects from images
collected by inspection tools such as borescope cameras [1,2] and drones [3,4]. However,
borescope cameras and drone-based methods have many practical difficulties when used
as inspection tools in false ceiling environments. Because false ceiling environments have
many protruding elements such as electrical wire networks, gas pipes, and ducts, it is also
difficult to fly drones to inspect the complex environment of a false ceiling.

Robot-based inspection is a better solution than borescope cameras and drone-based
inspection. It has been widely used for various narrow and enclosed space inspection
applications, such as crawl space inspection [5,6], tunnel inspection [7,8], drain inspection
[9,10], defect detection in glass facade buildings [11,12], and power transmission line fault
detection [13]. Gary et al. proposed a q-bot inspection robot for autonomously surveying
underfloor voids (floorboards, joists, vents, and pipes). It uses a mask Region Convolutional
Neural Network (mask-RCNN) approach with a two-stage transferring learning method.
It was able to detect with an accuracy of 80% [5]. Self-reconfigurable robot ’Mantis’ was
used for crack detection, and glass facade cleaning in high-rise buildings [11,14], where a
CNN-based deep learning framework with 15 layers is used for detecting cracks on glass
panels. Similarly, a steel climbing robot was developed for steel infrastructure monitoring.
The authors developed a steel crack detection algorithm using steel surface image-stitching
and a 3D map building technique. The steel crack detection algorithm was able to achieve a
success rate of 93.1% [15]. In [16], Gui et al. automated a defect detection and visualization
task for airport runway inspection. The proposed novel robotic system employed a camera,
Ground Penetrating Radar (GPR), and a crack detection algorithm based on images and
GPR data. An F1-measure of 70% and 67% was achieved for crack detection and subsurface
defect detection, respectively. In [17], Perez et al. aimed at detecting building defects
(mold, deterioration, and stains) using convolutional neural networks (CNNs). The authors
presented a deep-learning-based detection and localization model employing VGG-16 to
extract and classify features. The tests demonstrated an overall detection accuracy of 87.50%.
Xing et al., in [18], proposed a CNN-based method for workpiece surface defect detection.
The authors designed a CNN model with symmetric modules for feature extraction and
optimized the IoU to compute the loss function of the detection method. The average
detection accuracy of the CNN on the Northeastern University-Surface Defect Database
(NEU-CLS) and on self-made datasets was 99.61% and 95.84%, respectively. Similary,
Xian et al. (in [19]) presented automatic metallic surface defect detection and recognition
using a CNN. The authors designed a novel Cascaded Autoencoder (CASAE) architecture
for segmenting and localizing defects. The segmentation results demonstrated an IoU score
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of 89.60%. Cheon et al. presented an Automatic Defect Classification (ADC) system for
wafer surface defect classification and the detection of unknown defect class [20]. The
proposed model adopted a single CNN model and achieved a classification accuracy of
96.2%. Finally, Civera et al. proposed video processing techniques for the contactless
investigation of large oscillations to deal with geometric nonlinearities and light structures.

Though several works are available for narrow and enclosed space inspection applica-
tions using robot and computer vision algorithms, the defect detection and mapping of
false ceilings are not yet widely studied. In the literature, very few works have reported
robot-assisted ceiling inspection. Robert et al. in [21] introduced a fully autonomous
industrial aerial robot using a top-mounted omni wheel drive system and an AR marker
system. The proposed system can perform high precision localization and positioning to
perform an ink-marker placement task for measuring and maintaining the ceiling. In [22],
a flexible wall and ceiling climbing robot with six permanent magnetic wheels is proposed
by Yuanming et al. to climb vertical walls and reach overhead ceilings. In [23], Ozgur et al.
developed a 16-legged palm-sized climbing robot using flat bulk tacky elastomer adhesives.
The proposed robot has a passive peeling mechanism for energy-efficient and vibration-free
detachment to climb in any direction in 3D space. In [24], a self-reconfigurable false ceiling
inspection robot is presented using an induction approach [25,26] and a rodent activity
detection task [6]. A Perimeter-Following Controller (PFC) based on fuzzy logic was in-
tegrated into the robot to follow the perimeter of the false ceiling autonomously, and an
AI-enabled remote monitoring system was proposed for rodent activity detection in false
ceilings. All of these robots used for various purposes are summarized in Table 1. However,
this research mainly focused on the robot design for various crawl spaces and does not
involve the deterioration detection and mapping of false ceilings.

Table 1. Summary of research.

Reference Typology of the Platform Aim

Gary et al. [5] Wheeled Robot Detect common features of
underfloor void

Balakrishnan et al. [6] Tracked Robot Rodent Activity Monitoring

Protopapadakis et al. [7] Wheeled Robot Crack detection for
tunnel inspection

Menendez et al. [8] Wheeled Robot Tunnel structural inspection

Palanisamy et al. [9] Wheeled Robot Drain Structural
Defect Detection

Melvin et al. [10] Wheeled Robot Drain blockage inspection

Kouzehgar et al. [11] Wheeled Robot Automatic glass
crack detection

Hung et al. [15] Wheeled Robot Inspection of steel structures
and bridges

Gui et al. [16] Wheeled Robot Airport runway inspection

Ladig et al. [21] Aerial Robot Platform to do high precision
localization and positioning

Ozgur et al. [23] Sixteen-legged climbing robot To climb in any direction in
3D space

Hayat et al. [24] Reconfigurable wheeled robot False-ceiling inspection

The literature survey indicates that there is a research gap in the robot-assisted false
ceiling inspection field. Therefore, this work proposes a false ceiling inspection and deteri-
oration mapping framework using a Deep-Learning (DL)-based deterioration detection
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algorithm and our in-house-developed teleoperated reconfigurable false ceiling inspection
robot, known as the ‘Falcon’.

3. Overview of the Proposed System

Figure 1 shows an overview of the false ceiling inspection and deterioration mapping
framework. Our in-house-developed crawl class Falcon robot was used for false ceiling
inspection, and a deep-learning-based object detection algorithm was trained for deteriora-
tion detection from robot captured images. Further, a UWB localization module was used
to localize the deterioration location and generate a deterioration map of a false ceiling.
The detail of each module and functional integration is given as follows.

Figure 1. Overview of the proposed system.

3.1. The Falcon Robot

A false ceiling panel is built using a fragile material such as Gypsum board or Plaster
of Paris. Moreover, a false ceiling environment is crowded with components such as piping,
electrical wiring, suspended cables, and protruding elements. Therefore, the Falcon was
designed as a lightweight robot that can easily traverse obstacles. Furthermore, the camera
used for image capturing or recording videos of the false ceiling environment is able to tilt
the angle from 0 to 90 degrees for better accessibility in the crawled spaces. During the
development stage, three versions of the Falcon robot were built due to changing require-
ments and design considerations, shown in Figure 2. In Version 2, the track mechanism is
reinforced with a fork structure to avoid slippage while crossing obstacles in a false ceiling
environment. Furthermore, a closed-form design approach was applied due to excessive
dust-settling on electronic components. In Version 3 (as shown in Figure 3), a more precise
IMU and more powerful motor is used. The robot height was further reduced to travel in
spaces with an 80 mm height. All of the specifications of the Falcon robots are detailed in
Table 2. The Falcon robot was powered with a 3 × 3.7 V, 3400 mAh battery that operates
between 0.5 to 1.5 h with full autonomy functionalities. The operating range of the Falcon
robot is directly determined by energy consumed by sensors and actuators, such as cameras,
IMUs, cliffs, and motors. During autonomous operations, the motor operating at 1.6 A
and 12 V consumes 33.2 W. Considering the battery power of 65.3 W, motors consume the
highest fraction of the energy used for locomotion and to overcome tall obstacles. Further,
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the exploration tasks during false ceiling inspection also drain the energy, affecting the
range of autonomy.

Figure 2. Different Version of Falcon Robot (Version 1, 2 and 3).

(a) Front View (b) Side View

(c) Isometric View

Figure 3. Different view of the Falcon Robot (Version 3).

Locomotion Module: An important design consideration for a false ceiling robot is
the form factor to overcome obstacles with a height of 55 mm and to traverse through
low hanging spaces under 80 mm. In order to overcome these narrow spaces and tall
obstacles, a locomotion module in the form of tracks that has maximized the contact area
was used. The tracks extended along the dimension of the vehicle and were configured to
be 236 (L) × 156 (W) × 72 (H) [mm × mm × mm]. The Falcon can operate regardless of
the direction it flips over, as both sides of the locomotion modules are consolidated with
hemispherical attachments to avoid stabilizing laterally. However, the operational terrain
of the false ceiling may impose uncertainty on the Falcon robot. Therefore, the motors with
higher specifications were chosen; e.g., a safety factor of 2 on a maximum inclined slope of
12 degrees.

Control system: A small-footprint, low-power ARM, Cortex-M7-powered, Teensy-
embedded computing system was used as the onboard processor for the Falcon robot.
It processes the velocity commands from the user and computes motor speeds using an
inverse kinematic model. The MQTT server was employed to send the velocity command
from the control station. In addition, the control unit is responsible for vital safety layer
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functionality to prevent the free-fall of the robots. Thus, the processor calibrates the
IMU and cliff sensors to differentiate openings in the ceilings from the false noises while
overcoming obstacles.

Table 2. Technical specifications of the Falcon robot.

Description Specification

Dimension [L × W × H] 0.236 m × 0.156 m × 0.072 m

Weight (including battery) 1.3 kg

Type of Locomotion Drive Track

Top & Bottom Ground Clearance 0.011 m, 0.011 m

Operating Speed 0.1 m/s

Maximum Obstacle Height 0.055 m

Operational Duration 0.5 h–0.75 h

Battery 3-cell Lithium Ion

Operation Mode Teleoperation (with integrated sensors to detect
falls and stops autonomously)

Communication Mode Wi-Fi through a local MQTT server

Camera Specifications (onboard light source) VGA 640 × 480, up to 30 fps, 60 degree view
angle, 20 cm-infinity focusing range

System Architecture

Figure 4 illustrates the system architecture of the Falcon robot. It consists of the
following units: (1) a locomotion module, (2) a control unit, (3) a power distribution
module, (4) a wireless communication module, and (5) a perception sensor.

Figure 4. System architecture of the Falcon.

Perception Module The WiFi camera module operates with a 5 V power rating and a
640 × 480 pixel density at 30 fps. The encoded video feed is a recorder and is additionally
used to process the data through computer vision and machine learning algorithms to iden-
tify defects. Since the perception system relies heavily on lighting conditions, a NeoPixel
stick with an 8∼50 RGB LED strip is used as the robot’s light source. Furthermore, a
dedicated router is used to avoid data loss and for improved data security. Finally, a titling
camera (up to 90 degrees) was incorporated considering broader field of view requirements
using a servo motor controlled by A Teensy-embedded computing system.
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3.2. Deterioration Detection Algorithm

Generally, deterioration factors in false ceiling environments are tiny and cover only a
small number of the pixels of an image. Therefore, there is a requirement of a detection
algorithm able to detect small objects to mitigate overlap or pixelated issues. Furthermore,
the information extracted from images is lost due to multiple layers of the convolution
neural network. The inspection algorithm needs an extensive, accurate, and apt framework
with a small object detection capability. A Faster R-CNN model is an optimal framework
when compared with similar CNN architectures and was used to detect small deterioration
factors of the false ceiling environment in our case study [9,10]. Figure 5 shows an overview
of the Faster R-CNN framework. Its architecture comprises three main components: the
feature extractor network, the Region Proposal Network (RPN), and the detection network.
All three components are briefly described in the following section.

Figure 5. Functional block diagram of the deterioration detection algorithm.

3.2.1. Feature Extractor Network

In our case study, Inception v2 performed the feature extraction task. It is an upgraded
version of Inception v1, providing better accuracy and reducing computational complexity.
Here, the input image size was 768 × 1024, and a total of 42 deep convolutional layers
were used to build the feature extractor network. The number of feature maps directly
controlled the task complexity, so an optimal 1024-size feature map (extracted from Layer
37 via a transfer learning scheme on a pre-trained dataset of COCO [27]) was fed into the
Faster R-CNN. Further, in Inception v2, filter banks were expanded to reduce the loss of
information, known as a ’representational bottleneck.’ Finally, the convolution 5 × 5 and
3 × 3 was factorized into two 3 × 3 convolutions and a combination of 1 × 3 and 3 × 1
convolutions, respectively, to boost the performance and reduce the computational cost.
Further, Table 3 summarizes the layer details and input dimensions.
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Table 3. Inception v2 backbone.

Layer Details Input Dimensions

Conv 299 × 299 × 3

Conv 149 × 149 × 32

Conv 147 × 147 × 32

Pool 147 × 147 × 64

Conv 73 × 73 × 64

Conv 71 × 71 × 80

Conv 35 × 35 × 192

3× Inception module A 35 × 35 × 288

5× Inception module B 17 × 17 × 768

2× Inception module C 8 × 8 × 1280

Pool 8 × 8 × 2048

Linear 1 × 1 × 2048

Softmax 1 × 1 × 1000

3.2.2. Region Proposal Network

The Region Proposal Network (RPN) shares the output of the feature extractor network
to the object detection and classification network. The RPN takes the feature map as an
input (the output of the feature extractor network) and generates a bounding box with an
objectness score using the anchor box technique first proposed by Shaoqing Ren et al. [28].
The anchor boxes are predefined, fixed-size boxes and detect objects of varying sizes and
overlapping objects. It performs a 3× 3 sliding window operation to generate anchor boxes
in a 256-size feature map. Nine anchor boxes can be created from the combinations of sizes
and ratios. Further, a stride of 8 (each kernel is offset by eight pixels from its predecessor)
is used to determine the actual position of the anchor box in the original image. The output
of the above convolution is fed into two parallel convolution layers, one for classification
and the other for the boundary box regression. Finally, Non-Max Suppression (NMS) is
applied to filter out the overlapping bounding boxes based on their objectness scores.

3.2.3. Detection Network

The detection network consists of the Region of Interest (RoI) pooling layer and a fully
connected layer. The shared feature map from the feature network and the object proposals
generated by the RPN are fed into the RoI pooling layer to extract fixed-sized feature maps
for each object proposal generated by the RPN. The fixed-sized feature maps are then fed
two different fully connected layers with a softmax function. The first fully connected layer
seeks to classify the object proposals into one of the object classes, plus a background class
for removing bad proposals (N + 1 units, where N is the total number of object classes).
The second fully connected layers seeks to better adjust the bounding box for the object
proposal according to the predicted object class (4N units for a regression prediction of the
xcenter, ycenter, widthcenter, and heightcenter of each of the N possible object classes). Similar
to the RPN, NMS is applied to filter out redundant bounding boxes and retain a final list of
objects using a probability threshold and a limit on the number of objects for each class.

3.3. Deterioration Mapping

In our case study, the deterioration mapping function was accomplished using the
UWB module. Explicitly, the UWB module was employed to track the mobile robot and
localize the deterioration position. This location estimation feature was utilized and com-
bined with the object detection module to identify, locate, and mark the deteriorations
on the map of the false ceiling. At least three beacons must be installed where the actual
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number of beacons required is dependent on the complexity of the false ceiling infrastruc-
ture. In addition, sensor fusion was used to reduce localization errors and to calculate
the exact position. It combines wheel odometry, IMU data, and UWB localization data to
offer a more accurate location estimate. The beacon map was generated with the origin
(0,0) as the location of the first beacon initiated and the relative position of other stationary
beacons as landmarks. The mobile beacons within this relative map reflect the real-world
location of the Falcon robot. As the robot explores and identifies deteriorations using the
deterioration detection module, the location of the detected deterioration’s class is marked
on the beacon map with their corresponding color code. It marks the deterioration’s class
with an accuracy of a 30 cm radius on the map and is useful for the efficient inspection and
maintenance of false ceilings.

3.4. Remote Console

The remote console is used to monitor and control the mobile Falcon robot for per-
forming experiments. The primary mode of interaction happens via a transmitter and
receiver system and directly in nature. The user controls the machine by sending signals
that are transmitted through a remote. In our case study, the Taranis Q X7 from FrSky was
used considering full telemetry capabilities as well as the RSSI signal strength feedback.
The battery compartment uses two 18650 Li-Ion batteries and can be balance-charged via
the Mini USB interface.

4. Experiments and Results

This section elaborates on the experimental setup and results of the proposed false
ceiling deterioration detection and mapping framework. The experiments were carried out
in five steps: dataset preparation, training and validation, prediction with a test dataset, a
real-time field trial, and a comparison with other models.

4.1. Data-Set Preparation

The false ceiling deterioration training dataset was prepared by collecting images from
various online sources and defect image dataset libraries (a surface defect database [29] and
a crack image dataset [30,31]). In our dataset collection process, the common false ceiling
deteriorations are categorized into four classes, namely, structural defects (spalling, cracks,
and pitted surfaces), infestation (termites and rodents), electrical damage (frayed wires),
and degradation in HVAC systems (molding, corrosion, and water leakage). Five thousand
images were collected from an online source, and around 800 images were collected from a
real false ceiling environment to train the deep learning algorithm. The CNN model was
trained and tested using images with a 768 × 1024 pixel resolution. The “LabelImg” GUI
was used for bounding boxes and class annotations. Annotations were recorded as XML
files in the PASCAL Visual Object Classes (VOC) format.

Further, the data augmentation process was applied on labeled images to help control
the over-fitting and class imbalance issues in the model training stage. Data augmentation
processes such as horizontal flips, scaling, cropping, rotations of the image, blurring,
grayscale colors, and color enhancing were applied to the collected images. Figure 6 shows
a sample of the data augmentation of one image. Further, Table 4 elaborates the settings of
the various types of augmentations applied.

4.2. Training and Validation

The object detection model, the Faster R-CNN, was built using the TensorFlow (v1.15)
API and the Keras wrapper library. The pre-trained Inception V2 model was used as a
feature extraction module. It was trained on the COCO dataset. A Stochastic Gradient
Descent (SGD) optimizer was used for the training of the Faster R-CNN module. The
hyper-parameters used were 0.9 for momentum, an initial learning rate of 0.0002, which
decays over time, and a batch size of 1.
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(a) Blurred (b) Gray Scale Color (c) Enhance Color

(d) Horizontal Flip (e) Scale (f) Rotated

Figure 6. Sample of data augmentation of one image.

Table 4. Augmentation types and settings.

Augmentation Type Augmentation Setting

Blurring gaussianblur (from sigma 1.0× to 3.0×)

Grayscale individual rgb spectrum (from factor 0 to 1.5×)

Color Enhancing contrast (from 0.5× to 1.5×)

Horizontal Flip flip the image horizontally

Scaling 0.5× to 1.5×

Rotation from −45 degree to +45 degree

Translation X-axis (−0.3× to 0.3×) Y-axis (−0.3× to 0.3×)

The model was trained and tested on the Lenovo ThinkStation P510. It consists of an
Intel Xeon E5-1630V4 CPU running at 3.7 GHz, 64 GB of Random Access Memory (RAM),
and a Nvidia Quadro P4000 GPU (1792 Nvidia CUDA Cores and 8 GB GDDR5 memory
size running at a 192.3 GBps bandwidth). The same hardware is used to run as a local
server to allow the Falcon robot to carry out inference during real-time testing.

The K-fold (here K = 10) cross-validation technique was used for validating the dataset
and model training accuracy. In this evaluation, the dataset was divided into K subsets,
and K−1 subsets were used for training. The remaining subset was used for evaluating
the performance. This process was run K times to obtain the mean accuracy and other
quality metrics of the detection model. K-fold cross-validation was performed to verify
that the images reported were accurate and not biased towards a specific dataset split. The
images shown were attained from the model with good precision. In this analysis, the
model scored a 91.5% mean accuracy for k = 10. This indicates that the model is not biased
towards a specific dataset split.

4.3. Prediction with the Test Dataset

The trained model’s deterioration detection and classification accuracy were evaluated
using the test dataset. In this evaluation process, 100 images were tested from each class.
These test datasets were not used in the training and cross-validation of the model. Figure 7
shows the detection results of the given test dataset.
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The experimental results show that the deterioration detection algorithm accurately
detected and classified the deterioration in the given test images with a high confidence
level average of 88%. Further, the model classification accuracy was evaluated using
standard statistical metrics such as accuracy (Equation (1)), precision (Equation (2)), recall
(Equation (3)), and Fmeasure (Equation (4)).

Accuracy(Acc) =
tp + tn

tp + f p + tn + f n
(1)

Precision(Prec) =
tp

tp + f p
(2)

Recall(Rec) =
tp

tp + f n
(3)

Fmeasure(F1) =
2 × precision × recall

precision + recall
(4)

Here, tp, f p, tn, f n represent the true positives, false positives, true negatives, and false
negatives, respectively, as per the standard confusion matrix. Table 5 provides the statistical
measure results of the offline test. Figure 8 demonstrates the graphical representation of
Table 5 for improved visualization.

Table 5. Statistical measures for the deterioration detection framework (the proposed framework).

Category Class Precision Recall F1 Accuracy

Structural Defect

Spalling 93.60 92.77 93.16 88.70
Crack 94.77 95.32 95.04 91.50

Pitted Surface 95.70 93.13 94.39 89.70
Water Damage 92.11 89.74 90.91 86.00

Degradation in HVAC
Molding 91.95 94.74 93.32 90.20

Corrosion 91.88 93.63 92.74 88.50
Pipe Damage 91.89 90.67 91.28 87.00

Infestation Termite 96.59 92.39 94.44 90.10
Rodent Activity 95.01 93.63 94.31 91.52

Electrical Damage Fray wires 96.13 93.29 94.69 92.23

The statistical measures experimental result indicate that the proposed framework
detected structural defects with an average accuracy of 88.9%, degradation in the HVAC
system at an 88.56% accuracy, infestation at a 90.75% accuracy, and electrical damage at a
92.2 % accuracy.

4.4. Real-Time Field Trial

The real-time field trial experiments were performed in two different false ceiling
environments, including the Oceania Robotics prototype false ceiling testbed and the SUTD
ROAR laboratory real false ceiling. The false ceiling testbed consists of frames, dividers,
pipes, and other common false ceiling elements. For experimental purposes, various
deteriorations in false ceilings such as frayed wire, damaged pipes, and termite damage
were manually created and placed in the prototype environment. Some of the defects, such
as pitted surfaces and spalling, were fabricated using printed images of these defects. These
printed images were glued at various locations in a false ceiling testbed for experimental
purposes. Further, to track the robot position and identify the false ceiling deterioration
location, a mobile beacon was placed on the top of the Falcon, and stationary beacons
were mounted on projecting beams or sidewalls. The mobile beacons were the transmitters
operating in unique frequencies, while all of the stationary beacons operated in the same
frequency and behaved as receivers. The location of the moving beacons was calculated
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based on triangulating the distances from stationary beacons, and the current location
was updated at a frequency of 16 Hz. With an accuracy of up to 2 cm and a bandwidth
accommodating up to six mobile devices seamlessly, the beacon system implemented was
used for false ceiling deterioration mapping and localization.

(a) Spalling (b) Crack (c) Pitted Surface

(d) Water Damage

(e) Corrosion (f) Molding (g) Pipe Damage

(h) Termite

(i) Rodent (j) Fray Wire

Figure 7. Structural Defects (a–d), degradation in HVAC system (e–g), infestation (h,i), electrical
damage (j) during Offline Testing.
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Figure 8. Graphical representation of the statistical measures of the proposed framework.

Figures 9 and 10 show the Falcon robot in the prototype of the false ceiling (Oceania
Robotics test bed), while Figure 11 shows the robot in a real false ceiling environment
(SUTD ROAR Laboratory). During the inspection, the robot was controlled by a mobile
GUI interface, and the robot’s position and the defect region were localized through UWB
modules fixed in the false ceiling environment. The robot was paused at each stage for a
few seconds to capture better quality images in these real-time field experiments.

(a) False Ceiling Testbed (b) Robot Falcon in Testbed

Figure 9. Falcon and the false ceiling testbed prototype.
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(a) (b) (c)

(d)

Figure 10. Falcon’s performance on the false ceiling prototype at Oceanica Robotics. (a) Falcon in
Prototype of False Ceiling (Camera at 0 degree); (b) Falcon in Prototype of False Ceiling (Camera at
90 degree); (c) Image collected by Falcon; (d) Falcon in Prototype of False Ceiling (Zoomed out).

(a) Falcon at Location 1 (b) Falcon at Location 2

Figure 11. Falcon’s performance on the false ceiling at the SUTD ROAR Laboratory.
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The captured images were transferred to a high-powered GPU-enabled local server for
false inspection tasks via WiFi communication. Figure 12 depicts the real-time filed trial de-
terioration detection results of the false ceiling testbed, and its localization results are shown
in Figure 13. These deterioration-detected image frame locations were identified by fusing
the beacon coordinates, wheel decoder data, and IMU sensor data on the Marvel Mind
Dashboard tracking software. Figure 13 also shows the deterioration location mapping
results for the real-time field trials, where the color codes indicate the class of deterioration.

(a) Spalling (b) Crack (c) Pitted Surface (d) Molding

(e) Pipe Damage (f) Termite (g) Rodent (h) Fray Wire

Figure 12. Structural defects (a–c), degradation in the HVAC system (d,e), infestation (f,g), and
electrical damage (h) during online testing.

Figure 13. Beacon maps with static beacons and a mobile beacon.
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The findings of the experiment reveal that the Falcon robot’s maneuverability was
stable. It could move around a complex false ceiling environment and accurately capture
it for false ceiling deterioration identification. The detection algorithm detected most of
the false ceiling deterioration in the real-time field trial with a good confidence level and
scored an 88% mean detection accuracy. Furthermore, the Falcon robot’s position on the
false ceiling could be reliably tracked using the UWB localization results. This will further
help inspection teams to identify defects and degradation efficiently.

5. Discussion

The proposed system’s performance is discussed in this section by a comparison with
two models (Faster Inception ResNet and Faster Resnet 152) and other existing studies.
The comparison analysis findings are shown in Tables 6–8. The three detection frameworks
were trained on the same image dataset and with the same number of epochs. Here, overall
detection accuracies of 86.8% for the Faster Resnet 152 and 86.53% for the Faster Inception
Resnet were observed. The detection accuracy of these two models was relatively low due
to a high false-positive rate and misclassification issues due to similar deterioration factors
and the impact of object illumination. These issues can be further resolved by retraining
the algorithm with misclassified classes and applying nonlinear detrending techniques [32].
Further, Figure 14 shows a graphical representation of Table 8 for improved visualisation.

Table 6. Statistical measures for the deterioration detection framework (Faster Resnet 152).

Category Class Precision Recall F1 Accuracy

Structural Defect

Spalling 87.12 86.11 86.61 86.4
Crack 90.87 90.47 90.67 90.2

Pitted Surface 85.61 84.8 85.2 84.2
Water Damage 86.79 87 86.89 84.6

Degradation in HVAC
Molding 90.69 91.09 90.89 89.8

Corrosion 88.86 89.27 89.07 87.6
Pipe Damage 85.51 84.89 85.2 83.4

Infestation Termite 85.55 86.56 86.05 84.8
Rodent Activity 90.38 88.99 89.68 90.8

Electrical Damage Fray wires 90.54 88.86 89.7 86.2

Table 7. Statistical measures for the deterioration detection framework (Faster Inception Resnet).

Category Class Precision Recall F1 Accuracy

Structural Defect

Spalling 88.19 88.81 88.5 85.8
Crack 92.51 92.92 92.72 90.4

Pitted Surface 86.57 85.95 86.26 83.9
Water Damage 87.8 86.97 87.38 84.3

Degradation in HVAC
Molding 92.05 92.46 92.27 90.2

Corrosion 88.84 87.61 88.22 87.2
Pipe Damage 86.76 87.17 86.97 84.1

Infestation Termite 85.16 84.13 84.64 83.2
Rodent Activity 93.16 92.54 92.85 91.1

Electrical Damage Fray wires 87.21 88.03 87.62 85.1
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Table 8. Comparison with other object detection frameworks.

Class Precision Recall F1 Overall Accuracy

Faster Inception Resnet 94.92 93.3 94.11 86.5

Faster Resnet 152 92.9 93.21 93.05 86.8

Faster Inception (Proposed Model) 93.96 92.93 93.43 89.53

Figure 14. Graphical representation of the comparison with other detection frameworks.

The cost of training and testing is shown in Table 9. In that analysis, we found that the
proposed model also had a lower execution time compared to the Faster Inception Resnet
and Faster Resnet 152 models. Because of this, the framework that has been proposed is
better suited for false ceiling deterioration detection tasks.

Table 9. Computational cost analysis.

Algorithm Training Time
(Hours:Minutes) Speed (Milliseconds)

Faster Inception Resnet 23:20 647

Faster Resnet 152 19:48 135

Faster Inception
(Proposed Model) 16:18 68

Table 10 shows the accuracy of various defect detection algorithms based on different
classes. However, a fair comparison is lacking because their algorithm, datasets, and
training parameters are not the same. Finally, the proposed method involves robotic
inspection, which is another contribution with respect to the state of the art.
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Table 10. Comparison of results with other methodologies in related work.

Reference Algorithm Accuracy

Gary et al. [5] Mask-RCNN 80.00%

Hung La et al. [15] CNN-based image stitching and 3D registration 93.10 %

Gui et al. [16] CNN-based 70.00 %

Perez et al. [17] VGG-16 87.50 %

Xing et al. [18] CNN model (SCN) and optimised IoU 85.84%

Xian et al. [19] Cascaded encoder (CASAE) 89.60%

Cheon et al. [20] Single CNN 96.20 %

Proposed Method Faster R-CNN Inception 89.53%

6. Conclusions

False ceiling defect detection and mapping were presented using our in-house-developed
Falcon robot and the Faster Inception object detection algorithm. The efficiency of the pro-
posed system was tested through a robot maneuverability test and showed defect detection
accuracy in offline and real-time field trials. The robot’s maneuverability was tested in two
different false ceiling environments: the Oceania Robotics prototype false ceiling testbed
and the SUTD ROAR laboratory real false ceiling. The experimental results proved that the
Falcon robot’s maneuverability was stable and that its defect mapping was accurate in a
complex false ceiling environment. Further, the defect detection algorithm was tested on
a test dataset, and real-time false ceiling images were collected by the Falcon robot. The
experimental results show that Faster Inception has a good trade-off between detection
accuracy and computation time, with a detection accuracy of 89.53% for detecting deterio-
ration in real-time Falcon-collected false-ceiling-environment video streams, whereas the
average detection accuracies of Faster Resnet 152 and Faster Inception Resnet were 86.8%
and 86.53%, respectively. Further, Faster Inception required only 68 ms to process one
image on the local server, which is lower compared with other algorithms, including Faster
Inception Resnet and Faster Resnet 152. Further, the mapping results precisely indicated the
location of deterioration on the false ceiling. Thus, it can be concluded that the suggested
method is more suited for defect detection in false ceiling environments and can improve
inspection services. In our future work, we plan to add more features to the false ceiling
inspection framework, such as olfactory contamination detection.

Author Contributions: Conceptualization, B.R. and R.E.M.; methodology, A.S., R.E.M. and B.R.;
software, A.S., L.M.J.M. and C.B.; validation, L.Y. and S.P.; formal analysis, A.S., S.P. and C.B.;
investigation, R.E.M. and B.R.; resources, R.E.M.; data, A.S., L.Y., P.P. and L.M.J.M.; writing—original
draft preparation, A.S., B.R., L.M.J.M., P.P., S.P. and C.B.; supervision, R.E.M.; project administration,
R.E.M.; funding acquisition, R.E.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Robotics Programme under Robotics En-
abling Capabilities and Technologies (Funding Agency Project No. 192 25 00051) and the National
Robotics Programme under its Robot Domain (Funding Agency Project No. 192 22 00108) and was
administered by the Agency for Science, Technology and Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the National Robotics Programme, the Agency
for Science, Technology and Research, and SUTD for their support.

Conflicts of Interest: There are no conflicts of interest.



Sensors 2022, 22, 262 19 of 20

References
1. Edgemon, G.L.; Moss, D.; Worland, W. Condition Assessment of the Los Alamos National Laboratory Radioactive Liquid Waste

Collection System. In CORROSION 2005; OnePetro: Los Alamos, NM, USA, 2005.
2. Henry, R.S.; Dizhur, D.; Elwood, K.J.; Hare, J.; Brunsdon, D. Damage to concrete buildings with precast floors during the 2016

Kaikoura earthquake. Bull. N. Z. Soc. Earthq. Eng. 2017, 50, 174–186. [CrossRef]
3. Jiang, Y.; Han, S.; Bai, Y. Building and Infrastructure Defect Detection and Visualization Using Drone and Deep Learning

Technologies. J. Perform. Constr. Facil. 2021, 35, 04021092. [CrossRef]
4. Aliyari, M.; Droguett, E.L.; Ayele, Y.Z. UAV-Based Bridge Inspection via Transfer Learning. Sustainability 2021, 13, 11359.

[CrossRef]
5. Atkinson, G.A.; Zhang, W.; Hansen, M.F.; Holloway, M.L.; Napier, A.A. Image segmentation of underfloor scenes using a mask

regions convolutional neural network with two-stage transfer learning. Autom. Constr. 2020, 113, 103118. [CrossRef]
6. Ramalingam, B.; Tun, T.; Mohan, R.E.; Gómez, B.F.; Cheng, R.; Balakrishnan, S.; Mohan Rayaguru, M.; Hayat, A.A. AI Enabled

IoRT Framework for Rodent Activity Monitoring in a False Ceiling Environment. Sensors 2021, 21, 5326. [CrossRef]
7. Protopapadakis, E.; Voulodimos, A.; Doulamis, A.; Doulamis, N.; Stathaki, T. Automatic crack detection for tunnel inspection

using deep learning and heuristic image post-processing. Appl. Intell. 2019, 49, 2793–2806. [CrossRef]
8. Menendez, E.; Victores, J.G.; Montero, R.; Martínez, S.; Balaguer, C. Tunnel structural inspection and assessment using an

autonomous robotic system. Autom. Constr. 2018, 87, 117–126. [CrossRef]
9. Palanisamy, P.; Mohan, R.E.; Semwal, A.; Jun Melivin, L.M.; Félix Gómez, B.; Balakrishnan, S.; Elangovan, K.; Ramalingam, B.;

Terntzer, D.N. Drain Structural Defect Detection and Mapping Using AI-Enabled Reconfigurable Robot Raptor and IoRT
Framework. Sensors 2021, 21, 7287. [CrossRef] [PubMed]

10. Melvin, L.M.J.; Mohan, R.E.; Semwal, A.; Palanisamy, P.; Elangovan, K.; Gómez, B.F.; Ramalingam, B.; Terntzer, D.N. Remote
drain inspection framework using the convolutional neural network and re-configurable robot Raptor. Sci. Rep. 2021, 11, 22378.
[CrossRef] [PubMed]

11. Kouzehgar, M.; Tamilselvam, Y.K.; Heredia, M.V.; Elara, M.R. Self-reconfigurable façade-cleaning robot equipped with deep-
learning-based crack detection based on convolutional neural networks. Autom. Constr. 2019, 108, 102959. [CrossRef]

12. Pan, Z.; Yang, J.; Wang, X.; Wang, F.; Azim, I.; Wang, C. Image-based surface scratch detection on architectural glass panels using
deep learning approach. Constr. Build. Mater. 2021, 282, 122717. [CrossRef]

13. Jamil, M.; Sharma, S.K.; Singh, R. Fault detection and classification in electrical power transmission system using artificial neural
network. SpringerPlus 2015, 4, 334. [CrossRef] [PubMed]

14. Tun, T.T.; Elara, M.R.; Kalimuthu, M.; Vengadesh, A. Glass facade cleaning robot with passive suction cups and self-locking
trapezoidal lead screw drive. Autom. Constr. 2018, 96, 180–188. [CrossRef]

15. La, H.M.; Dinh, T.H.; Pham, N.H.; Ha, Q.P.; Pham, A.Q. Automated robotic monitoring and inspection of steel structures and
bridges. Robotica 2019, 37, 947–967. [CrossRef]

16. Gui, Z.; Li, H. Automated defect detection and visualization for the robotic airport runway inspection. IEEE Access 2020,
8, 76100–76107. [CrossRef]

17. Perez, H.; Tah, J.H.; Mosavi, A. Deep learning for detecting building defects using convolutional neural networks. Sensors 2019,
19, 3556. [CrossRef]

18. Xing, J.; Jia, M. A convolutional neural network-based method for workpiece surface defect detection. Measurement 2021,
176, 109185. [CrossRef]

19. Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic metallic surface defect detection and recognition with convolutional neural
networks. Appl. Sci. 2018, 8, 1575. [CrossRef]

20. Cheon, S.; Lee, H.; Kim, C.O.; Lee, S.H. Convolutional neural network for wafer surface defect classification and the detection of
unknown defect class. IEEE Trans. Semicond. Manuf. 2019, 32, 163–170. [CrossRef]

21. Ladig, R.; Shimonomura, K. High precision marker based localization and movement on the ceiling employing an aerial robot
with top mounted omni wheel drive system. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3081–3086.

22. Zhang, Y.; Dodd, T.; Atallah, K.; Lyne, I. Design and optimization of magnetic wheel for wall and ceiling climbing robot.
In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010;
pp. 1393–1398.

23. Unver, O.; Sitti, M. A miniature ceiling walking robot with flat tacky elastomeric footpads. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2276–2281.

24. Hayat, A.A.; Ramanan, R.K.; Abdulkader, R.E.; Tun, T.T.; Ramalingam, B.; Elara, M.R. Robot with Reconfigurable Wheels
for False-ceiling Inspection: Falcon. In Proceedings of the 5th IEEE/IFToMM International Conference on Reconfigurable
Mechanisms and Robots (ReMAR), Toronto, ON, Canada, 12–14 August 2021; pp. 1–10.

25. Tan, N.; Hayat, A.A.; Elara, M.R.; Wood, K.L. A framework for taxonomy and evaluation of self-reconfigurable robotic systems.
IEEE Access 2020, 8, 13969–13986. [CrossRef]

26. Manimuthu, M.; Hayat, A.A.; Elara, M.R.; Wood, K. Transformation design Principles as enablers for designing Reconfigurable
Robots. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, St. Louis, MO, USA, 17–20 August 2021; pp. 1–12.

http://doi.org/10.5459/bnzsee.50.2.174-186
http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0001652
http://dx.doi.org/10.3390/su132011359
http://dx.doi.org/10.1016/j.autcon.2020.103118
http://dx.doi.org/10.3390/s21165326
http://dx.doi.org/10.1007/s10489-018-01396-y
http://dx.doi.org/10.1016/j.autcon.2017.12.001
http://dx.doi.org/10.3390/s21217287
http://www.ncbi.nlm.nih.gov/pubmed/34770593
http://dx.doi.org/10.1038/s41598-021-01170-0
http://www.ncbi.nlm.nih.gov/pubmed/34789747
http://dx.doi.org/10.1016/j.autcon.2019.102959
http://dx.doi.org/10.1016/j.conbuildmat.2021.122717
http://dx.doi.org/10.1186/s40064-015-1080-x
http://www.ncbi.nlm.nih.gov/pubmed/26180754
http://dx.doi.org/10.1016/j.autcon.2018.09.006
http://dx.doi.org/10.1017/S0263574717000601
http://dx.doi.org/10.1109/ACCESS.2020.2986483
http://dx.doi.org/10.3390/s19163556
http://dx.doi.org/10.1016/j.measurement.2021.109185
http://dx.doi.org/10.3390/app8091575
http://dx.doi.org/10.1109/TSM.2019.2902657
http://dx.doi.org/10.1109/ACCESS.2020.2965327


Sensors 2022, 22, 262 20 of 20

27. Caesar, H.; Uijlings, J.; Ferrari, V. Coco-stuff: Thing and stuff classes in context. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1209–1218.

28. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,
arXiv:1506.01497.

29. Guan, S.; Lei, M.; Lu, H. A steel surface defect recognition algorithm based on improved deep learning network model using
feature visualization and quality evaluation. IEEE Access 2020, 8, 49885–49895. [CrossRef]

30. Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic road crack detection using random structured forests. IEEE Trans. Intell.
Transp. Syst. 2016, 17, 3434–3445. [CrossRef]

31. Cui, L.; Qi, Z.; Chen, Z.; Meng, F.; Shi, Y. Pavement Distress Detection Using Random Decision Forests. In International Conference
on Data Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 95–102.

32. Civera, M.; Fragonara, L.Z.; Surace, C. Video processing techniques for the contactless investigation of large oscillations. In
Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1249, p. 012004.

http://dx.doi.org/10.1109/ACCESS.2020.2979755
http://dx.doi.org/10.1109/TITS.2016.2552248

	Introduction
	Related Work
	Overview of the Proposed System
	The Falcon Robot
	Deterioration Detection Algorithm
	Feature Extractor Network
	Region Proposal Network
	Detection Network

	Deterioration Mapping
	Remote Console

	Experiments and Results
	Data-Set Preparation
	Training and Validation
	Prediction with the Test Dataset
	Real-Time Field Trial

	Discussion
	Conclusions
	References

