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Abstract: Unmanned aerial vehicles (UAVs) play an important role in facilitating data collection in
remote areas due to their remote mobility. The collected data require processing close to the end-user
to support delay-sensitive applications. In this paper, we proposed a data collection scheme and
scheduling framework for smart farms. We categorized the proposed model into two phases: data
collection and data scheduling. In the data collection phase, the IoT sensors are deployed randomly
to form a cluster based on their RSSI. The UAV calculates an optimum trajectory in order to gather
data from all clusters. The UAV offloads the data to the nearest base station. In the second phase, the
BS finds the optimally available fog node based on efficiency, response rate, and availability to send
workload for processing. The proposed framework is implemented in OMNeT++ and compared
with existing work in terms of energy and network delay.

Keywords: clustering; fog computing; smart farming; swarm UAVs; IoT; sensors

1. Introduction

The rapid advancement in wireless sensor networks (WSN) has emerged with an
assortment of curiosity [1,2]. The inclusion of unmanned aerial vehicles improves the cov-
erage area as well as communication between devices [3]. The most common applications
of UAV in data collection are covered in [4,5]. The clustering schemes on WSN are used for
data collection to preserve energy and reduce communication overhead [6]. In most cases,
sensors are deployed at difficult-to-reach locations. Sometimes, these locations include hilly
areas and large farms where nature hurdles such as trees, small mountains, or unexpected
slopes cause signal distortion. In such cases, it is difficult to gather data. However, the use
of UAVs in such areas can reduce the cost and increase the efficiency of data collection [7].
Data collection using UAV in large-scale smart farms faces considerable challenges in terms
of lack of connectivity, interoperability, data storage, limited energy resources, latency, and
data processing power. Furthermore, data processing in delay-sensitive applications is
another big challenge. In conventional data collection schemes, the UAV collects data and
returns it back to the base station to offload collected data for processing. This process is
repeated until all the farms are traversed. This back and forth traveling adds additional
delay and consumes more energy [8]. Moreover, smart farm applications also require quick
responses to generate triggers for the farmers. Moreover, the data collection by visiting ev-
ery sensor in the field adds additional energy cost; thus, clustering techniques are adopted
for the sensors nodes [9]. UAVs move sensor to sensor, cluster by cluster to collect data
by communicating with sensors directly or acquiring the data from cluster heads (CHs).
Data collection directly from sensors is an easy task, but it consumes more energy, time,
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and travel distance for the UAV as compared to the later technique where data are relayed
through the CH. However, the second technique is also not very efficient because it yields
the problem of a single point of failure, network congestion, and bottleneck at the CH. This
problem can be resolved by adopting a hybrid technique where CH helps in creating a
reliable connection between sensors and UAV, and the UAV receives data from sensors at
a single optimal position [10]. The proposed technique is based on a hybrid mechanism
where CH is selected based on centrality. With this technique, the UAV can collect data
from the entire cluster by hovering at a single position, i.e., at the top of the CH.

Fog computing is an emerging technology that brings intelligence closer to the data
source. Usually, the IoT devices have very limited computation resources, and to compensate,
fixed nodes are placed at the network edge to perform complex computations instead of
sending the raw data to cloud data centers. Hence, only a small amount of the information is
forwarded to the cloud via the Internet, which also resolves the bandwidth issues and network
latency [11]. In a typical fog computing architecture, the base stations (BS) can act as a broker
node, deployed at the edge of the network, and multiple fog servers are connected with it.
When a task is received at BS, it schedules that task to a nearby fog node. Such a resource
sharing paradigm is categorized into resource allocation, provisioning, resource sharing, and
workload allocation [12]. The main objective is to share available resources efficiently and
provide service in a latency-sensitive environment to the end device. In conventional data
collection frameworks [9,10,13,14], the data are collected and processed in batches, which
creates extra delay; however, here we introduce a framework for data collection, processing in
a parallel manner. The UAV collects data from clusters, shares it to nearby BS for processing,
and continues collecting new data. This parallel working reduces the extra delay that improves
the efficiency of latency-sensitive applications for smart farming.

Contributions—The proposed framework handles the problem of timely data collec-
tion from randomly deployed sensors and data processing for delay-sensitive applications
for smart farming. Here we utilized the concept of fog computing. In the proposed work,
the UAV submits data to a nearby base station for processing and continues collecting data
from other sensors. This model processes and collects data simultaneously, which reduces
the unnecessary delays that exist in conventional data collection frameworks. Further,
we proposed an energy-sensitive clustering algorithm for sensors deployed in a random
smart farming environment that selects cluster heads with minimal iteration. Finally, we
improved data processing by proposing a multi-objective scheduling algorithm among
available fog servers. The features of the proposed solution are listed as:

1. We proposed an energy-sensitive RSSI-based clustering algorithm for smart farms
that selects CHs based on centrality.

2. Using the CHs’ positions, we have adopted the modified Dijkstra and genetic algo-
rithm (GA) to find the optimal trajectory for data collection.

3. Further, we proposed a data scheduling algorithm based on a multi-objective trade-off
between the network cost and availability of the fog servers. The UAVs offload the
data to the nearby base station (BS). The BS distributes this data to the fog nodes
available near to the end-users.

Paper Organization—The rest of the paper is organized such that Section 2 discusses
the state-of-the-art literature review about current work on data collection and scheduling
using UAVs and fog servers. The system model is discussed in Section 3. The system
components are discussed in Section 4. Finally, the accuracy and performance of the
proposed system are discussed in Section 5, followed by the conclusion in Section 6.

2. Related Work

In this section, recent contributions in clustering-based networks, remote data collec-
tion, and data scheduling for streaming data from IoT devices are covered.

Clustering—In WSN, many sensors are deployed; in such scenarios, clustering is used
to preserve energy and perform certain tasks. Maheswari et al. [15] proposed a routing
protocol based on fuzzy logic. The proposed scheme is a two-level hierarchical approach
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where appropriate parameters are used to select cluster head and supercluster head. The
performance of the proposed scheme is evaluated in terms of node death using actual
hardware devices and through simulation. Leo et al. [16] proposed a clustering algorithm
referred to as Regional Energy-Aware Clustering with Isolated Nodes (REAC-IN). In the
proposed algorithm, the cluster head is selected based on the weight that depends on the
regional average energy and residual energy of the nodes. In simulation-based evaluation,
the proposed algorithm outperformed other traditional algorithms. Li et al. [17] proposed
a clustering scheme where they classified nodes into three types: regular, suspicious, and
malicious nodes. The scheme isolates the malicious nodes from the networking to avoid
selective forwarding attacks and later screens out malicious nodes. The punishment and
reward mechanism is adopted to minimize the trust values and expected revenues of the
attackers. Cho et al. [18] proposed a calibration technique for WSN. The clustering strategy
is used to do robust estimation efficiently. They proposed multiple algorithms to calculate
the lower bound value of the redundancy degree, whereas another algorithm is proposed
to estimate the least-trimmed squares (LTS). Wang et al. [19] proposed a particle swarm
optimization (PSO)-based clustering algorithm for WSNs using mobile sink node. The pro-
posed algorithm is evaluated with extensive simulation, and performance is compared with
other routing algorithms. Omeke et al. [20] proposed a clustering protocol for underwater
wireless sensor networks. The k-means clustering algorithm is enhanced and the cluster
head is selected based on the weight. The weight is based on the residual energy value of
the sensor and the position of a node in the cluster. To make the cluster scaleable, the elbow
method is used for dynamic selection of the optimal number of clusters. The proposed
solution outperformed when compared with the low-energy adaptive clustering hierarchy
(LEACH) and optimized version of LEACH. Ni et al. [21] proposed a fuzzy clustering-based
algorithm to form the initial clusters based on the geographical positions, and the probability
that a node belongs to a particular cluster is calculated. Moreover, a fitness function is
formed based on the distance factor and energy consumption of WSN. Finally, the cluster is
determined by an improved particle swarm optimization algorithm.

Data Collection—In a large-scale WSN network where sensors are deployed ran-
domly without following a topology, techniques that are based on the UAV can be used
to collect data in an energy-sensitive and efficient way [22]. The existing data collection
techniques focus on power controlling [13], energy consumption reduction [23], completion
time minimization [14], and trajectory distance minimization [24]. Samir et al. [5] proposed
a trajectory planning framework to collect data using UAVs from IoT devices. A branch,
reduce, and bound algorithm is used to solve the subproblems, and then they developed a
sub-optimal algorithm for a larger network. Liu et al. [10] studied an age-optimal trajec-
tory problem and designed two trajectories for the maximum age of information and the
average age of information. These trajectories are used to minimize the oldest information
and average age of information of all sensors. Further, generic algorithms and dynamic
programming algorithms are used to estimate the trajectories. Pang et al. [9] proposed a
cluster-based data collection for rechargeable sensors. They used multiple UAVs to collect
data by visiting the clusters and then recharging cluster nodes. A greedy algorithm and
one-side matching algorithm is developed to solve the problem in a distributed manner.
Cheng et al. [25] proposed a UAV trajectory optimization technique to collect data from
multiple sensors using UAVs. They also optimized the mixed-integer nonconvex problem
by transforming it into two convex problems. Ebrahimi et al. [26] proposed a reinforcement
learning-based approach for object localization using UAV. Instead of GPS, the RSSI of the
received signal is used to locate objects on the ground. Similarly, Spyridis et al. [27] pro-
posed deep-learning-based clustering scheme to trace mobile sensor nodes using UAV. Ma
et al. [28] studied a data collection framework using UAV in an architecture-less environ-
ment where mobility changes over time. They proposed four algorithms for data collection
considering contract duration time between UAV and sensors, and data rates. The results
are compared in a simulation manner. Yang et al. [29] proposed a machine-learning-based
prediction method for path loss and delay spread in air-to-ground millimetre-wave chan-
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nels. Zhu et al. [30] proposed a new 3D non-stationary, geometry-based stochastic channel
model for UAV-ground communication systems. Both [29,30] worked on channel loss and
delay spread of wireless channels, whereas we used low altitude UAVs with a refined
trajectory to ensure LOS communication between UAV and sensors.

Zhan et al. [31] proposed an energy minimization technique using successive convex
and alternating optimization for a UAV-based data collection system in an IoT environ-
ment. The simulation results proved the performance when compared to other schemes.
Gong et al. [32] proposed a flight time minimization scheme for UAV-based data collection
system in WSN. The whole trajectory is divided into multiple intervals. The transmit
power of the sensors, speed of UAVs, and data collection intervals are optimized. It was
concluded that the speed of the UAV is proportional to the distance between sensors and
the energy of the sensors. The above-mentioned solutions collect data by visiting the sensor
nodes physically and collecting via CH. This causes multiple issues such as a single point
of failure, an unnecessary bottleneck, and energy crises at the CH.

Data Scheduling—Mostly, research on fog computing has focused on the offloading
and scheduling strategies to help resource-limited IoT devices. Liu et al. [33] proposed a low
latency workload offloading in mobile edge computing to yield low latency communication.
The proposed framework focuses on the trade-off between energy and latency. The task
is divided into multiple sub-tasks and offloaded to multiple fog devices. Abedi et al. [34]
proposed a resource offloading strategy in fog-cloud-based networks using artificial intelli-
gence. The proposed strategy focuses on distributing the tasks to fog servers and cloud
servers to reduce the end-to-end delay. Gu et al. [35] proposed a resource management
framework for fog-based medical cyber-physical systems. The main contribution is in terms
of virtual machine placement, task distribution, and BS association. Shih et al. [36] studied
the fog-based solution for low-latency applications. A framework is discussed to trade-off
among many performance parameters such as computing cost, performance, and communi-
cation cost. Deng et al. [37] proposed a workload allocation framework for fog-cloud-based
architecture to balance between power consumption and delay. A trade-off is investigated
between power consumption and network delay. The problem is formulated and then
divided into three sub-problems. Finally, the solution is bench-marked using simulation in
terms of latency, bandwidth, and power consumption. Brogi et al. [38] instigated the ap-
plication placement strategies using their proposed framework ForgTorchII. FogTorchII is
capable of finding the multiple deployment strategies for fog network environments, which
attain QoS, hardware, and software requirements. Sun et al. [39] proposed a crowdfunding
algorithm for fog computing to utilize the unused resources. An incentive mechanism
is adopted in the algorithm to encourage resource owners to volunteer more resources,
and the simulation results proved that the proposed algorithm was effective in terms of
reduction in SLA violation rate and enhancing the task completion rate. Yang et al. [40]
proposed an energy-efficient task scheduling algorithm for homogeneous fog networks
called MEETS. The proposed algorithm investigates the optimal resource-sharing solutions
for nearby homogeneous fog nodes. The simulation results are compared with traditional
task scheduling algorithms and concluded that the proposed algorithm outperformed in
terms of energy efficiency and scheduling performance. The best case in fog computing
offloading is when the workload is scheduled/offloaded to a single node as discussed
in [33–35], whereas some researchers focus on distributing the task into multiple sub-tasks
and offloading them to multiple fog nodes in a horizontal manner as discussed in [36–38].
However, another great solution is hybrid/parallel placement, where both fog nodes and
cloud servers are used to process the tasks [39,40].

The above-mentioned task scheduling solutions ignore the important parameters such
as the availability of the fog nodes and network cost. The fog nodes sometimes go offline
due to many factors which include power limitations, connection loss, and workload.
Furthermore, in a realistic fog network, the communication cost is different for all fog
nodes due to distance, data rate, error rate, and bandwidth, which is often ignored while
considering offloading/scheduling tasks at nearby fog nodes.
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3. System Model

This section covers the system model used for the proposed framework. The abstract-
level working architecture of the proposed system is given in Figure 1. The summary of
notations used in this paper is given in Table 1.

Table 1. Summary of notations.

Sr. Symbol Definition

1 S List of sensor nodes of size N
2 X List of positions in R3×1 space
3 Ustart Starting position of the farm
4 U f inal Final/Ending position of the farm
5 ΥU The initial height of the UAV
6 $Sr The transmission radius of sensors
7 $Ur The transmission radius of UAV
8 brp The time of previous hello message
9 brn The time of next hello message

10 υU The speed of UAV
11 UQy/2

R
The range of transmission

12
(

U
Qy/2
R
υU

)
The duration when UAV and sensors are in range

13 Θx,y The centroid of the polygon/cluster
14 GX List of nodes’ x-axes located at the edge
15 GY List of nodes’ y-axes located at the edge
16 K No. of nodes contributing to polygon formation
17 Area Area of the polygon
18 B No. of base stations
19 f No. of nodes connected with BS
20 PCH Probability of a sensor to become CH
21 ζ Normalization factor for iterations
22 χc,n Distance between current and central node
23 CHp Final selected cluster head
24 CHψ Node eligible for cluster head
25 CHρ The optimal CH before selecting the final CH
26 LS

ngr List of sensor’s neighbors
27 HS

ngr List of nodes participating in making polygon

Deployment Model—The sensors are deployed randomly across the farming area.
The set S represent the sensor nodes S = {1, 2, 3, ..., |N|} along with coordinates in three-
dimensional space as X = {s1, s2, s3, ..., s|N|}, where s|N| ∈ R3×1. The data collection is
performed from the randomly deployed sensors in the remote areas, and no physical
network is available. The data are collected from the sensors at typical 2.4 GHz of the
cellular network.

UAV Mobility Model (UMM)—The UAVs are initializing the CH discovery mecha-
nism at the starting point.

Us =

SF0
SF0
ΥU

 (1)

where the initial position of the UAV is represented as Us, and ΥU represents the initial
height of the UAV. So, the starting coordinates are (0,0,ΥU). After the discovery phase, the
final position is denoted as:

U f =

SFx
SFy
ΥU

, (2)
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Here U f is the final position. After reaching the x-axes boundary of the form, the UAV
shifts QY depending on the y-axis. The QY is calculated as:

QY =

{
QYS ∗ 2, QYS ≤ QYU

QYU ∗ 2, QYY < QYS

, (3)

where QYU and QYS are the displacement of the y-axis depending on UAV’s and sensors’
transmission range, respectively. This displacement value is calculated as:

QYS = 2
√

$2
Sr − Υ2

U , (4)

QYU = 2
√

$2
Ur − Υ2

U , (5)

where $Sr and $Ur are the transmission radius of sensors and UAVs, respectively. The UAV
broadcasts a hello message after an interval, and this interval is calculated such that all
deployed sensors are in the transmission radius of the UAV. This interval is calculated as:

brp < brn <

(
brprev +

(
U

Qy/2
R
υU

))
, (6)

where brp and brn are the time of the previous and next hello message, whereas υU is the

speed of UAV and U
Qy/2
R is the range of transmission. The ratio

(
U

Qy/2
R
υU

)
is the duration

when UAV and sensors are in range to effective transmission. This condition in Equation (6)
must meet to ensure the beacon delivery to all sensors.

Data Collection Model—A sensor broadcasts a hello message beacon along with its
ID and geo-location. The receiving sensor nodes form a list of its neighboring nodes LS

ngr
based on RSSI values. Both the UAV and deployed sensors are capable of calculating
the RSSI, as it is trivial for a WSN device to calculate the RSSI, which is a legitimate
assumption [41]. Moreover, the proposed system assumes a low-altitude UAV, the sensors
are clustered together and UAV fine-tunes the position for data collection. With this ability,
despite some natural obstacles, the UAV can establish LOS communication. Thus, a sensor
node developed a list GS

ngr of its all neighbors along with their geo-locations. The node
broadcasts its cost value to all neighbors. A polygon structure of the sensor nodes is formed,
where the area of the polygon area is calculated using the typical formula:

Area =
1
2 ∑K−1

j=0

(
GX

j .GY
j+1 − GX

j+1.GY
j

)
(7)

where GX and GY are the lists of geo-positions of nodes located at the polygon’s edge
sorted by x-axis and y-axis, respectively. The K represents the number of sensor nodes
taking part in polygon formation. The centroid Θx,y is calculated as:

Θx =
1

6Area

K−1

∑
J=0

(
GX

J + GX
J+1

)(
GX

j .GY
j+1 − GX

j+1.GY
j

)
, (8)

and

Θy =
1

6Area

K−1

∑
J=0

(
GY

J + GY
J+1

)(
GX

j .GY
j+1 − GX

j+1.GY
j

)
, (9)

and by combining the x-axis and y-axis:

Θx,y = (Θx, Θy) (10)
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For every node, a probability is computed to become a CH, which is calculated as:

PCH = max
((

1−
χa,b

$Sr
× ζ

)
, κmin

)
(11)

where the transmission radius of a sensor is represented by $Sr. The number of iterations
in clustering depends on the normalization factor ζ. The κmin is assigned as the CH when
the central bias is lower than a provided threshold. The distance between central node c
and current node n is calculated by Euclidean distance and represented by χc,n, which can
be calculated as:

χc,n =

√
(cx − nx)

2 +
(
cy − ny

)2. (12)

Figure 1. Working architecture—The working of different components of the system with sub-
components. The sensors send data to UAV and UAV offload received data to a nearby base station
that further schedules that to its fog members for further processing.

For data collection, the shortest patch trajectory is calculated, and according to [42],
the fitness function of the UAV trajectory is given as

d(O) = ε(Se ,O1)
+ ε(O|O| ,Se) +

|O|

∑
i=1

εOi ,Oi+1 (13)

where d(O) represents the total distance covered by the UAV in a single round. ε(Se, O1)
represents the distance between starting data collection position to the first CH’s position
O1. ε(O|O| ,Se) represents the distance between last data CH’s position and final point of
the farm.
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Delay Model—The delay model is based on delay occur during data collection and
due to the data execution at the fog, which is explained below:

Data Collection—

ϕ∀ =
n

∑
r=1

(
g(GCH)

υU
+ ∑

i∈C
∑
k∈i

Di
k

)
, (14)

where ϕ∀ is the time required for a UAV to collect data from all the sensors for n number
of rounds. GCH is the list of CHs’ positions, υU is the speed of UAV, C is the number of
clusters, c is the current cluster with k number of sensors, and Dc

k is the transmission delay
between kth sensor of cluster c and UAV.

Data Execution—The execution delay of the system calculated as [43]:

D∀ =
n

∑
r=1

B

∑
b=1

(
∑

ω∈Ω
D(p) + ∑

ω∈Ω
D(q) + ∑

ω∈Ω
D(t)

)
, (15)

where D(p), D(q), D(t), and D(pr) are the processing, queuing, transmission, and propa-
gation delays of workloads ω in list Ω, respectively. These delays are calculated as:

Dp(ω) =
Aω

δv f

, (16)

where Aw is traffic load and v f is the processing rate of a fog node.

Dq(ω) =
λ f Sω

δ(e)
, (17)

where λ( f ) is the arrival rate at a fog node, Sω is the processing required by a workload ω,
and δ(e) is the transmission rate of the link. Finally, the transmission delay is calculated as

Dt(ω) =
Aω

δ(e)
, (18)

and the total application delay is calculated as

DA(ω) = Max(D∀, ϕ∀), (19)

Data Scheduling Model—We consider that a UAV offloads a list of workloads
Ω = {ω1, ω2, ω3, ..., ωn}. Each BS is equipped with a number of fog devices
z = { f1, f2, f3, ..., fm}. These fog nodes have different power efficiency ki, response
rate ψi, and availability Ai.

Power Efficiency—The power efficiency is the amount of energy consumed during
processing a single unit of received workload [44]. This efficiency is a combination of
power usage effectiveness fe

i , static fs
i , and dynamic power usage fd

i of the ith fog node.
The static power usage is sometimes referred to as power leakage produced by the leakage
currents, whereas the dynamic power consumption is caused by the circuit currents,
calculated by the activity of the fog nodes.

The total power consumption fT
i of a fog node per unit time is calculated as:

fT
i = fe

i (f
s
i +fd

i λj), (20)

where λj is the average arrival rate at fog node f j.
The power efficiency of a fog node is determined by

Ψi =
fT

i
λi

= fe
i

(fs
i

λi
+fd

i

)
. (21)
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Response Rate—Let h̄i be the round trip time (RTT) between a fog node fi and BS. The
transmission delay τi between an ith fog node and BS can be calculated by the fraction of
workload size and bandwidth. Hence, the response time of a fog node can be calculated as:

ψi = h̄i +

(
1

λ̃i − λi

)
+ τ f . (22)

where λ̃i is the maximum amount of workload that can be computed on a fog node fi.
Availability—The availability of a fog node can be calculated by dividing uptime by

the total sum of uptime and downtime [45]. The fog nodes periodically send beacons to
the BS, and based on those beacons, the BS calculates the availability of each fog node and
updates it in the fog table.

4. Proposed Framework

The proposed framework comprises several main entities which are discussed below.
Farming Area—The farm is the main component of the proposed work. Other devices

are used to gather data from farms for the knowledge-aware decision process. In this
work, we have assumed that the farming area can be a flat surface or comprised of hilly
areas. However, in a hilly scenario, there are maybe natural obstacles such as trees, and
mountains are present. These obstacles cause reflection, diffraction, and scattering. The
only communication affected by these obstacles is ground-to-ground communication that
sensors perform with each other [46]. Therefore, the communication between air-to-air or
air-to-ground is not affected by these obstacles.

Sensors—Sensors are the actual data generators; the entire system is based on the
data generated through sensors and IoT devices. In this work, static sensors are modeled
and deployed all over the farming areas. Further, it is assumed that the nodes are aware of
their coordinates with the help of a GPS sensor [47]. The sensors deployed in the farm are
heterogeneous in nature, which means they have different computation power, storage,
and energy. These sensors are deployed randomly across the application area. The random
placement helps in creating a realistic smart farming environment. Further, the clustering
algorithm makes a group of these sensor nodes and also selects the centrality. The sensor
nodes are classified into two categories: cluster members and cluster head (CH). Each
cluster of the sensors has one CH that is in the range of all cluster members. Here, we
assumed sensor nodes are non-reachable. It is also assumed that sensors are capable of
controlling the transmission power of the transmitter to save energy.

Unmanned aerial vehicles (UAVs)—UAVs fly across the fields to collect data, which
are further transmitted to fog nodes for processing. Here, we assumed that UAV flying
paths are defined in such a way that they can complete one round of data collection without
energy issues. The UAVs are recharged after one round [48]. In existing work, researchers
use solar power and battery replacement strategy after each round [49], which can be one
of the future directions in this work. Further, we used a quad-copter UAV that can stay in a
stationary position for a specified period and can turn with the least angle [50].

Base Stations (BS)—Base stations are the intermediate devices between UAVs and fog
nodes and are also referred to as fog brokers. The UAVs offload data to base stations using
a wireless channel. The data are further transmitted to fog nodes for faster computations.
The following constraints apply to base stations. These base stations are deployed across
the network area, which consists of the static nodes. The base station is equipped with AC
power and it is also assumed that a backup energy source is available in case of power
failure. The power and backup management are out of the scope of this research, but many
researchers already solved this problem [51]. The base stations are heterogeneous in nature
and have different storage and computation power. Each base station is linked with a
different number of fog nodes. Additionally, base stations are capable of buffering the
incoming data. The BS works in a real-time environment and reschedules the incoming
data to fog nodes in a real-time manner.
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Fog Server—Similar constraints are applied to fog nodes as of BS. All fog nodes are
static in nature, equipped with a power source. They are heterogeneous in nature, and the
computation and storage resources can vary. Moreover, each fog node has its availability,
resources, and cost.

4.1. Design and Implementation

The system architecture is explained in Figure 1, where the main components of
the system—sensors, UAV, BS, and fog nodes—communicate with each other to form a
complete system. A wireless channel is used to enable communication between sensors
and UAV and between UAV and BS, whereas a wired communication medium is used
to link BS and fog servers. Sensors are equipped with GPRS sensors, and they form
clusters based on their geo-location and RSSI values. The UAVs hover above the sensors
to collect data and offload that data to nearby BS. The BS converts the received data into
workloads in terms of millions of instructions per second (MIPS) and schedules them to the
fog servers. The proposed system is classified into two main phases: data collection and
data scheduling. The data collection phase is sub-categorized into initialization, service
discovery, and collection. In the initialization section, the clusters are formed through a
clustering algorithm and cluster heads (CHs) are identified. The CHs are selected based on
node centrality. Thus, it helps UAVs to collect data through CMs by hovering over the CH.
This way, the CH’s role is minimized and the central point of failure is eliminated. Unlike
conventional data collection techniques, the CH only helps in creating an optimal area
where the UAV can access all CMs from a single position. In conventional data collection
frameworks, data are collected via CH [49,52]. Collecting data using CH is not feasible
for large-scale networks where a large number of sensors are deployed because it will
increase the data collection time and increase the distance traveled by UAV. Moreover, it
will increase the energy consumption and will not be economical in terms of energy [53].
Further, to determine the CHs position, the UAVs broadcast hello message where only CH
responds to it. The location of the CHs is calculated using an S-path model discussed
in [54]. The technique keeps tracking the distance of all CHs. The UAV starts collecting the
data by visiting the location of a CH.

In the data collection phase, the UAVs fly based on the shortest path which is defined
using the modified Dijkstra algorithm [55]. However, in data scheduling phase, there is
a set of base stations B = {b1, b2, b3, ..., |m|}, where each base station manages a set of fog
nodes F = { f1, f2, f3, ..., |n|}. The BS buffers the incoming data into its queue and schedules
it to the fog node with the help of a scheduling algorithm as stated in Algorithm 1.

Data Collection—This section explains in detail the data collection procedure using
the UAVs. The data collection is performed via a modified Dijkstra algorithm. The
Algorithm 4 gives the shortest path trajectory among discovered CHs. Once a UAV visits a
CH’s position, it sends a ping message to CH. The CH generates the advertisement message
to all CMs to inform the address of the UAV for data transmission. The CMs send the data
directly to the UAV.

Clustering—The clustering of deployed sensors is performed in a distributed manner.
An energy-aware clustering algorithm [56] is adopted for clustering. The algorithm forms
the clusters and selects CH such that it is located at the central position of the cluster. The
CH can communicate with all CM; hence, if the UAV arrives at this position, every sensor
can directly connect with the UAV to upload data. The CH is a helping node that aids in
communication between UAV and sensors.

Initialization—The initialization algorithm is listed in Algorithm 2; it starts with
sensors broadcasting a hello beacon with its global unique ID (GUID) and geo-location. The
receiving sensor nodes form a list of neighboring nodes LS

ngr based on RSSI values. A sensor
node populates a list GS

ngr of its all neighbors along with their geo-locations. Further, the
node broadcasts its cost value to all neighbors. The cost of a sensor is calculated according
to the number of neighbor sensors. According to HEED [56], the cumulative distance to
all adjacent nodes is used to find the cost. A polygon-like structure of the sensor nodes is
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formed using Algorithm 3. The nodes calculate their central bias using this algorithm and
measure the centroid via Paul Brourke’s equation [57]. In polygon formation Algorithm 3,
the location information of all the neighbor sensors is used. The nodes having an RSSI value
of more than a threshold can only participate in the polygon formation. This algorithm is
developed by extending the monotone chain algorithm by Mei et al. [58]. The nodes are
sorted in the start according to their geo-locations with respect to the x-axis [59]. Then
two lists, HL and hU , are formed, having the lower and upper hulls. The HS

ngr is formed
by subtracting the HL and HU into two subsets, α and β, respectively, such that they have
more than one element. The iteration is performed on all the nodes in the lists, and the
nodes with the same directions are added. Finally, both lists of lower and upper haul
are concatenated. Once a polygon-like structure is formed, the area is computed using
Equation (7). According to the computed value probability Equation (11), the node is
proclaimed as final Chp, or candidate Chψ.

Algorithm 1 Workload Scheduling Algorithm
Input z = { f1, f2, f3, ..., fm} . List of fog nodes
Ω = {ω1, ω2, ω3, ..., ωn} κ . A trade-off value of efficiency . List of workloads
Output Execute the workload
1: S, SA, SE, SR ← ∅
2: for each ω ∈ Ω do
3: DemandA ← CalAvg(F.A)
4: DemandE ← CalAvg(F.E)
5: DemandR ← CalAvg(F.R) . Calculate average
6: for each f ∈ z do
7: if favailability≥Demand.A then
8: SA ← f
9: end if

10: if fresponseTime≤Demand.R then
11: SR ← f
12: end if
13: if fe f f iciency≥Demand.E then
14: SE ← f
15: end if
16: end for
17: S← SA ∩ SE ∩ SR . Get intersection of fog nodes in three sets
18: if S == ∅ then
19: demandE ← demandE − κ.demandE . reduce the efficiency value by factor κ
20: go to step 13;
21: else

22: Send(ω, Min
n−1
∑

J=0

(
Sj

A, Sj
E, Sj

R)
)

. Send workload to the best node

23: end if
24: end for

Recurrence—After the initialization phase, the algorithm starts the second phase
called recurrence, as listed in Algorithm 2 (lines 10–29). In this phase, the cost of each
CH in list LCH is compared, and the CHρ with minimum cost is selected. If this is the
current sensor node, broadcast a CH message with ID, cost, and update CHtemp

p to TRUE.

Otherwise, broadcast CH message keeping CHtemp
p as FALSE. In the case where the CH

probability is 1, broadcast CHp message by setting CHtemp
p to TRUE, and if the probability

is any number between 0 and 1, broadcast CHψ message keeping CHtemp
p as FALSE and

repeat this process until CHp is equal to 1.
Finalization—In this stage, the sensors check its CHtemp

p flag. In case it is FALSE, it

acquires the CHρ from LCH and sends a join request to that sensor node. In case the CHtemp
p

variable is TRUE, the sensor sends a hello message to all nearby nodes with CH status
as CHψ. When a node receives a cluster join request, the node with status CHp adds the
sensor to its CM list. However, if a node is CHp, it broadcasts a message to let its neighbors
discover the node.
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Algorithm 2 Clustering Algorithm
Input LS

ngr ← ∅ . Empty list of sensor’s neighbors
Output CHp . Finally selected cluster head

1: LS
ngr ← GetList(neighbors) . Obtain neighbors via RSSI

2: GS
ngr ← GetGeoLocations(LS

ngr) . Obtain (x,y,z) coordinates
3: BroadcastCost(LS

ngr) . Send cost of all members
4: CreatePolygon(GS

ngr) . Using Algorithm 3
5: Area← CalArea() . Using Equation (7)
6: Θx,y ← CalCentroid() . Using Equation (10)
7: d← CalDistance(this.GeoLoc, Θx,y) . Calculate the distance
8: PCH ← CalProbablity() . Using Equation (11)
9: CHtemp

p ← FASLE
10: do
11: if (LCH ← { c: c is a CH } 6= ∅) then
12: CHρ ← min(CalCost(LCH)) . Choose CH from list with min cost
13: if CH ID

ρ = THIS.ID then
14: if PCH = 1 then
15: Broadcast(THIS.ID, CHp, cost)
16: CHtemp

p ← TRUE
17: else
18: Broadcast(THIS.ID, CHψ, cost)
19: end if
20: end if
21: else if PCH = 1 then
22: Broadcast(THIS.ID, CHp, cost)
23: CHtemp

p ← TRUE
24: else if Random(0, 1) ≤ PCH then
25: Broadcast(THIS.ID, CHψ, cost)
26: end if
27: CHprevious ← PCH
28: PCH ← min(PCH x2, 1)
29: while CHprevious = 1

30: if CHtemp
p = FALSE then

31: if (LCH ← { c: c is a CHp } 6= ∅) then
32: CHρ ← min(CalCost(LCH))
33: JoinCluster(CHρ, THIS.ID)
34: else
35: Broadcast(THIS.ID, CHp, cost)
36: end if
37: else
38: Broadcast(THIS.ID, CHp, cost)
39: end if

Algorithm 3 Polygon Formation
Input GS

ngr . List of nodes with locations, sorted w.r.t. x-axis
Output HS

ngr . List of nodes participating in making polygon
1: HU ← ∅ & HL ← ∅ . List of upper and lower hulls
2: for j = 1 to SIZE(GS

ngr) do
3: while (α ⊂ HL & SIZE(α) > 1) do
4: DELETE(HL[SIZE− 1]) . Remove last element
5: APPEND(HL[GS

ngr [j]])
6: end while
7: while (β ⊂ HU & SIZE(β) > 1) do
8: DELETE(HU [SIZE− 1]) . Remove last element
9: APPEND(HU [GS

ngr [j]])
10: end while
11: end for
12: DELETE(HL[SIZE− 1])
13: DELETE(HU [SIZE− 1])
14: Return(HS

ngr ← CONCAT(HL, HU))
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Algorithm 4 Cluster Head Position Discovery
Input GCH ← ∅ . Empty list of CHs with positions
Output GCH . List of CHs with positions
1: do
2: BroadcaseSearchCH() . Broadcast a CH search message
3: SetTimer() . Set timer for next broadcast
4: Msg← Receive(Msg) . Receive informing message
5: if Msg.Type = (CHin f ormation) then
6: CHx−axis ← Msg.X
7: CHy−axis ← Msg.Y
8: CHz−axis ← Msg.Z
9: CHposition ← {CHx−axis, CHy−axis, CHz−axis} . Collect position values

10: end if
11: GCH .PUSH(CHposition) . Push received CH position information into list
12: while TRUE

4.2. Data Scheduling

There is a B number of base stations (BS) located across the area. These BS are
connected with f number of fog nodes. The UAV visits the CH’s to collect data and move
towards the next CH. During that traveling, if the UAV reaches the range of a BS, it offloads
the collected data and flushes its memory for later reuse. Once a BS receives data, the data
are stored as a list of tasks in the local buffer. The BS further schedule the data processing
to its connected heterogeneous fog nodes. This forwarding is based on the power efficiency
and response time of the fog nodes.

Scheduling Algorithm—It initiated once the UAV completed the offloading process.
The BS has a list of workloads and the connected fog nodes. Here, we extended Dispersive
Stable Task Scheduling (DATS) [60]. As illustrated in Algorithm 1, for each workload
ω in Ω, the BS calculates the availability index [45], response rate by Equation (22), and
efficiency by Equation (21) of all fog nodes. We call these values initial demands, and the
algorithm further optimizes these values for each workload. Each fog node, f in z, the
availability, response rate, and efficiency values are compared with the initial demands,
and eligible nodes are inserted into SA, SR, and SE. Once all fog nodes have been traversed,
the intersection list S is calculated. The set S represents the list of all fog nodes that meet
initial demands of availability, response rate, and efficiency. Further, the best node from
the list is selected using Equation (23).

Min
n−1

∑
J=0

(
Sj

A, Sj
E, Sj

R

)
(23)

However, in case the set has no item, the value of the demand of efficiency is reduced
by a factor κ and all fog nodes are re-traversed. This trade-off efficiency with availability
and response rate helps in finding the optimal solution from available fog resources. Thus,
only the efficiency is compromised in a case when no fog node is available that meets initial
demand because we are giving more preferences to availability and response rate over
energy consumption.

5. Evaluation

A smart farming case scenario is simulated using omnet++ (www.omnetpp.org, ac-
cessed on 14 June 2021) as a simulation tool. The sensors are deployed randomly across
the farm; there exist base stations at the boundary of the farm, and dedicated fog nodes
are connected with each BS. The list of simulation parameters and system parameters are
given in Tables 2 and 3, respectively. The size of the data packet is given in the table for
processing, and the data packet is translated into million instructions per second (MIPS)
for processing.

We compared the performance of the proposed clustering and data collection with
HEED [56]. HEED, also known as Hybrid Energy-Efficient Distributed, is a clustering
framework for sensors. HEED periodically selects the cluster head according to the residual

www.omnetpp.org
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energy of the sensors, whereas our technique selects the cluster head once and uses that
information throughout all the rounds because we assume that sensors are equipped with
renewable energy sources. We applied the HEED technique with UAV for data collection
and compared results with the proposed technique in terms of the number of control
packets, network delay, and energy consumption.

For workload processing, and scheduling at the fog servers, we compared the pro-
posed system with a maximal energy-efficient task scheduling (MEETS) algorithm [40]. In
MEETS, the energy efficiency is improved for homogeneous fog networks and nearby avail-
able fog resources. However, we believe that along with energy node availability, network
response time also plays an important role for a latency-sensitive fog network environment.

Components Initialization Delay in GUI Mode—The proposed model is evaluated
in OMNeT++ in GUI mode. However, a significant component and interface initialization
delay is observed, and this delay increases with the increase in farm area as more sensors
and devices are installed. Figure 2 shows that this delay varies from 14 to 390 ms for the
200 m2 area.

Table 2. Simulation parameters.

# Parameter Value/Description

1 Farming area 250 × 250 m

2 Sensors 2000

3 Base stations 5

4 Fog servers in each BS 5–10

5 Packet size (data) 8 KB

6 Packet size (hello) 100 B

7 Initial altitude (UAV) 40 m

8 Initial altitude (sensors) 0–4 m

9 Mobility (UAV) Dynamic

10 Mobity (sensors) Static

11 Speed (UAV) 25 m/s

12 Fog node capacity (computation) 1000 MIPS

13 MAC protocol TDMA, CSMA

Table 3. System parameters.

# Component Version/Value

Computer (CPU and Memory)

1 Processor Intel(R) CoreTM i5 1 GHz

2 Core(s) 4

3 Threads 8

4 Memory 16 GB

5 Operating system Ubuntu 16.04 LTS

Tools and Technologies

6 Omnet++ 4.6

7 INET 3.2.4
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CPU and Memory Usage—Figure 3 shows the CPU and Memory analysis of the 
system with varying farm sizes. As per the proposed model, the increase in the area of 
farms brings about a sufficient increase in the number of deployed sensors, BS, and fog 
servers. During the simulation, each node reserves some space in the memory, and this 
space increases with the increase in the area as shown in Figure 3a. The framework creates 
and disseminates a lot of messages that include beacons, control, and data messages. This 
process affects the processing, and the CPU usage is given in Figure 3b.

Energy Consumption—The energy consumption of the proposed system is compared 
with HEED by varying the farming sizes. The traditional HEED algorithm consumes more 
energy as compared to the proposed system, as shown in Figure 4. In HEED, the UAV 
explores to find the CHs, whereas in the proposed system, the positions of the CH are 
collected first, and then an optimized trajectory is designed to efficiently utilize the energy. 
Furthermore, the UAVs follow the calculated trajectory, collect data, and update the system 
about dead nodes. Furthermore, the farming area used for the evaluation is of square 
shape, and sensors are deployed randomly. Now, with the increase in area, the inter-cluster 
distance is also increased, and the energy consumption is measured in terms of cost of data 
transmission which increases with the intra-cluster distance.

Control Packets—The number of control packets shared during clustering is very 
important because energy can be preserved through reduced communication. In the 
proposed scheme, the clustering is performed only once, and this information is used for 
data collection in all rounds. We compared these control messages with HEED as shown 
in Figure 5, and it is observed that HEED sends more control packets as compared to the 
proposed system.

Figure 2. Component initialization delay in GUI mode.

CPU and Memory Usage—Figure 3 shows the CPU and Memory analysis of the
system with varying farm sizes. As per the proposed model, the increase in the area of
farms brings about a sufficient increase in the number of deployed sensors, BS, and fog
servers. During the simulation, each node reserves some space in the memory, and this
space increases with the increase in the area as shown in Figure 3a. The framework creates
and disseminates a lot of messages that include beacons, control, and data messages. This
process affects the processing, and the CPU usage is given in Figure 3b.

Energy Consumption—The energy consumption of the proposed system is compared
with HEED by varying the farming sizes. The traditional HEED algorithm consumes more
energy as compared to the proposed system, as shown in Figure 4. In HEED, the UAV
explores to find the CHs, whereas in the proposed system, the positions of the CH are
collected first, and then an optimized trajectory is designed to efficiently utilize the energy.
Furthermore, the UAVs follow the calculated trajectory, collect data, and update the system
about dead nodes. Furthermore, the farming area used for the evaluation is of square
shape, and sensors are deployed randomly. Now, with the increase in area, the inter-cluster
distance is also increased, and the energy consumption is measured in terms of cost of data
transmission which increases with the intra-cluster distance.

Control Packets—The number of control packets shared during clustering is very
important because energy can be preserved through reduced communication. In the
proposed scheme, the clustering is performed only once, and this information is used for
data collection in all rounds. We compared these control messages with HEED as shown
in Figure 5, and it is observed that HEED sends more control packets as compared to the
proposed system.

Network Delay—The network delay is separated for data collection and data pro-
cessing, as shown in Figure 6. The delay in data collection is compared with HEED, and it
is observed that the proposed system outperformed in terms of network delay, as shown
in Figure 6a. The delay from data processing is compared with MEETS, and it is also
observed that the proposed scheduling algorithm outperformed, as shown in Figure 6b.
The primary reason for this performance is that the proposed framework selects the CH
only once when needed, whereas HEED gradually runs the CH selection algorithm that
causes network congestion and hence increases delay. Another reason is, in HEED, data are
collected via relaying through CH, whereas the proposed technique collected data directly
from the sensors.
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6. Conclusions

In this article, we have proposed an energy-efficient, UAV-assisted data collection
technique from randomly deployed sensors in the farming area. We first clustered the
randomly deployed sensors based on their RSSI values and selected cluster heads. Then,
using Dijkstra and GA, an optimized trajectory is obtained, and the trajectory data are
thus collected from the sensors. We further proposed a multi-objective fog-based data
processing framework for data scheduling and processing at multiple fog servers. The
performance of the simulation is evaluated by simulation in omnet++, and results are
compared with HEED and MEETS for data collection and data processing, respectively. It
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is observed that the proposed framework outperformed in terms of network delay, energy
efficiency, CPU-Memory usage, and the number of control packets.

Author Contributions: Conceptualization, T.Q.; Formal analysis, A.M.; Supervision, Z.T. and K.H.;
Validation, Z.T., A.M. and K.H.; Writing—original draft, T.Q.; Writing—review & editing, Z.T. and
A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the United Arab Emirates University (UAEU) Program
for Advanced Research (UPAR) under Grant number 31T122 and Zayed University Cluster Grant
number R20140.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Trabelsi, Z. IoT based Smart Home Security Education using a Hands-on Approach. In Proceedings of the 2021 IEEE Global

Engineering Education Conference (EDUCON), Vienna, Austria, 21–23 April 2021; pp. 294–301. [CrossRef]
2. Malik, A.W.; Rahman, A.U.; Qayyum, T.; Ravana, S.D. Leveraging Fog Computing for Sustainable Smart Farming Using

Distributed Simulation. IEEE Internet Things J. 2020, 7, 3300–3309. [CrossRef]
3. Liu, C.H.; Chen, Z.; Tang, J.; Xu, J.; Piao, C. Energy-Efficient UAV Control for Effective and Fair Communication Coverage: A

Deep Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 2018, 36, 2059–2070. [CrossRef]
4. Nazib, R.A.; Moh, S. Energy-Efficient and Fast Data Collection in UAV-Aided Wireless Sensor Networks for Hilly Terrains. IEEE

Access 2021, 9, 23168–23190. [CrossRef]
5. Samir, M.; Sharafeddine, S.; Assi, C.M.; Nguyen, T.M.; Ghrayeb, A. UAV Trajectory Planning for Data Collection from Time-

Constrained IoT Devices. IEEE Trans. Wirel. Commun. 2020, 19, 34–46. [CrossRef]
6. Bhandari, S.; Wang, X.; Lee, R. Mobility and Location-Aware Stable Clustering Scheme for UAV Networks. IEEE Access 2020,

8, 106364–106372. [CrossRef]
7. Liang, H.; Gao, W.; Nguyen, J.H.; Orpilla, M.F.; Yu, W. Internet of Things Data Collection Using Unmanned Aerial Vehicles in

Infrastructure Free Environments. IEEE Access 2020, 8, 3932–3944. [CrossRef]
8. Yao, J.; Ansari, N. Online Task Allocation and Flying Control in Fog-Aided Internet of Drones. IEEE Trans. Veh. Technol. 2020,

69, 5562–5569. [CrossRef]
9. Pang, Y.; Zhang, Y.; Gu, Y.; Pan, M.; Han, Z.; Li, P. Efficient data collection for wireless rechargeable sensor clusters in Harsh

terrains using UAVs. In Proceedings of the 2014 IEEE Global Communications Conference, Toronto, ON, Canada, 27 April–2
May 2014; pp. 234–239. [CrossRef]

10. Liu, J.; Wang, X.; Bai, B.; Dai, H. Age-optimal trajectory planning for UAV-assisted data collection. In Proceedings of the IEEE
INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19
April 2018; pp. 553–558. [CrossRef]

11. Martinez, I.; Hafid, A.S.; Jarray, A. Design, Resource Management, and Evaluation of Fog Computing Systems: A Survey. IEEE
Internet Things J. 2021, 8, 2494–2516. [CrossRef]

12. Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog Computing: Survey of Trends,
Architectures, Requirements, and Research Directions. IEEE Access 2018, 6, 47980–48009. [CrossRef]

13. Shen, C.; Chang, T.H.; Gong, J.; Zeng, Y.; Zhang, R. Multi-UAV Interference Coordination via Joint Trajectory and Power Control.
IEEE Trans. Signal Process. 2020, 68, 843–858. [CrossRef]

14. Zhan, C.; Zeng, Y. Completion Time Minimization for Multi-UAV-Enabled Data Collection. IEEE Trans. Wirel. Commun. 2019,
18, 4859–4872. [CrossRef]

15. Maheswari, D.U.; Sudha, S.; Meenalochani, M. Fuzzy based adaptive clustering to improve the lifetime of wireless sensor
network. China Commun. 2019, 16, 56–71. [CrossRef]

16. Leu, J.S.; Chiang, T.H.; Yu, M.C.; Su, K.W. Energy Efficient Clustering Scheme for Prolonging the Lifetime of Wireless Sensor
Network With Isolated Nodes. IEEE Commun. Lett. 2015, 19, 259–262. [CrossRef]

17. Li, Y.; Wu, Y. Combine Clustering With Game to Resist Selective Forwarding in Wireless Sensor Networks. IEEE Access 2020,
8, 138382–138395. [CrossRef]

18. Cho, J.J.; Ding, Y.; Chen, Y.; Tang, J. Robust Calibration for Localization in Clustered Wireless Sensor Networks. IEEE Trans.
Autom. Sci. Eng. 2010, 7, 81–95. [CrossRef]

19. Wang, J.; Cao, Y.; Li, B.; Kim, H.-J.; Lee, S. Particle swarm optimization based clustering algorithm with mobile sink for WSNs.
Future Gener. Comput. Syst. 2017, 76, 452–457. [CrossRef]

20. Omeke, K.G.; Mollel, M.S.; Ozturk, M.; Ansari, S.; Zhang, L.; Abbasi, Q.H.; Imran, M.A. DEKCS: A Dynamic Clustering Protocol
to Prolong Underwater Sensor Networks. IEEE Sens. J. 2021, 21, 9457–9464. [CrossRef]

http://doi.org/10.1109/EDUCON46332.2021.9454085
http://dx.doi.org/10.1109/JIOT.2020.2967405
http://dx.doi.org/10.1109/JSAC.2018.2864373
http://dx.doi.org/10.1109/ACCESS.2021.3056701
http://dx.doi.org/10.1109/TWC.2019.2940447
http://dx.doi.org/10.1109/ACCESS.2020.3000222
http://dx.doi.org/10.1109/ACCESS.2019.2962323
http://dx.doi.org/10.1109/TVT.2020.2982172
http://dx.doi.org/10.1109/GLOCOM.2014.7036813
http://dx.doi.org/10.1109/INFCOMW.2018.8406973
http://dx.doi.org/10.1109/JIOT.2020.3022699
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1109/TSP.2020.2967146
http://dx.doi.org/10.1109/TWC.2019.2930190
http://dx.doi.org/10.23919/JCC.2019.12.004
http://dx.doi.org/10.1109/LCOMM.2014.2379715
http://dx.doi.org/10.1109/ACCESS.2020.3012409
http://dx.doi.org/10.1109/TASE.2009.2013475
http://dx.doi.org/10.1016/j.future.2016.08.004
http://dx.doi.org/10.1109/JSEN.2021.3054943


Sensors 2022, 22, 37 19 of 20

21. Ni, Q.; Pan, Q.; Du, H.; Cao, C.; Zhai, Y. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle
Swarm Optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 76–84. [CrossRef]

22. Albu-Salih, A.T.; Seno, S.A.H. Energy-Efficient Data Gathering Framework-Based Clustering via Multiple UAVs in Deadline-Based
WSN Applications. IEEE Access 2018, 6, 72275–72286. [CrossRef]

23. Zhan, C.; Huang, R. Energy Minimization for Data Collection in Wireless Sensor Networks with UAV. In Proceedings of the 2019
IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [CrossRef]

24. Ebrahimi, D.; Sharafeddine, S.; Ho, P.H.; Assi, C. UAV-Aided Projection-Based Compressive Data Gathering in Wireless Sensor
Networks. IEEE Internet Things J. 2019, 6, 1893–1905. [CrossRef]

25. Cheng, F.; Zhang, S.; Li, Z.; Chen, Y.; Zhao, N.; Yu, F.R.; Leung, V.C.M. UAV Trajectory Optimization for Data Offloading at the
Edge of Multiple Cells. IEEE Trans. Veh. Technol. 2018, 67, 6732–6736. [CrossRef]

26. Ebrahimi, D.; Sharafeddine, S.; Ho, P.H.; Assi, C. Autonomous UAV Trajectory for Localizing Ground Objects: A Reinforcement
Learning Approach. IEEE Trans. Mob. Comput. 2021, 20, 1312–1324. [CrossRef]

27. Spyridis, Y.; Lagkas, T.; Sarigiannidis, P.; Argyriou, V.; Sarigiannidis, A.; Eleftherakis, G.; Zhang, J. Towards 6G IoT: Tracing
Mobile Sensor Nodes with Deep Learning Clustering in UAV Networks. Sensors 2021, 21, 3936. [CrossRef] [PubMed]

28. Ma, X.; Kacimi, R.; Dhaou, R. Fairness-aware UAV-assisted data collection in mobile wireless sensor networks. In Proceedings of
the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September
2016; pp. 995–1001. [CrossRef]

29. Yang, G.; Zhang, Y.; He, Z.; Wen, J.; Ji, Z.; Li, Y. Machine-learning-based prediction methods for path loss and delay spread in
air-to-ground millimetre-wave channels. IET Microwaves Antennas Propag. 2019, 13, 1113–1121. [CrossRef]

30. Zhu, Q.; Wang, Y.; Jiang, K.; Chen, X.; Zhong, W.; Ahmed, N. 3D non-stationary geometry-based multi-input multi-output
channel model for UAV-ground communication systems. IET Microwaves Antennas Propag. 2019, 13, 1104–1112. [CrossRef]

31. Zhan, C.; Lai, H. Energy Minimization in Internet-of-Things System Based on Rotary-Wing UAV. IEEE Wirel. Commun. Lett. 2019,
8, 1341–1344. [CrossRef]

32. Gong, J.; Chang, T.H.; Shen, C.; Chen, X. Flight Time Minimization of UAV for Data Collection Over Wireless Sensor Networks.
IEEE J. Sel. Areas Commun. 2018, 36, 1942–1954. [CrossRef]

33. Liu, J.; Zhang, Q. Offloading Schemes in Mobile Edge Computing for Ultra-Reliable Low Latency Communications. IEEE Access
2018, 6, 12825–12837. [CrossRef]

34. Abedi, M.; Pourkiani, M. Resource Allocation in Combined Fog-Cloud Scenarios by Using Artificial Intelligence. In Proceedings of
the 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 20–23 April 2020; pp. 218–222.
[CrossRef]

35. Gu, L.; Zeng, D.; Guo, S.; Barnawi, A.; Xiang, Y. Cost Efficient Resource Management in Fog Computing Supported Medical
Cyber-Physical System. IEEE Trans. Emerg. Top. Comput. 2017, 5, 108–119. [CrossRef]

36. Shih, Y.Y.; Chung, W.H.; Pang, A.C.; Chiu, T.C.; Wei, H.Y. Enabling Low-Latency Applications in Fog-Radio Access Networks.
IEEE Netw. 2017, 31, 52–58. [CrossRef]

37. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal Workload Allocation in Fog-Cloud Computing Toward Balanced Delay
and Power Consumption. IEEE Internet Things J. 2016, 3, 1171–1181. [CrossRef]

38. Brogi, A.; Forti, S.; Ibrahim, A. How to Best Deploy Your Fog Applications, Probably. In Proceedings of the 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; pp. 105–114. [CrossRef]

39. Sun, Y.; Zhang, N. A resource-sharing model based on a repeated game in fog computing. Saudi J. Biol. Sci. 2017, 24, 687–694.
[CrossRef] [PubMed]

40. Yang, Y.; Wang, K.; Zhang, G.; Chen, X.; Luo, X.; Zhou, M.T. MEETS: Maximal Energy Efficient Task Scheduling in Homogeneous
Fog Networks. IEEE Internet Things J. 2018, 5, 4076–4087. [CrossRef]

41. Ouyang, X.; Zeng, F.; Lv, D.; Dong, T.; Wang, H. Cooperative Navigation of UAVs in GNSS-Denied Area With Colored RSSI
Measurements. IEEE Sens. J. 2021, 21, 2194–2210. [CrossRef]

42. Cheng, Y.F.; Shao, W.; Zhang, S.J.; Li, Y.P. An Improved Multi-Objective Genetic Algorithm for Large Planar Array Thinning.
IEEE Trans. Magn. 2016, 52, 1–4. [CrossRef]

43. Siasi, N.; Jasim, M.; Aldalbahi, A.; Ghani, N. Delay-Aware SFC Provisioning in Hybrid Fog-Cloud Computing Architectures.
IEEE Access 2020, 8, 167383–167396. [CrossRef]

44. Xiao, Z.; Xia, P.; Xia, X.G. Enabling UAV cellular with millimeter-wave communication: Potentials and approaches. IEEE Commun.
Mag. 2016, 54, 66–73. [CrossRef]

45. Nguyen, T.A.; Min, D.; Choi, E.; Tran, T.D. Reliability and Availability Evaluation for Cloud Data Center Networks Using
Hierarchical Models. IEEE Access 2019, 7, 9273–9313. [CrossRef]

46. Olasupo, T.O. Propagation Modeling of IoT Devices for Deployment in Multi-level Hilly Urban Environments. In Proceedings
of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vienna,
Austria, 1–3 November 2018; pp. 346–352. [CrossRef]

47. Hayes, T.; Ali, F.H. Location aware sensor routing protocol for mobile wireless sensor networks. IET Wirel. Sens. Syst. 2016,
6, 49–57. [CrossRef]

48. Sun, Y.; Xu, D.; Ng, D.W.K.; Dai, L.; Schober, R. Optimal 3D-Trajectory Design and Resource Allocation for Solar-Powered UAV
Communication Systems. IEEE Trans. Commun. 2019, 67, 4281–4298. [CrossRef]

http://dx.doi.org/10.1109/TCBB.2015.2446475
http://dx.doi.org/10.1109/ACCESS.2018.2882161
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013148
http://dx.doi.org/10.1109/JIOT.2018.2878834
http://dx.doi.org/10.1109/TVT.2018.2811942
http://dx.doi.org/10.1109/TMC.2020.2966989
http://dx.doi.org/10.3390/s21113936
http://www.ncbi.nlm.nih.gov/pubmed/34200449
http://dx.doi.org/10.1109/IWCMC.2016.7577194
http://dx.doi.org/10.1049/iet-map.2018.6187
http://dx.doi.org/10.1049/iet-map.2018.6129
http://dx.doi.org/10.1109/LWC.2019.2916549
http://dx.doi.org/10.1109/JSAC.2018.2864420
http://dx.doi.org/10.1109/ACCESS.2018.2800032
http://dx.doi.org/10.1109/FMEC49853.2020.9144693
http://dx.doi.org/10.1109/TETC.2015.2508382
http://dx.doi.org/10.1109/MNET.2016.1500279NM
http://dx.doi.org/10.1109/JIOT.2016.2565516
http://dx.doi.org/10.1109/ICFEC.2017.8
http://dx.doi.org/10.1016/j.sjbs.2017.01.043
http://www.ncbi.nlm.nih.gov/pubmed/28386197
http://dx.doi.org/10.1109/JIOT.2018.2846644
http://dx.doi.org/10.1109/JSEN.2020.3021561
http://dx.doi.org/10.1109/TMAG.2015.2481883
http://dx.doi.org/10.1109/ACCESS.2020.3021354
http://dx.doi.org/10.1109/MCOM.2016.7470937
http://dx.doi.org/10.1109/ACCESS.2019.2891282
http://dx.doi.org/10.1109/IEMCON.2018.8614903
http://dx.doi.org/10.1049/iet-wss.2015.0027
http://dx.doi.org/10.1109/TCOMM.2019.2900630


Sensors 2022, 22, 37 20 of 20

49. Wu, J.; Wang, H.; Huang, Y.; Su, Z.; Zhang, M. Energy Management Strategy for Solar-Powered UAV Long-Endurance Target
Tracking. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1878–1891. [CrossRef]

50. Rabah, M.; Rohan, A.; Mohamed, S.A.S.; Kim, S.H. Autonomous Moving Target-Tracking for a UAV Quadcopter Based on
Fuzzy-PI. IEEE Access 2019, 7, 38407–38419. [CrossRef]

51. Chamola, V.; Sikdar, B.; Krishnamachari, B. Delay Aware Resource Management for Grid Energy Savings in Green Cellular Base
Stations With Hybrid Power Supplies. IEEE Trans. Commun. 2017, 65, 1092–1104. [CrossRef]

52. Perera, T.D.P.; Panic, S.; Jayakody, D.N.K.; Muthuchidambaranathan, P.; Li, J. A WPT-Enabled UAV-Assisted Condition
Monitoring Scheme for Wireless Sensor Networks. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5112–5126. [CrossRef]

53. Tao, M.; Li, X.; Yuan, H.; Wei, W. UAV-Aided trustworthy data collection in federated-WSN-enabled IoT applications. Inf. Sci.
2020, 532, 155–169. [CrossRef]

54. Christy, E.; Astuti, R.P.; Syihabuddin, B.; Narottama, B.; Rhesa, O.; Rachmawati, F. Optimum UAV flying path for Device-to-Device
communications in disaster area. In Proceedings of the 2017 International Conference on Signals and Systems (ICSigSys), Bali,
Indonesia, 16–18 May 2017.

55. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
56. Younis, O.; Fahmy, S. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans.

Mob. Comput. 2004, 3, 366–379. [CrossRef]
57. Bourke, P. Geometry, Surfaces, Curves, Polyhedra. 1988. Available online: http://paulbourke.net/geometry/ (accessed on

14 May 2021).
58. Mei, G.; Tipper, J.C.; Xu, N. An algorithm for finding convex hulls of planar point sets. In Proceedings of the 2012 2nd

International Conference on Computer Science and Network Technology, Changchun, China, 29–31 December 2012; pp. 888–891.
59. Allison, D.C.S.; Noga, M.T. Some performance tests of convex hull algorithms. BIT Numer. Math. 1984, 24, 366–379. [CrossRef]
60. Liu, Z.; Yang, X.; Yang, Y.; Wang, K.; Mao, G. DATS: Dispersive Stable Task Scheduling in Heterogeneous Fog Networks. IEEE

Internet Things J. 2019, 6, 3423–3436. [CrossRef]

http://dx.doi.org/10.1109/TAES.2018.2876738
http://dx.doi.org/10.1109/ACCESS.2019.2906345
http://dx.doi.org/10.1109/TCOMM.2016.2629502
http://dx.doi.org/10.1109/TITS.2020.3018493
http://dx.doi.org/10.1016/j.ins.2020.03.053
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TMC.2004.41
http://paulbourke.net/geometry/
http://dx.doi.org/10.1007/BF01934510
http://dx.doi.org/10.1109/JIOT.2018.2884720

	Introduction
	Related Work
	System Model
	Proposed Framework
	Design and Implementation
	Data Scheduling

	Evaluation
	Conclusions
	References

