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Abstract: Neighbor discovery is a fundamental function for sensor networking. Sensor nodes
discover each other by sending and receiving beacons. Although many time-slotted neighbor
discovery protocols (NDPs) have been proposed, the theoretical discovery latency is measured by the
number of time slots rather than the unit of time. Generally, the actual discovery latency of a NDP is
proportional to its theoretical discovery latency and slot length, and inversely proportional to the
discovery probability. Therefore, it is desired to increase discovery probability while reducing slot
length. This task, however, is challenging because the slot length and the discovery probability are
two conflicting factors, and they mainly depend on the beaconing strategy used. In this paper, we
propose a new beaconing strategy, called talk-listen-ack beaconing (TLA). We analyze the discovery
probability of TLA by using a fine-grained slot model. Further, we also analyze the discovery
probability of TLA that uses random backoff mechanism to avoid persistent collisions. Simulation
and experimental results show that, compared with the 2-Beacon approach that has been widely
used in time-slotted NDPs, TLA can achieve a high discovery probability even in a short time slot.
TLA is a generic beaconing strategy that can be applied to different slotted NDPs to reduce their
discovery latency.

Keywords: wireless sensor networks; neighbor discovery; beaconing; duty cycle

1. Introduction

Recent years have witnessed a large variety applications of wireless sensor networks in
industrial Internet of Things, environmental monitoring and protection, smart agriculture,
and smart city. In all these applications, neighbor discovery [1] is a fundamental function
for sensor networking, because the knowledge of neighboring nodes is the prerequisite for
link establishment, routing, and network communication.

Sensor nodes discover each other by sending and receiving beacons. Sensor nodes are
typically low-cost and battery-powered devices. They cannot always turn on the radio to
communicate with other nodes, because the battery cannot be replaced in most applications.
Generally, sensor nodes work in a low-power mode: they turn off the radio and go to sleep
most of the time; only when needed or according to scheduling, they turn on the radio for
a while to communicate. The percentage of the time that a node’s radio is on is called its
duty cycle. As the duty cycle of a node decreases, the chance of discovering other nodes
and being discovered by other nodes becomes lower. Furthermore, sensor nodes may be
mobile devices and do not have time synchronization information. Therefore, the neighbor
discovery protocol (NDP) designed for wireless sensor networks should take duty cycle,
mobility, and asynchronous information into account [1].

In many applications, it is desirable for neighbor discovery to achieve both low duty
cycle and low discovery delay. For example, in habitat monitoring applications, sensors
are carried by animals for long-term research, and neighbor discovery enables sensors
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to record activity and exchange data even during short periods of contact, which helps
scientists understand their interactions and mutual influences. In manufacturing asset
tracking applications, by attaching sensors to equipment and deploying sensors in the
manufacturing area, neighbor discovery enables the management system to track the
location of equipment in real time throughout the manufacturing process. In health care
monitoring applications, through the sensors worn by students, neighbor discovery can
collect all contacts within the transmission distance of infectious diseases in a timely manner,
so as to model the disease propagation and contain infectious diseases [2].

Many energy-efficient neighbor discovery protocols are proposed for wireless sensor
networks. These NDPs can be divided into two categories: probabilistic and deterministic.
As a representative of probabilistic NDPs, Birthday protocol [3] transmits, receives, or
sleeps with a particular probability in each time slot. The average discovery latency of
Birthday is low, but the worst-case latency is not bounded. In contrast, deterministic NDPs
such as Disco [4], U-Connect [5], Searchlight [6], Hello [7], and Nihao [8] can guarantee
that the worst-case latency is bounded. The design techniques used by most existing
deterministic NDPs include coprime (e.g., Disco [4]), quorum (e.g., Searchlight [6] and
Nihao [8]), or hybrid of both (e.g., U-Connect [5] and Hello [7]). These techniques ensure
that any two neighboring nodes have overlapping time within the worst-case latency to
send/receive beacons to each other.

Time-slotted model are widely used by existing NDPs [3–11], in which time is divided
into fixed-length slots. Each NDP has its own cycle, which consists of a certain number of
time slots, some of which are selected as working slots (or active slots), and other time slots
are selected as non-working slots (or sleeping slots). During an active slot, a node will turn
on its radio to transmit/receive beacons.

Although many time-slotted NDPs are proposed, there are still some issues. First,
the discovery latency of a time-slotted NDP is measured by the number of time slots
rather than the unit of time [12]. Second, in most slotted NDPs, the 2-Beacon approach
that beacons are sent at the beginning and the end of the active slots is widely adopted,
and it is assumed that overlapping active slots will lead to mutual discovery [4,6,7,10,13].
However, the overlapping active slots may not be sufficient for mutual discovery, because
the transceiver of a sensor node is half-duplex and there may exist collisions (two or more
nodes transmit beacons at the same time). It is shown that, when the slot length is 10 ms,
the 2-way discovery probability of 2-Beacon approach is lower than 50% (see Section 6.2).
Third, the actual discovery latency of a time-slotted NDP depends not only on its theoretical
discovery latency measured by the number of slots, but also on its slot length and discovery
probability. Generally, the expected discovery latency of a time-slotted NDP is proportional
to its theoretical discovery latency and the slot length, and inversely proportional to the
discovery probability. Therefore, it is desired to increase the discovery probability while
reducing the slot length. This task, however, is challenging because the slot length and the
discovery probability are two conflicting factors, and they mainly depend on the beaconing
strategy used by the NDP. The beaconing strategy refers to the mechanism for sending
and receiving beacons, which is part of the NDP. The beaconing strategy has a significant
impact on the actual performance of the NDP by changing the discovery probability and
the slot length.

In this paper, we propose a new beaconing strategy, called Talk-Listen-Ack beaconing
(TLA). We analyze the two-way discovery probabilities of TLA and 2-Beacon approach by
using a fine-grained slot model. Further, we also analyze the two-way discovery probability
of TLA that uses random backoff mechanism to avoid persistent collisions. Simulation and
experimental results show that, compared with 2-Beacon approach, TLA can achieve a high
discovery probability even in a short time slot. TLA is a generic beaconing strategy that
can be applied to different slotted NDPs to reduce their expected discovery latency.

The remainder of this paper is organized as follows. Related works in the literature
are discussed in Section 2. The motivation is given in Section 3. Talk-Listen-Ack Beaconing
strategy is described in Section 4. Section 5 presents theoretical analysis of TLA and 2-
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Beacon approach. Evaluation of TLA and the comparison with 2-Beacon approach are
provided in Section 6. The discussion is given in Section 7. Conclusion remarks are
presented in Section 8.

2. Related Works

As a fundamental function of sensor networking, neighbor discovery has attracted
much attention recently, and many energy-efficient NDPs have been proposed [1]. The
proposed NDPs can be classified from different perspectives, such as slotted [3–8,10,11]
or unslotted [12,14–16], probabilistic [3] or deterministic [3–11,15], single-channel [15] or
multichannel [16–18], pairwise or collaborative [19], etc.

Many NDPs use time-slotted model where time is divided into time slots of equal
length. A node generally repeats a cycle consisting of a certain number of time slots, where
some slots are working (or active) slots, and other time slots are non-working slots. In
an active slot, a node turns on the radio to send and/or receive beacons. The energy
consumption of a slotted NDP is represented by duty cycle, which is the percentage of
active slots in a cycle.

Time-slotted NDPs can be probabilistic or deterministic. As a representative of prob-
abilistic NDPs, Birthday [3] transmits, listens, or sleeps with probabilities at each slot.
Although Birthday has low average discovery latency, its worst-case discovery latency is un-
bounded. In contrast, the worst-case discovery latency of a deterministic NDP is bounded.

Disco [4], U-Connect [5], and Hello [7] are well-known representatives of deterministic
NDPs. Coprime technique is used by Disco, where each node selects two primes, and by
Chinese Remainder Theorem, there must exist overlapping active slots between two nodes.
Besides coprime, U-Connect and Hello also adopt quorum technique [9] that guarantees
overlapping active slots even if two nodes choose the same prime. All these three NDPs can
be applied to the symmetric neighbor discovery where the duty cycles of two nodes are the
same, and to the asymmetric neighbor discovery where nodes have different duty cycles.

Meng et al. [20] propose code-based schemes for symmetric and asymmetric neighbor
discovery. The active-sleep pattern of a node is formulated as a 0–1 code. Based on the
0–1 code and set theory, the feasibility conditions for neighbor discovery are given. For
symmetric neighbor discovery, the scheme called Diff-Codes is designed, which can achieve
the tight worst-case latency bound when it can be extended from a perfect difference set.
Diff-Codes is extended to ADiff-Codes designed for asymmetric neighbor discovery.

Disco uses a beaconing strategy that beacons are sent at the beginning and the end of
the active slots so as to achieve mutual discovery when active slots of two nodes overlap.
This 2-Beacon approach is widely accepted and adopted by other slotted NDPs [6,7,13].
Most slotted NDPs are designed with the assumption that overlapping active slots will
lead to mutual discovery [4,6,7,10,13]. However, overlapping active slots combined with
2-Beacon approach cannot guarantee mutual discovery in real applications, which may
lead to a large gap between the theoretical and real discovery performance.

Qiu et al. [8] point out it is sufficient to send one beacon in an active slot, and mutual
discovery can be achieved through two separate one-way discoveries. Further, based on
the observation that the transmission time of a beacon is much shorter than the slot length,
a design principle called “Talk More Listen Less” is proposed, which aims to reduce the
number of active slots by sending more beacons. However, the extra radio-on time for
sending a beacon is ignored, which makes its real duty cycle larger than its nominal value
since the extra radio-on time is much longer than the beacon’s transmission time in real
systems [15]. Furthermore, neighbor discovery through two separate one-way discoveries
is usually slower than direct two-way discovery in terms of discovery latency [15].

Existing deterministic slotted NDPs mostly use the number of slots instead of time
units such as microseconds, milliseconds, or seconds to evaluate the discovery latency [12].
The actual discovery latency depends on several factors such as slot length, collisions,
and energy consumption (duty cycle) [21–24]. Gu et al. propose a practical neighbor
discovery framework with collisions, latency constraints, and energy consumption taken
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into account [24]. Bian et al. attempt to reduce the actual discovery latency by a fine-grained
control over the slot length and the number of beacons sent [22]. Jin et al. investigate how
the actual discovery latency can be reduced by simply reducing the slot length [21]. In
our previous works [15,16], we, respectively, present generic analytical models for single-
and multiple-channel neighbor discovery, in which the metric of discovery latency is units
of time.

In short, for slotted NDPs, discovery latency is proportional to the slot length and
inversely proportional to the discovery probability, and the slot length and the discovery
probability are two conflicting factors. With the same goal of improving the actual discovery
latency as the works [21,22,24], we study the beaconing strategy that can achieve a better
tradeoff between the discovery probability and the slot length.

3. Motivation

Generally, for a slotted NDP, its expected discovery latency in time units, denoted by
X, can be computed as:

X =
1
P
× N × tslot, (1)

where P is the discovery probability, N is the theoretical discovery latency in units of time
slots, and tslot is the length of a time slot. In order to reduce the discovery latency X, we
should increase P while reducing tslot.

The discovery probability P depends on beaconing strategy used by the NDP and the
slot length tslot. 2-Beacon approach is widely adopted by most time-slotted NDPs, and it is
assumed that overlapping active slots of two nodes leads to successful two-way neighbor
discovery (i.e., P = 1 in Equation (1)). This assumption, however, is too ideal to reflect
the real performance. Next, we illustrate the reason by showing the detailed process of
2-Beacon approach based on a fine-grained time slot model.

The detailed implementation of 2-Beacon approach is shown in Figure 1, where ith
slot is an active slot, and (i− 1)th slot is a non-working slot. The whole process is divided
into four phases: turning on radio in advance (1), sending the first beacon (2), listening
to the channel (3), and sending the second beacon (4). The durations of the four phases
are denoted by tradio, tb, trx, and tb, respectively. In the first phase, the node turns on the
radio in advance in (i− 1)th slot so that a beacon can be sent at the beginning of ith slot.
Further, the second phase (or the fourth phase) is composed of four sub-phases: setting the
header and payload of the beacon (2-1), loading the beacon into Tx buffer (2-2), sending
synchronisation header (SHR) consisting of the preamble and Start of Frame Delimiter
(SFD) (2-3), and sending the MAC protocol data unit (PDU) (2-4), as shown in Figure 1. The
durations of these four sub-phases are denoted by thp, tload, tshr, and tpdu, respectively. Let
ttx represent the time when node is in transmitting state, we have ttx = tload + tshr + tpdu,
as shown in Figure 1.

 i !"#$%&'(# i !"#$% &'(')*)+,#'+-"./'012$'#' "!'0-'/"3".04$%0- 5/0+61)  )+,57/+"%+"/0-)% 8 9 : ;9 :9 8 9 9 9 ;
Figure 1. A fine-grained time slot model.

Generally, it follows thp + tload > tshr + tpdu. In other words, although the transmis-
sion time of SHR and PDU is short, the extra time (i.e., thp + tload) spent before transmission
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is much longer than the transmission time. For instance, sending a 1-ms beacon needs
extra two milliseconds. Furthermore, the transceiver of a sensor node is half-duplex, which
means it cannot receive while sending a beacon. Specifically, when a node in transmitting
state that includes 2-2, 2-3, and 2-4 in Figure 1, it cannot switch to receiving state before the
sending is completed. As the length of listening window (trx) becomes smaller, the discov-
ery probability decreases. For instance, the discovery probability of 2-Beacon approach is
no more than 50% when tslot = 10 ms (see Section 6.2).

Motivated by the above analysis, we design a new beaconing strategy, which can
achieve a high discovery probability even in a short time slot. Compared with the 2-
Beacon approach, the new beaconing strategy enables a slotted NDP to reduce its expected
discovery latency.

4. Talk-Listen-Ack Beaconing

In this section, we present our beaconing strategy, called Talk-Listen-Ack beaconing
(TLA). The main idea of TLA is to reduce redundant beacons and save more time for
receiving beacons. Figure 2 shows the time slot model of TLA, where ith slot is an active
slot, and (i − 1)th slot is a non-working slot. The active slot (ith slot) is dedicated to
receiving neighbors’ beacons, and a beacon is sent at the end of previous slot ((i− 1)th
slot). This design aims to increase P and decrease tslot in Equation (1) so as to reduce the
expected discovery latency.

31

(i-1)th Slot ith Slot

2

Receiving
Send

preamble

Set header 

& payload
Transmitting

Turn on 

radio

Figure 2. A time slot model of TLA.

Figure 3 shows the discovery process of TLA. When an active slot is arriving, node A
first sends a beacon and then listens to the channel. Once a beacon is received from node B,
node A will send an acknowledgment. The acknowledgement will be received by node B
since it is listening the channel after sending its beacon. Thus, node A and B receive each
other’s beacons and complete two-way discovery.

AAB
Receive  

ACK

Send

ACK

B

A

ANode A

Node 

Receive 

beacon
Receiving

Send

preamble

Set header 

& payload
Transmitting

Figure 3. The discovery process of TLA.

In order to respond quickly, TLA sends the acknowledgement by re-sending the
beacon in Tx buffer. This can be done by changing the data sequence number (DSN) of the
beacon in the Tx buffer and instructing the radio to send it immediately.

Compared with 2-Beacon approach, TLA has the following advantages. Firstly, TLA
reduces the number of beacons sent by half. For each active slot, when no beacon from
neighbors is received, TLA only sends one beacon. In addition, TLA can also accomplish
two-way discovery: once a beacon is received from a neighbor, the node will respond with
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an acknowledgment so that the neighbor also discover the node. Secondly, TLA uses the
beacon already in the Tx buffer to complete a quick response. By this method, the extra
time cost of sending a beacon (i.e., thp and tload) is saved.

5. Performance Analysis of TLA Beaconing
5.1. Two-Way Discovery Probability

In this section, we analyze the two-way discovery probability of TLA and compare it
with 2-Beacon approach. Here, the two-way discovery probability is defined as the proba-
bility that two nodes discover each other when their active time slots overlap. Consider a
pair of overlapping active slots of two nodes, say node A and B. Denote to f f set as the time
difference between the beginning moment of sending the first beacon of node B and that of
node A.

We first analyze the two-way discovery probability of 2-Beacon approach. It is assumed
that to f f set is uniformly distributed over [−tslot, tslot]. In addition, in the fined-grained slot
model (presented in Section 3), we assume thp + tload > tshr + tpdu and tpdu < tload.
Figure 4 shows the cases of 2-Beacon approach as to f f set changes from 0 to tslot. We have
following cases:

1. When ttx − tpdu ≥ to f f set ≥ 0, that is, to f f set varies from (a) to (b) shown in Figure 4,
node B cannot receive the beacon from node A because node B’s radio is in transmit-
ting state;

2. When tslot − ttx − tb + tpdu ≥ to f f set > ttx − tpdu, i.e., to f f set varies from (b) to (c)
shown in Figure 4, node A and B can receive each other’s beacons, and thus, 2-way
discovery occurs;

3. When tslot ≥ to f f set > tslot − ttx − tb + tpdu, i.e., to f f set varies from (c) to (d) shown in
Figure 4, node A cannot receive node B’s beacon.

(a)

(b)

(c)

(d)

Receiving
Send

preamble

Set header 

& payload
Transmitting

Turn on 

radio

Node A

Node 

 
offsett

 
offsett

 
offsett

Figure 4. The discovery process of 2-Beacon approach as to f f set changes.

The case when to f f set changes from −tslot to 0 is symmetric with the above case.
Overall, the two-way discovery probability of 2-Beacon approach, denoted by PBB, is

PBB=
tslot − tb − 2ttx + 2tpdu

tslot
. (2)

For TLA, to f f set is uniformly distributed over [−tslot − tb, tslot + tb]. Figure 5 shows
the cases of TLA when to f f set ranges from 0 to tslot + tb. It follows that:
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1. When tshr + tpdu ≥ to f f set ≥ 0, that is, to f f set varies from (a) to (b) shown in Figure 5,
node A cannot receive the beacon from node B and vice versa because they are all in
transmitting state;

2. When tslot + tpdu ≥ to f f set > tshr + tpdu, i.e., to f f set varies from (b) to (c) shown in
Figure 5, node A can receive the beacon from node B, and node B can receive the
acknowledgement from node A. Note that, when node A receives the beacon from
node B at the end of the active slot, it is allowed to complete the acknowledgement by
slightly extending the active slot before going to sleep, as shown in Figure 5. Therefore,
2-way discovery occurs;

3. When tslot + tb ≥ to f f set > tslot + tpdu, i.e., to f f set varies from (c) to (d) shown in
Figure 5, node A cannot receive node B’s beacon.

(a)

(b)

(c)

Slot

extension

(d)

AAB
Receive  

ACK

Send

ACK
Receive 

beacon
Receiving

Send

preamble

Set header 

& payload
Transmitting

B A

A

Node A

Node 

 
offsett

 
offsett

 
offsett

Figure 5. The discovery process of TLA as to f f set changes.

The case when to f f set changes from −tslot − tb to 0 is symmetric with the above case.
Thus, the two-way discovery probability of TLA, denoted by PTLA, is:

PTLA =
tslot − tshr
tslot + tb

. (3)

5.2. Random Backoff

If two nodes transmit beacons at the same time, a collision occurs, leading to failure
in discovery. For example, for the 2-Beacon approach, for the case (a) shown in Figure 4,
there are collisions between the first pair and the second pair of beacons of node A and B.
Furthermore, for TLA, for the case (a) shown in Figure 5, node A and B collide. Moreover,
in the above cases, collisions will be persistent if to f f set does not change when node A
encounters node B the next time. To avoid persistent collisions, one feasible method is to
adopt random backoff mechanism. Next, we present TLA strategy with random backoff
mechanism, denoted by TLA-RB.

As can be seen from Figure 6, in TLA-RB, the transmission of the beacon is contained
in a window and the start time of the beacon is randomly selected within the window. The
window is called beacon window. Next, we analyze the expected probability of two-way
discovery of TLA-RB.

Consider the case where the beacon windows of node A and B overlap and the start
time of the beacon window of node A is earlier than or equal to that of node B. Here, we
take the start time of the beacon window of node A as the reference point. For TLA-RB, the
time offset to f f set is defined as the time difference of the start time of the beacon window of
node B and that of node A. Further, the time difference between the time when the beacon
of node A is sent and the start time of the beacon window of node A is called phase of node
A, denoted by ϕA. Furthermore, the time difference between the time when the beacon of
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node B is sent and the start time of the beacon window of node A is called phase of node B,
denoted by ϕB.

Let tw be the length of beacon window, and c = tshr + tpdu. Given a value of to f f set,
we can calculate the collision probability Pc as follows. For presentation simplicity, in the
sequel, we only discuss the case when tw > tb + 2c, and the analysis of the other two
cases, tb + c ≥ tw > tb and tb + 2c ≥ tw > tb + c, is similar. Figure 7a show the case
when to f f set = 0. In this case, it follows that ϕA and ϕB are independent and uniformly
distributed in [0, tw − tb]. Furthermore, the probability of event |ϕB − ϕA| ≤ c (i.e., Pc) can
be calculated as the ratio of the area of the shaded region shown in Figure 7b to (tw − tb)

2.
When tw ≥ to f f set > 0, as shown in Figure 7c, ϕA is uniformly distributed in [0, tw − tb],
and ϕB is uniformly distributed in [to f f set, tw − tb + to f f set]. Imagine shifting the square
of Figure 7b upward by to f f set and extending the shaded area of Figure 7b, and we will
have the resultant square and shaded area shown in Figure 7d. For to f f set > 0, Pc can be
calculated as the ratio of the area of the shaded region shown in Figure 7d to (tw − tb)

2.
Denote Pnc the probability that there is no collision. It follows Pnc = 1− Pc, and we have:

pnc =



1− 2c
tw−tb

+
c2+t2

o f f set

(tw−tb)
2 if c > to f f set > 0;

1− 2c(tw−tb−to f f set)

(tw−tb)
2 if tw − tb − c > to f f set ≥ c;

1
2 +

to f f set−c
tw−tb

− (to f f set−c)2

2(tw−tb)
2 if tw − tb + c > to f f set ≥ tw − tb − c;

1 if tw ≥ to f f set ≥ tw − tb + c.

(4)

Denote PTLA−RB as the 2-way discovery probability of TLA-RB. Note that, given a
to f f set, PTLA−RB is a random variable because of the backoff mechanism. So, we compute
the expectation of PTLA−RB, denoted by E[PTLA−RB]. Figure 8 shows the discovery process
of TLA-RB as to f f set changes. 2-way discovery is possible only when to f f set is from 0 to
tslot + tw − thp − tload − tshr, as shown in Figure 8. Let L = tslot + tw − thp − tload − tshr. We
divide L into three segments, [0, tw) (i.e., from (a) to (b) in Figure 8), [tw, tslot) (i.e., from
(b) to (c) in Figure 8), and [tslot, L] (from (c) to (d) in Figure 8). The expectation of 2-way
discovery probability for the three segments are denoted by E[PTLA−RB−I ], E[PTLA−RB−I I ],
and E[PTLA−RB−I I I ], respectively.

For the first segment, if there is no collision, then 2-way discovery can be achieved.
Thus, we have PTLA−RB = pnc. By Equation (4), we have:

E[PTLA−RB−I ] =
1
L

∫ c

0
(1− 2c

tw − tb
+

c2 + t2
o f f set

(tw − tb)
2 )dto f f set

+
1
L

∫ tw−tb−c

c
(1−

2c(tw − tb − to f f set)

(tw − tb)
2 )dto f f set

+
1
L

∫ tw−tb+c

tw−tb−c
(

1
2
+

to f f set − c
tw − tb

−
(to f f set − c)2

2(tw − tb)
2 )dto f f set

+
tb − c

L

=
tw − c

L
. (5)

For the second segment, we have:

E[PTLA−RB−I I ] =
tslot − tw

L
. (6)

For the third segment, the two-way discovery probability is:

PTLA−RB =

{
1 if tslot + tpdu > to f f set ≥ tslot;

L−to f f set
tw−tb

if L ≥ to f f set ≥ tslot + tpdu.
(7)
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Then, it follows:

E[PTLA−RB−I I I ] =
tpdu

L
+

1
L

∫ L

tslot+tpdu

(
L− to f f set

tw − tb
)dto f f set

=
1
2 (tw − tb) + tpdu

L
. (8)

Overall, we have:

E[PTLA−RB] = E[PTLA−RB−I ] + E[PTLA−RB−I I ] + E[PTLA−RB−I I I ]

=
tslot +

1
2 (tw − tb)− tshr

L
. (9)

For the case when tb + c ≥ tw > tb or tb + 2c ≥ tw > tb + c, we can similarly calculate
Pc, Pnc, and E[PTLA−RB]. The results of E[PTLA−RB] for these two cases are the same with
Equation (9), and the details are omitted.
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Figure 6. TLA strategy with random backoff mechanism.
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6. Evaluation

In this section, we compare TLA with 2-Beacon approach by simulations and experi-
ments. The simulations were done by using MATLAB, and experiments were done in a
testbed of TelosB motes.

6.1. Implementation

The testbed consists of a laptop and two TelosB motes, called node A and B. Nodes
A and B are connected with the laptop through USB cables. The laptop is responsible for
configuring the two motes and collecting results.

Based on the measurements, the values of parameters are as follows: tb = 3 ms,
thp = 1 ms, tload = 1 ms, tshr = 0.2 ms, and tpdu = 0.8 ms.

To compare TLA with 2-Beacon approach, we had implemented well-known slotted
NDPs including Disco, U-Connect, and Hello on TinyOS 2.1.2. All these NDPs were imple-
mented under the UPMA (Unified Radio Power Management Architecture) framework of
TinyOS. For each NDP, we implemented two versions, one using TLA and the other using
2-Beacon approach. In the sequel, we use the name of a NDP followed by the name of a
beaconing strategy to indicate a specific NDP. For instance, Disco that uses TLA is denoted
as Disco-TLA, and Disco that uses 2-Beacon is denoted as Disco-2-Beacon.

In order to compare two beaconing strategies fairly, we should set them to have the
same (or approximately the same) duty cycle. Assume a NDP using 2-Beacon repeats
its active-sleep pattern every nBB slots, where mBB slots are active, and the slot length is
tslot−BB. Then, according to the slot model shown in Figure 1, its duty cycle, denoted by
DCBB, is DCBB =

mBB × tslot−BB
nBB × tslot−BB

= mBB
nBB

. For the NDP using TLA, assume its active-sleep
pattern is repeated every nTLA slots, where mTLA slots are active, and the slot length is
tslot−TLA. Based on the slot model shown in Figure 2, the duty cycle of the NDP using TLA,
denoted by DCTLA, is DCTLA =

mTLA × (tslot−TLA + tb)
nTLA × tslot−TLA

.
Then, for a specific duty cycle value, we can select parameter values for the NDP using

2-Beacon and the NDP using TLA, respectively. We take Disco as an example. For the
duty cycle of 5%, Disco-2-Beacon selects a pair of primes (37, 43) such that DCBB=

37 + 43
37 × 43 ×

100% ≈ 5%. For the same duty cycle, assuming tslot−TLA= 6 ms and tb = 3 ms, Disco-TLA
chooses a pair of primes (53, 67), and it follows DCTLA=

(53 + 67)×(6 + 3)
(53 × 67) × 6 × 100% ≈ 5%.

6.2. Simulation and Experimental Results

Figure 9 shows the discovery probabilities of TLA and 2-Beacon against slot
length. The analytical discovery probabilities of 2-Beacon and TLA are computed
by Equations (2) and (3), respectively. It can be seen that the analytical results perfectly
match with the simulated values, which verifies the accuracy of our analysis. As expected,
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the discovery probabilities of TLA and 2-Beacon increase as the slot length increases. TLA
has a much higher discovery probability than 2-Beacon, especially when the slot length
is short. When tslot = 10 ms, a typical value used by 2-Beacon approach, the discovery
probability of 2-Beacon is no more than 50%, while the discovery probability of TLA is
more than 70%. Further, for the same discovery probability, the slot length of TLA is much
shorter than that of 2-Beacon. Therefore, compared with 2-Beacon, TLA has a smaller slot
length and a higher discovery probability.
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Figure 9. The discovery probability of TLA and 2-Beacon for different slot lengths.

The expected discovery latency of a NDP is proportional to the slot length and in-
versely proportional to the discovery probability (see Equation (1)). Increasing the slot
length can increase the discovery probability, but it may also increase the expected discov-
ery latency. Therefore, for each beaconing strategy, there exists an optimal slot length that
can achieve the lowest expected discovery latency. To verify this claim, we ran Disco-TLA
and Disco-2-Beacon for symmetric duty cycle pairs (3%, 3%), (5%, 5%), and (7%, 7%), and
asymmetric duty cycle pairs (1%, 5%), (1%, 10%), and (5%, 10%).

Figures 10 and 11 show the expected discovery latency of Disco-TLA and Disco-2-
Beacon, respectively. The trend of the expected discovery latency validates our analysis.
We observe that Disco-2-Beacon and Disco-TLA achieve the lowest expected discovery
latency when tslot = 10 ms and tslot = 6 ms, respectively, as shown in Figures 10 and 11.
When tslot is smaller than 10 ms (or 6 ms), the expected discovery latency of Disco-2-Beacon
(or Disco-TLA) will decrease as tslot increases due to the rapid increase in the discovery
probability. However, when tslot is greater than 10 ms (or 6 ms), as tslot increases, the
expected discovery latency of Disco-2-Beacon (or Disco-TLA) starts to increase because
the increase of discovery probability slows down, and the expected discovery latency is
dominated by the increase of slot length.

In the following evaluation, unless otherwise specified, tslot is set to 10 ms for 2-Beacon
and 6 ms for TLA, respectively. Figure 12 provides a comparison between Disco-2-Beacon
and Disco-TLA for multiple symmetric and asymmetric duty cycle pairs. Compared
with Disco-2-Beacon, Disco-TLA reduces the expected discovery latency by 16.2%, 24.6%,
18.0%, 11.7%, 18.9%, and 20.5% for (3%, 3%), (5%, 5%), (7%, 7%), (1%, 5%), (1%, 10%), and
(5%, 10%), respectively.

Next, we compare TLA with 2-Beacon in a more comprehensive scenario. In this sce-
nario, DCA and DCB are chosen from {1%, 2%, · · ·, 10%}. There are ( 2

10) = 45 asymmetric
duty cycle pairs, and 10 symmetric duty cycle pairs. 100 experiments were conducted for
each duty cycle pair, and each experiment was run with a random time offset. Figure 13
gives the discovery probabilities of Disco-2-Beacon and Disco-TLA. The analytical discov-
ery probabilities of Disco-2-Beacon and Disco-TLA are 0.46 and 0.68, while the experimental
discovery probabilities of Disco-2-Beacon and Disco-TLA are 0.40 and 0.61, respectively.
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The slight decrease in experimental discovery probability is mainly due to interference
from surrounding wireless devices. The experimental discovery probability of Disco-TLA
is 21% greater than that of Disco-2-Beacon, and the slot length of Disco-TLA (i.e., 6 ms) is
only three-fifths of that of Disco-2-Beacon (i.e., 10 ms).
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Figure 10. The expected discovery latency of Disco-2-Beacon for different slot lengths.
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Figure 11. The expected discovery latency of Disco-TLA for different slot lengths.
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Figure 12. The expected discovery latency of Disco-TLA and Disco-2-Beacon for symmetric and
asymmetric duty cycle pairs.
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Figure 13. Discovery probabilities of Disco-TLA and Disco-2-Beacon.

Figure 14 shows experimental cumulative distribution function (CDF) of discovery
latency of Disco-2-Beacon and Disco-TLA. It can be observed that Disco-TLA performs
much better than Disco-2-Beacon. Specifically, the average discovery latencies of Disco-
2-Beacon and Disco-TLA are 13.78 s and 9.82 s, respectively, and compared with Disco-2-
Beacon, Disco-TLA reduces the average discovery latency by 28.7%.
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Figure 14. Experimental CDF of discovery latency of Disco-TLA and Disco-2-Beacon.

Besides Disco, we also compare the performance of other NDPs using 2-Beacon and
TLA, such as U-Connect and Hello. Figures 15 and 16 show CDF of discovery latency of
U-Connect and Hello for asymmetric duty cycle pairs (1%, 10%) and (3%, 7%), respectively.
It can be seen that, U-Connect or Hello using TLA can significantly reduce their discovery
latency. Specifically, for (1%, 10%) and (3%, 7%), U-Connect-TLA reduces the average
discovery latency of U-Connect-2-Beacon by 59.1% and 42.2%, respectively, and Hello-TLA
reduces the average discovery latency of Hello-2-Beacon by 53.4% and 50.3%, respectively.

Figures 17 and 18 show CDF of discovery latency of U-Connect and Hello for symmet-
ric duty cycle pairs (2%, 2%) and (5%, 5%), respectively. Similar to the case of asymmetric
duty cycle, U-Connect and Hello benefit from the use of TLA to reduce the discovery
latency. More specifically, for (2%, 2%) and (5%, 5%), U-Connect-TLA reduces the average
discovery latency of U-Connect-2-Beacon by 36.3% and 43.7%, respectively, and Hello-TLA
reduces the average discovery latency of Hello-2-Beacon by 41.8% and 36.5%, respectively.

In addition to the average discovery latency, TLA also significantly reduces the worst-
case discovery latency of U-Connect and Hello. For example, when TLA is adopted, the
worst-case discovery latency of U-Connect is reduced by 71.4% for (5%, 5%) as shown in
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Figure 18, and the worst-case discovery latency of Hello is reduced by 55.9% for (1%, 10%)
as shown in Figure 15. All these results demonstrate that TLA can be applied to different
slotted NDPs to improve their discovery performance.
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Figure 15. Experimental CDF of discovery latency of U-Connect and Hello for asymmetric duty cycle
pair (1%, 10%).
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Figure 16. Experimental CDF of discovery latency of U-Connect and Hello for asymmetric duty cycle
pair (3%, 7%).
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Figure 17. Experimental CDF of discovery latency of U-Connect and Hello for symmetric duty cycle
pair (2%, 2%).
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Figure 18. Experimental CDF of discovery latency of U-Connect and Hello for symmetric duty cycle
pair (5%, 5%).

Finally, we study whether TLA-RB can effectively avoid collisions. As can be seen from
Figure 14, more than 95% discoveries are within 60s for both two beaconing strategies. The
latency for the remaining 5% discoveries ranges from 60s to 100s, and this long tail distribution
is mainly caused by collisions. TLA-RB aims to avoid collision by using backoff mechanism.
Figure 19 shows the expectation of discovery probability of TLA-RB against slot length with
tw being 4 ms. It can be seen that the simulation results match well with the analytical results
(computed by Equation (9)), which verifies the accuracy of our analysis. Further, we conducted
experiments of Disco using TLA-RB, with tw being 4 ms and 5 ms, respectively, and compared
with Disco-TLA. Figures 20 and 21, respectively, show CDF of discovery latency of Disco for
an asymmetric duty cycle pair (1%, 10%) and a symmetric duty cycle pair (5%, 5%). As can be
seen from Figures 20 and 21, compared to TLA, TLA-RB can reduce the worst-case discovery
latency, which means it can effectively avoid collisions. Note that although increasing tw can
better avoid collisions, it will also increase tslot if the duty cycle remains the same, which in
turn may increase the discovery latency. So, tw should be set to an appropriate value. It can be
seen that, TLA-RB with tw = 4 ms has balanced performance for symmetric and asymmetric
discovery, as shown in Figures 20 and 21.
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Figure 19. The expectation of discovery probability of TLA-RB for different slot lengths with tw = 4 ms.
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Figure 20. Experimental CDF of discovery latency of Disco-TLA-RB for asymmetric duty cycle pair
(1%, 10%).

0 5 10 15 20 25 30 35

Discovery latency (s)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f 
d

is
co

v
er

ie
s

Disco-TLA

Disco-TLA-RB, tw = 4ms

Disco-TLA-RB, tw = 5ms

Figure 21. Experimental CDF of discovery latency of Disco-TLA-RB for symmetric duty cycle pair
(5%, 5%).

7. Discussion

In this section, we discuss more about ideas or methods that may improve the efficiency
of a beaconing strategy. The beaconing strategy is part of a NDP and is responsible for
sending and receiving beacons. Recall that the expected discovery latency of a NDP is
X = 1

P × N× tslot (Equation (1)). Although it cannot determine the theoretical performance
of a NDP (i.e., N), the beaconing strategy has a significant impact on the actual performance
of the NDP by changing the discovery probability (i.e., P) and the slot length (i.e., tslot).

2-Beacon integrates beacon sending and receiving into an active time slot. In contrast,
Nihao [8] and BlindDate [13] use another beaconing strategy that beacon is not placed in
the active slot. This design is based on the idea that the beacon is much shorter than the
active slot, and sending more beacons can reduce the number of active slots. However,
based on the fine-grained slot model, we show that the extra cost of sending a beacon
is not negligible. For example, sending a 1-ms beacon needs extra two milliseconds. In
fact, placing beacons outside of the active slot can increase the discovery probability
because the active slot is dedicated to receiving beacons. Compared with the method used
by Nihao, TLA also separates beacon from active slot, but intends to send fewer rather
than more beacons. In addition, unlike Nihao using two separate one-way discoveries to
achieve mutual discovery, TLA uses acknowledgments to realize mutual discovery, thereby
improving the discovery performance.
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Diff-Codes or ADiff-Codes [20] use another beaconing strategy that active slots are
overflowed so as to leverage non-alignment of slot boundaries to reduce the discovery
latency. Specifically, an active slot will start δ time units earlier to send a beacon. The
design of Diff-Codes or ADiff-Codes ensures that the overlapping active slots of two nodes
is at least δ, which results in successful discovery, especially when δ is much larger than
the beacon’s transmission time. Compared with the method used by Diff-Codes or ADiff-
Codes, TLA also places the beacon transmission in the preceding slot of an active slot. The
difference is that TLA does not send another beacon (or an acknowledgment) in the active
slot unless a beacon is received from a neighboring node.

Collision is another factor that should be considered when designing a beaconing strat-
egy. When the active-sleep patterns of two nodes are synchronized, it may cause persistent
collisions between the two nodes, resulting in the worst-case discovery latency much larger
than the theoretical value. Methods for mitigating collisions include reducing the number
of beacons [21], dynamically adjusting slot length [22], and introducing randomization [21].
Compared with 2-Beacon, TLA reduces the number of beacons by half. In addition, TLA-RB
uses random backoff mechanism to mitigate collisions.

Most slotted NDPs rely on overlapping active slots to realize neighbor discovery. In
contrast, unslotted NDPs [14–16] explicitly require that a beacon from one node must fall
into the listening window of another node to guarantee successful discovery. In addition,
the discovery latency is measured by the unit of time rather than the number of time
slots. However, like slotted NDPs, unslotted NDPs are also susceptible to collisions,
so the beaconing strategy can use randomization to alleviate collisions. For example,
Bluetooth low energy (BLE) adds a pseudo-random delay before sending advertisements
(i.e., beacons) [16].

8. Conclusions

In this paper, we present talk-listen-ack beaconing strategy that can be applied to
different slotted neighbor discovery protocols to reduce their expected discovery latency.
TLA uses four mechanisms to improve its efficiency. First, the active slot is dedicated to
receiving beacons to increase the discovery probability. Second, only one beacon is sent in
the preceding slot of the active slot, and compared with 2-Beacon, the number of beacons is
reduced by half. Third, once a beacon is received from a neighbor, an acknowledgment is
sent to realize mutual discovery. Fourth, add a random delay before sending the beacon
to mitigate collisions. Simulation and experimental results show that, compared with
2-Beacon approach, TLA can achieve a high discovery probability even in a short time slot.

The beaconing strategy has a significant impact on the actual performance of the
neighbor discovery protocols. Future research topics include designing efficient beaconing
strategies for different wireless technologies, such as ZigBee, WiFi, BLE, etc, and the
design needs to consider the different characteristics of wireless technologies. Future
research topics also include designing efficient beaconing strategies for different types
of neighbor discovery protocols, such as unslotted neighbor discovery and collaborative
neighbor discovery.
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