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Abstract: Wireless sensor networks (WSNs) achieving environmental sensing are fundamental
communication layer technologies in the Internet of Things. Battery-powered sensor nodes may
face many problems, such as battery drain and software problems. Therefore, the utilization of
self-stabilization, which is one of the fault-tolerance techniques, brings the network back to its
legitimate state when the topology is changed due to node leaves. In this technique, a scheduler
decides on which nodes could execute their rules regarding spatial and temporal properties. A
useful graph theoretical structure is the vertex cover that can be utilized in various WSN applications
such as routing, clustering, replica placement and link monitoring. A capacitated vertex cover is
the generalized version of the problem which restricts the number of edges covered by a vertex
by applying a capacity constraint to limit the covered edge count. In this paper, we propose two
self-stabilizing capacitated vertex cover algorithms for WSNs. To the best of our knowledge, these
algorithms are the first attempts in this manner. The first algorithm is stabilized under an unfair
distributed scheduler (that is, the scheduler which does not grant all enabled nodes to make their
moves but guarantees the global progress of the system) at most O(n2) step, where n is the count of
nodes. The second algorithm assumes 2-hop (degree 2) knowledge about the network and runs under
the unfair scheduler, which subsumes the synchronous and distributed fair scheduler and stabilizes
itself after O(n) moves in O(n) step , which is acceptable for most WSN setups. We theoretically
analyze the algorithms to provide proof of correctness and their step complexities. Moreover, we
provide simulation setups by applying IRIS sensor node parameters and compare our algorithms
with their counterparts. The gathered measurements from the simulations revealed that the proposed
algorithms are faster than their competitors, use less energy and offer better vertex cover solutions.

Keywords: wireless sensor networks; internet of things; self-stabilization; capacitated vertex cover;
energy efficiency

1. Introduction

Wireless sensor networks (WSNs) do not have a predefined structure to maintain
fundamental data-transfer operations. They are crucial communication layer technologies
for providing environmental sensing operations in the Internet of Things (IoT). Most of
the time, WSNs are deployed for various applications in forests, mines and land borders,
where they should bear harsh circumstances [1–3]. In such environments, tiny sensor motes
can malfunction due to natural challenges. Fault tolerance is an important property to deal
with these kinds of challenges. Self-stabilization is one of the best candidates for WSNs to
provide fault tolerance and to deal with their ad hoc nature.

A sensor node can leave WSN due to software failures, battery drains and other
similar faults. A distributed setting like WSN is considered self-stabilizing if it reaches a
legitimate state in case of node leaves. More formally, a system is self-stabilizing if and only
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if, despite the arbitrary initial state, at least one privileged node will always exist and the
system eventually reaches a legitimate state within a limited number of moves [4]. Thus, a
self-stabilizing system is expected to reach the correct behavior without any external aid
when a fault occurs or starts with an arbitrary configuration. A self-stabilizing algorithm
continues to execute even if it does not reach the desired configuration. A self-stabilizing
algorithm should provide convergence and closure properties. The convergence property
is satisfied if the system reaches the desired state in a finite time. The closure property is
preserved if the acceptable final state does not change until the occurrence of any fault.

A self-stabilizing algorithm consists of mutually exclusive rules that are formed as
follows: <name>:<precondition>→<action>, where precondition is a boolean predicate
which allows nodes to take an action, and action is a series of statements that assign
new values to the variables of the nodes and transmit messages if the message passing
model is used [5]. In a self-stabilizing algorithm, each node maintains its variables by
holding the precondition. If the precondition is true, the node is enabled to make a move.
However, this does not mean that the node is allowed to execute their action immediately.
The scheduler decides on which nodes could execute their rules according to spatial and
temporal properties. Spatial scheduling defines the subset of enabled nodes to be privileged
to make moves. While the central scheduler allows only one enabled node in every round,
the synchronous scheduler does not restrict the enabled nodes to make their moves in
every round. A distributed scheduler allows a subset of enabled nodes in every round.
Temporal scheduling refers to the fairness of schedulers in two main types, fair and unfair
(i.e., adversarial). An unfair scheduler does not promise all enabled nodes to make their
moves but guarantees the global progress of the system [5]. In this paper, we use unfair
distributed scheduler which subsumes both central and synchronous schedulers, and it is
more realistic for WSN applications.

A WSN can be modeled as a graph G(V,E), where V and E represent the set of
vertices (nodes) and edges (communication links), respectively. A vertex cover of a given
undirected graph G(V,E) is a set S ⊆ V such that each e ∈ E is incident to at least one vertex
of S. Vertex cover is a very useful structure for various WSN applications such as routing,
clustering, backbone formation, link monitoring, replica management, network attack
protection, etc. [6–10]. Considering the link monitoring application, the number of monitor
nodes should be minimized since they should be equipped with extra software/hardware
solutions to monitor the network traffic. On the other side, the optimization version of the
minimum vertex cover problem, which aims to solve the problem by selecting the minimum
number of nodes to cover the whole graph, is in the NP-Hard complexity class [11]. The
capacitated vertex cover problem is the generalized version of the classical vertex cover
problem that restricts the number of covered edges by capv for v ∈ V in the given graph
G(V,E) [12]. This restriction property is very useful for WSN applications. For example,
limiting the link count monitored by a node directly provides energy efficiency for link
monitoring applications. Although there are notable number of VC-related studies, the
capacitated version of the problem is rarely investigated in the literature. These capacitated
algorithms are central approaches, and they are not distributed and self-stabilizing.

In this paper, we tackle the self-stabilizing capacitated vertex cover problem for WSNs.
The contributions of the study are listed as follows:

• We provide two self-stabilizing capacitated vertex cover algorithms that are based on
new heuristics for WSNs. The first proposed algorithm (SS-CVC1) is a modification of
Ikeda’s [13] algorithm. The second proposed algorithm, which uses the greedy tech-
nique (SS-CVC2), is a novel algorithm for the problem. To the best of our knowledge,
this paper is the first attempt to solve distributed self-stabilizing capacitated vertex
cover problem for WSNs in the literature.

• We theoretically analyze our proposed capacitated vertex cover algorithms to ensure their
proof of correctness in the self-stabilizing setting. We also analyze the step complexity of
our algorithms in order to obtain the efficiency of their resource consumption.
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• We simulate our proposed capacitated vertex cover algorithms and comprehensively
evaluate the measured performance results along with the existing self-stabilizing
algorithms, where these previous algorithms are modified to provide the capacitated
solution. We reveal that our proposed algorithms clearly outperform their counterparts
in terms of vertex cover size, the energy consumption (the total energy required for the
algorithm execution in sensor nodes) and the time required for stabilization process.

The remainder of this paper is organized as follows. In Section 2, related works on the
vertex cover problem are discussed. The formulation of the problem is given in Section 3.
After explaining the proposed algorithms in Section 4, we provide the correctness and self-
stabilization proof of the algorithms in Section 5. Performance evaluations of algorithms
are widely discussed in Section 6. Lastly, we conclude the findings of the study in Section 7.

2. Related Work

Various optimization problems in graph theory attract many researchers [14,15]. VC,
one of the well-known graph-theoretical optimization problems, is studied for sequential
and distributed settings in the literature. The minimum VC problem cannot be approxi-
mated within a ratio of 1.36 [16]. The best algorithm which uses matching for the problem
was proposed by [17] within a ratio 2− 1

log n . In the sequential setting, there are a lot of
studies that exploit different types of techniques such as depth-first search, local search,
dynamic threshold, semi-definite relaxation, graph-theoretic and quantum annealing tech-
niques to provide solutions [18–24].The algorithm given in [24] is a metaheuristic-based
approach to solve minimum weighted connected VC problem for WSNs. This approach
combines a greedy heuristic with a genetic search to decrease the total weight of the so-
lution and the time needed for execution. Since our proposed algorithms are designed
for the distributed WSN settings with the qualification of self-stabilizing and capacitated
properties, these central algorithms are out of scope for our study.

The graph matching technique is widely exploited to solve the VC problem in dis-
tributed settings. Polishchuk has adapted Hancowiak’s distributed graph-matching al-
gorithm to the vertex cover problem with a three-approximation ratio [25,26]. Hoep-
man’s matching algorithm has been used to solve the vertex cover problem with a two-
approximation ratio [27,28]. Since an edge could be covered by its two endpoints, matching-
based vertex cover algorithms do not guarantee an approximation ratio lower than 2. Parnas
and Ron have provided an algorithm in which each node puts itself in the solution set
if its degree δ is greater than ∆

R , where ∆ represents the maximum degree of the graph,
and R is the round count of the algorithm. Kavalci et al. have presented an algorithm
that integrates breadth-first search construction process with vertex cover problem for
WSNs [28]. Yigit et al. have proposed two novel algorithms for WSNs, which integrate
breadth-first search similar to Kavalci’s algorithm [10]. Along with the distributed setting,
many studies have been conducted in parallel settings with different techniques such as
membrane computing [29], digital annealing [30] and massively parallel computing [31]. To
solve matching problem for WSNs, please refer to the algorithms [32–34]. Since these
matching-based algorithms do not provide a capacitated and self-stabilizing solution, we
exclude these algorithms in our study.

The capacitated vertex cover problem is generally studied in terms of linear program-
ming and relaxation. The capacitated vertex cover problem was introduced in [12] for
weighted graphs. Guha proposed two algorithms for the problem in the central setting.
The first algorithm is a relaxation which solves a linear formulation of the capacitated
vertex cover within a 4-approximation ratio. The second is the dual of the first and has an
approximation ratio of 2. Chuzhoy and Naor have proposed two randomized algorithms
to solve the capacitated vertex cover, which provide 8- and 3-approximation ratios with
linear a programming formulation [35]. Gandhi et al. have introduced a 2-approximation
algorithm which consists of a pre-processing step to reduce the vertex cover size [36]. In
this pre-processing step, each capacity-1 vertex is excluded from the solution set until
the solution does not satisfy feasibility, which is checked by using a max-flow algorithm.
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For a recent study concerning the performance of the capacitated algorithms in WSNs,
please refer to [37]. All of the capacitated algorithms are not distributed; hence, they cannot
provide a self-stabilizing solution for vertex cover.

Kiniwa has proposed the first self-stabilizing vertex cover algorithm which exploits
the matching technique to obtain the vertex cover [38]. Kiniwa’s algorithm firstly constructs
a maximal matching by favoring the edges connecting the heaviest nodes with the lightest
nodes on the graph and then covers the nodes on the basis of this matching. Each vertex
holds cover and color variables, which describe whether the vertex is in a vertex cover
set and the color of the matched port, respectively. Additionally, each vertex maintains
three sets, which are named High, Low and Others. The High(v) set contains neighbors
of vertex v that have a larger color value. On the contrary, Low(v) contains neighbors of
node v which have a smaller color value. Others(v) holds neighbors that do not point to v.
The algorithm obtains a (2− 1

∆ )-approximation vertex cover using shared memory and
distributed scheduler in the M + 2 round, where M is the size of the matching.

In [39], Turau et al. have introduced two self-stabilizing vertex cover algorithms,
which run on anonymous networks. Both algorithms are based on the study given in [25]
which cannot exceed the 3-approximation ratio by using the matching method on the
anonymous networks proved by [40]. The first algorithm consists of two predicates. The
basic algorithm calculates the 3-approximation ratio vertex cover set with O(n + m) moves,
where n and m are the number of vertices and edges, respectively. In the same article, Turau
presents an improvement method that approximates the optimal vertex cover solution up
to (3− 2

∆+1 ) times in O(n + m) moves. This improvement algorithm adds new rules to the
first basic algorithm. After the execution of two basic rules, nodes that are still not matched
with both pointers are excluded from the solution set.

Many self-stabilizing maximal independent set algorithms have been proposed by the
researchers over the years [13,41–44]. The vertex cover and the independent set solutions
complement each other on a given graph G(V,E). Based on this fact, the performance
evaluation of the vertex cover and independent set algorithms for WSNs was examined
in [45] in the self-stabilizing setting. These algorithms provide self-stabilization solutions
but do not give capacitated solutions. We modified these self-stabilizing vertex cover
algorithms so as to provide capacitated solutions in this study, and the simulation results
show that our proposed algorithms outperformed their counterparts (modified algorithms
in the literature) in terms of vertex cover solution and time consumption.

3. Problem Formulation

An example sensor network deployment for a habitat monitoring application is de-
picted in Figure 1a, where there are 12 nodes in the sensing area and node 1 is the sink
node. The graph representation of this network is given in Figure 1b. In Figure 1c, link
monitoring application for this topology is shown. In this application, each link must be
sniffed by one secure point (monitor node) to detect attacks such as packet injection and
data manipulation. The red nodes (nodes 1, 3, 4, 5, 6 and 8) are secure points that are
assigned to control message traffic in Figure 1c. Red arrows show the assigned links to the
monitor nodes in the same figure. For example, the links (8,9) and (8,10) are monitored by
node 8. This architecture can also be used in other common operations such as backbone
formation, clustering and routing. Red nodes can be cluster heads, and ordinary nodes can
send their data to the cluster heads to achieve data aggregation. The network induced by
red nodes is a virtual backbone that can carry messages to the sink node. By accomplishing
the clustering and backbone formation operations, the data packets can be routed from
ordinary nodes to the sink node.
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(a) (b)

(c)

Figure 1. An example of link monitoring application for the vertex cover problem: (a) Deployment
of a sample WSN; (b) Graph represantation of the topology; (c) Link monitoring application on
the topology.

There are two versions of the capacitated vertex cover problem, which are named soft
and hard capacitated. While the nodes cannot exist more than once in the solution set in
the hard capacitated version, there is no restriction about the existence count of vertices for
the soft capacitated vertex cover problem. In this paper, we tackle with the soft capacitated
version of the problem. If a link monitoring application uses soft capacitated vertex cover,
then a node may create more than one process, where each of these processes are assigned
to monitor the links. In other words, the existence count of a vertex is equal to the process
count created on a sensor node in the soft capacitated version. We recognize the following
assumptions regarding the network:

• Each node is represented by a distinct identifier (i.e., id).
• The communication channels between nodes function in both directions.
• Nodes do not include any GPS-based position tracking; hence, they are unaware of

their positions in the network.
• All nodes are equipped with the same hardware and run the same algorithm.
• For the SS-CVC1 algorithm, each node knows its 1-hop (degree-1) neighbors that are

one hop away from the node and directly communicates with them.
• For the SS-CVC2, we assume that each node knows 2-hop (degree-2) neighbors and

can send messages to them through 1-hop neighbors.

In this study, our objective is to develop heuristic-based self-stabilizing capacitated
vertex cover algorithms (SS-CVC) for WSNs that are efficient in terms of energy consump-
tion, time usage and the size of the vertex cover set. Therefore, we make a list of our goals
as follows:

• To fulfill the convergence property, the algorithms must reach the stable configuration
(in which nodes do not make a move) as fast as they can within a minimum number of
moves and steps. Hence, wallclock execution times of algorithms (the time passed during
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the execution) should be low. In a stable configuration, <precondition> predicates of all
nodes are false when the rules are defined in <name>:<precondition>→<action> form.

• Having become stabilized, the network should preserve capacitated vertex cover until
a fault happens in order to satisfy the closure property.

• The algorithms should be energy-efficient for the sake of increasing the lifetime of the
network. The energy consumption of an algorithm is the total energy required for its
execution in sensor nodes.

• When a failure occurs, such as the shut down of a node, each active node should be
able to initiate the self-stabilization procedure itself.

• Since WSNs are deployed over harsh areas, some nodes can leave and new nodes can
join the network. In such cases, the self-stabilization process should occur without
any external intervention.

• The VC construction process should be independent of the location information of
the nodes.

4. Proposed Algorithms

In this section, the proposed algorithms are explained and exemplified in the sample
networks. We firstly introduce the maximal independent set based algorithm, which is
called SS-CVC1. After the first algorithm, we introduce our second algorithm, which needs
2-hop information about the network.

4.1. Ss-Cvc1 Algorithm

In this subsection, we present the SS-CVC1 algorithm, which is based on Ikeda’s
MIS algorithm [13]. Ikeda’s MIS algorithm runs under the unfair scheduler and stabilizes
itself at most O(n2) steps, where n is the node count. We modified the first two rules
of Ikeda’s algorithm to obtain a vertex cover set. Each node i ∈ V maintains coveredi
variable (the output of the algorithm) that has two different states: {0, 1}. After the first
two rules, we add two additional rules that satisfy the capacity constraint. Algorithm 1
shows the proposed SS-CVC1 algorithm. The rules are mutually exclusive, and since an
unfair distributed scheduler is used, any enabled node can make a move. If there are no
enabled nodes (meaning that any rule of a node is not true), there will be no move.

Algorithm 1 SS-CVC1

process i
N(i) neighbors of node i
Variables:

coveredi ∈ {0, 1}
nexi ∈ N+

Rules:
R1: coveredi = 1∧ ∀j ∈ N(i) : coveredj = 1
⇒ coveredi := 0

R2: coveredi = 0∧ ∃j ∈ N(i) : coveredj = 0∧ cost1(j) > cost1(i)
⇒ coveredi := 1

R3: coveredi = 1∧ nexi 6= d |N(i)|
capi
e

⇒ nexi := d |N(i)|
capi
e

R4: coveredi = 0∧ nexi 6= 0
⇒ nexi := 0

R1 is a simple rule that node i changes its coveredi variable by checking its neighbors
j’s coveredj variable. If the coveredi variable of the node i is 1 and all of its neighbors j’s
coveredj variables are 1, node i changes its coveredi variable to 0. Figure 2a shows a sample
scenario from i’s point of view, where all neighbors of i are already covered, thus i sets
coveredi as 0.
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In R2, each node decides whether or not to join the vertex cover set by looking at the
neighbors’ coveredj and cost1(j). A vertex i simply calculates its cost(i) with the formula
given in Equation (1). The algorithm chooses the vertex with the local minimum cost. In
Figure 2b, the node i enables R2 since its cost is lower than v:

cost1(i) =
d |N(i)|

capi
e ∗ weighti

|N(i)| (1)

R3 and R4 regulate the nexi variable that is the number of existence in vertex cover
set for vertex i. If coveredi is 1 and nexi is not correct for vertex i, as seen in Figure 2c, the
vertex sets nexi to dN(i)

capi
e. On the other hand, if coveredi is 0 and nexi is not equal to 0, the

vertex sets it to 0, as illustrated in Figure 2d.

(a) (b)

(c) (d)

Figure 2. Sample scenarios for rules of SS-CVC1: (a) An Example for R1; (b) An Example for R2;
(c) An Example for R3; (d) An Example for R4.

In Figure 3, an example operation for the proposed SS-CVC1 algorithm is shown. The
algorithm starts with an arbitrary initial configuration where each vertex is labeled as (cap,
weight, nex). Red color represents that the vertex is already in the vertex cover set. At the
given initial configuration, the costs of vertices are 5, 2, 2, 3 and 2, respectively. Although
vertex 1 and vertex 2 have the same cost of 2, the algorithm uses the vertex identifier to
prevent the neighbor nodes from entering into the vertex cover set together. In the first
round, vertices 2 and 4 execute R2 to set their covered variable to 1. Vertex 1 executes R4
and sets nex1 to 0. Vertex 3 executes R3 to justify nex3 to 2. In the second round, vertex
3 executes R1 and sets covered3 variable to 0 since all of its neighbors are currently in the
vertex cover set. In addition, vertex 4 sets nex4 to 2 by executing R3. In the last round,
vertex 3 executes R4 to set nex3 to 0. SS-CVC1 produces the optimal solution, whose total
weight is 9 for this example.
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Figure 3. An execution of the SS-CVC1 algorithm.

4.2. SS-CVC2 Algorithm

In this subsection, we improve our SS-CVC1 algorithm to reduce the weight of the
produced vertex cover solution and the round complexity. In order to achieve this, we
facilitate a model defined by Turau in [46]. The model is named as the expression model, in
which each vertex i has expressions that show their own states and states of their neighbors.
The 2-distance model is a special case of the expression model. In the expression model,
each vertex not only reads the states of its neighbors but also reads the expressions of all of
its neighbors in an atomic step. We present the SS-CVC2 capacitated self-stabilizing vertex
cover algorithm consisting of two expressions. The pseudo-code of the proposed algorithm
is given in Algorithm 2. The output of the algorithm is coveredi for node i.

The expression is_tight(i) checks if the node i is already in vertex cover set and nexi
is correct. We use this expression to include a vertex in the vertex cover. The expression
is_candidate(i) returns true if a node i has a locally optimal cost among all of its neighbors
N(i) which can enter the vertex cover set. The macro trade_o f fi is used to calculate the
trade-off value of a vertex. We need to calculate trade-off value for vertex i, so we count the
double-covered edges and then multiply this value with the payback value nexi×weighti

covered_by_mei
for

an edge.
The expression has_max_trade_o f fi is used to find the locally optimal vertex to exclude

it from the vertex cover set. If a node has a max trade-off among all of its neighbors with
double covered edges and is already tight, this expression returns true. Note that the
priority of each rule is defined by its sequence number.

R1 selects a locally optimal node to enter the solution set by calculating the cost of
each node that is candidate to enter this set. To calculate the cost of a vertex i, Equation (2)
is used. If node i activates R1 and is privileged by the scheduler, it sets coveredi to 1, nexi
to the correct value and covers all edges in uncovered_edgesi. Figure 4a gives an example
configuration for activation of R1 from i’s perspective. In this configuration, i is not tight
because coveredi = 0 and covers edge (i, k) but edges (i, j) and (i, l) are not covered by
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others. The cost of i is lower than its neighbors for this scenario; therefore, the only enabled
node becomes i, which enables R1:

cost2(i) =
d |uncovered_edge|

capacityi
e ∗ weighti

|uncovered_edge| (2)

Algorithm 2 SS-CVC2

process i
Variables :

coveredi ∈ {0, 1}, nexi ∈ N+

uncovered_edgesi = {∀(i, j) ∈ E(i) | i 6→ (i, j) ∧ j 6→ (i, j)}
covered_by_me = {∀(i, j) ∈ E(i) | i→ (i, j)}

Macros:
double_coveredi,= {(i, j) ∈ E(i) : i→ (i, j) ∧ j→ (i, j)}
trade_o f fi = nexi×weighti

covered_by_mei
× double_coveredi

Predicates:
all_edges_covered_by_neighs(i) ≡ (i, j) ∈ E(i) : j→ (i, j) ∀j ∈ N(i)

Expression:
is_tight(i) ≡ (nexi = d

|uncovered_edgei |+|covered_by_me|
capacityi

e) ∧ coveredi = 1
is_candidate(i) ≡ (∀j ∈ N(i) : uncovered_edgesj 6= ∅ ∨ (covered_by_mej 6= ∅ ∧

is_tight(j) = f alse), cost(i) < cost(j))
has_max_trade_o f f (i) ≡ (∀j ∈ N(i) : trade_o f fi > trade_o f f j)

R1: (uncovered_edgei 6= ∅ ∨ covered_by_mei 6= ∅) ∧ ¬is_tight(i) ∧ is_candidate(i)
⇒ coveredi := 1, nexi := d |uncovered_edgei |+|covered_by_me|

capacityi
e

⇒ ∀(i, j) ∈ uncovered_edgesi do i→ (i, j)
R2: uncovered_edgei 6= ∅ ∧ is_tight(i) ∧ is_candidate(i)
⇒ ∀(i, j) ∈ uncovered_edgesi do i→ (i, j)

R3: all_edges_covered_by_neighs(i) ∧ (coveredi 6= 0∨ nexi 6= 0∨ |covered_by_me| > 0)
⇒ coveredi = 0, nexi = 0, ∀(i, j) ∈ covered_by_mei do i 6→ (i, j)

R4: double_covered 6= ∅ ∧ has_max_trade_o f f (i)
⇒ ∀(i, j) ∈ E(i) : i→ (i, j) ∧ j→ (i, j) do i 6→ (i, j)
⇒ nexi = d

|covered_by_mei |
capacityi

e

If node i’s uncovered_edgei set is not empty but the node is tight, the node checks
whether it is a candidate. If the node is a candidate to join the vertex cover set, it enables
R2. In Figure 4b, node i activates R2 since it is a locally optimal candidate to join the vertex
cover set, and it already satisfies the tightness that distinguishes R1 and R2. If the node
makes a move, it just covers all edges in uncovered_edge_i so coveredi and nexi variables
become correct. In R3, if at least one of coveredi, nexi, |covered_by_me| variables of a node
i, which means that all its incident edges are covered by all of its neighbors, are not 0,
the node executes R3 and resets these variables. As seen in Figure 4c, node i activates R3
as all its neighbors cover all incident edges to it but coveredi = 0. We use R4 to exclude
unnecessarily selected vertices from the solution set by calculating their trade-off value. As
depicted in Figure 4d, the edge (i, j) is covered by two endpoints, each node calculates its
trade-off value, and the node with the maximum trade-off value, i in this case, reduces its
nex variable. If the newly calculated nex variable is 0, the node sets covered variable to 0
as well.



Sensors 2022, 22, 3774 10 of 23

(a) (b)

(c) (d)

Figure 4. Sample scenarios for rules of SS-CVC2: (a) An Example for R1; (b) An Example for R2;
(c) An Example for R3; (d) An Example for R4.

Figure 5 shows the execution of the SS-CVC2 algorithm on the arbitrary initialized
network. Nodes are labeled as in the execution of SS-CVC1 in Figure 3. We also randomly
initialize covered_by_me sets for each vertex. The red vertices represent the covered vertices,
and the red arrows show the edges covered by the vertices. In Round 1, vertex 2 excludes
itself from the vertex cover set by executing R4 since its trade_o f f2 value 8 is greater than
vertex 3. Vertex 4 excludes itself from the vertex cover set by executing R3 since all of its
edges are covered by its neighbors. Vertex 3 covers itself by running R1 with cost1 = 0.75
as the local minimum cost.

Figure 5. An execution of the SS-CVC2 algorithm.



Sensors 2022, 22, 3774 11 of 23

In Round 2, vertices 1 and 6 execute R1 since they have 3 and 2 costs, respectively,
which are the local minimum. Moreover, vertices 0 and 5 execute R1 since they have 1 cost
in Round 3. Each vertex contributes to the solution set only once; therefore, the total weight
of this solution is 15, that is, the optimal solution . Although we find an optimal solution
for this example, we do not grant an optimal solution for all networks since our algorithms
are heuristic-based approaches for WSNs.

5. Theoretical Analysis of Algorithms

In this section, proof of the correctness and step complexities of the algorithms
are provided.

5.1. Theoretical Analysis of SS-CVC1

Theorem 1. The SS-CVC1 algorithm stabilizes after O(n2) steps under an unfair distributed
scheduler.

Proof. Assume that the scheduler immediately gives permission to all nodes that want to
execute R1 and R3 at the same time and gives permission one by one to the other nodes
that want to execute R2 and R4. Consider a configuration as shown in Figure 6, whose cost
values increase in the following order: cost(0) < cost(1) < . . . < cost(n− 1).

The scheduler allows all nodes to make their moves in one step for the first phase. In
the second phase, all nodes are privileged one by one, and this process takes n steps. The
third phase is ended in only one step because each node wants to execute R1 or R3. In
phase 4, nodes n− 1 and n− 2 stabilize and do not want to make any move. Thus, the rest
of the nodes make their moves in n− 2 steps. The count of nodes which want to make a
move decreases by two in each consecutive two rounds. We can formalize this relation as
1 + n− (2× r), where r is the sequence number of two consecutive phases. Such a scenario
is shown in Figure 6, in which the system stabilizes when r = n−1

2 . We can formulate
as follows:

n−1
2

∑
r=0

1 + n− (2× r) =

n−1
2

∑
r=0

1 +

n−1
2

∑
r=0

n−
n−1

2

∑
r=0

2r

=
(n + 1)(2 + 2n− n + 1)

4
=

(n + 1)(n + 3)
4

= O(n2) (3)

Figure 6. Worst-case scenario for the SS-CVC1 algorithm.
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When we solve the summation formula, we reach the O(n2) step, and this concludes
the proof of the theorem.

5.2. Theoretical Analysis of SS-CVC2

In this subsection, we prove that SS-CVC2 is a self-stabilizing capacitated vertex
cover algorithm. Firstly, we show the SS-CVC2 algorithm producing a capacitated vertex
cover solution when it reaches the stable configuration. Afterwards, we will show that
the algorithm reaches stable configuration in a finite number of moves under the unfair
distributed scheduler.

Lemma 1. When the algorithm is in stable configuration, ∀e ∈ (i, j) ∈ E : (i → ∧ coveredi =
1) ∨ (j→ e ∧ coveredj = 1).

Proof. If there is such an edge as e = (i, j), both endpoints i, j do not cover e, i or j executes
R1 or R2 and sets covered = 1.

Lemma 2. In the stable configuration, ∀i ∈ V : nexi = d
covered_by_mei

capacityi
e.

Proof. If nexi variable of a vertex i is not equal to d covered_by_mei
capacityi

e, the vertex updates its
nexi according to the following four methods:

• If is_tight(i) expression of i is false and neither covered_by_me nor uncovered_edges

are empty, i executes R1 and updates nexi = d
|uncovered_edgei |+|covered_by_me|

capacityi
e. After the

execution of R1, all edges of uncovered_edgesi are covered by i.
• If vertex i is tight but it has at least one edge in uncovered_edgesi, it executes R2 to sets

nexi = d
|uncovered_edgei |+|covered_by_me|

capacityi
e and covers all edges in uncovered_edgesi.

• If all incident edges to i are covered by N(i), i executes R3 and sets nexi = 0 and
uncovers all edges that are covered by itself.

• If an edge e = (i, j) is covered by both endpoints, the edge is considered as a double-
covered edge. The vertex i that has the maximum trade_o f f among its one-hop
local neighborhood, uncovers the double covered edges and updates its nexi by
covered_by_mei.

Lemma 3. In the stable configuration, an edge e = (i, j) is covered by its one endpoint i or j.

Proof. Assume a situation in which e is covered by both endpoints. The nodes i or j
will execute R4 according to their trade_o f f (). This is a contradiction and proves the
lemma.

Theorem 2. A stable configuration SS-CVC2 is a capacitated vertex cover in which the size of
solution set cannot be decreased by removing a vertex.

Proof. When the system stabilizes, the variable covered of an endpoint of an edge is 1
(Lemma 1). According to Lemma 2, nex variables of the covered vertices are equal to
d covered_by_mei

capacityi
e. If a vertex provides these properties, the vertex is considered tight.

If all neighbors of vertex i already cover each connected edge, the node executes R3. To
prevent double-covered edges, R4 is executed by vertices which have the locally maximal
trade-off.

Lemma 4. Each vertex could execute either R1 or R2 only once.
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Proof. R1 and R2 are used to enter the vertex cover set and are mutually exclusive rules
due to is_tight() expression. Once a vertex enters the vertex cover set, it executes neither
R1 nor R2 until a fault occurs.

Lemma 5. Each vertex executes R3 only once.

Proof. Due to the arbitrary initial configuration property of self-stabilization, all edges are
covered by all vertices in the initial configuration. In such a configuration, all nodes except
the one which executes R1 or R2 execute R3 only once. In the configuration, where a vertex
i has vertices in covered_by_mei but its cost is greater than its neighbor’s cost, i executes R3
only once when its neighbors enter the solution set.

Lemma 6. Each vertex executes R4 only once.

Proof. Two neighbor vertices could cover the same edge due to the arbitrary initial configu-
ration or execution of the algorithm. To prevent this, each node with double-covered
edges and maximum trade-off value executes R4 only once during the execution of
the algorithm.

Lemma 7. If a vertex executes R3, it does not execute R4.

Proof. If a vertex i makes a R3 move, then it does not have double-covered edges due to
the removal of the edges of covered_by_mei.

Theorem 3. The step complexity of the SS-CVC2 heuristic algorithm under the unfair distributed
scheduler is O(n).

Proof. The unfair distributed scheduler does not guarantee the privilege to activate all
nodes in any round but at least one node in one round. Due to the Lemmas 4 and 7, each
vertex can make a maximum of two moves. According to the definition of the unfair
scheduler, it takes 2n steps to stabilize the system. According to this, the step complexity of
SS-CVC2 is O(n).

6. Performance Evaluation
6.1. Experimental Setup

We implement algorithms on the self-stabilizing simulator proposed in [47]. The
simulator has been written with the widely used programming language Python. The
simulator provides three main types of schedulers with fair and unfair options. Each node
is represented as a class object and holds its variables as attributes. Having made a move,
the node changes its variables and sends the new set of variables to all of its neighbors.
Each node tracks the sent and received bytes which vary for each algorithm according
to the size of the messages (the total size of the fields in the messages). The simulator
also provides an infrastructure to make it possible to implement algorithms that need
2-hop information about topology. We run the algorithms under the unfair distributed
scheduler, which is the most restricted scheduler type, since it does not guarantee that all
active nodes are privileged eventually. The scheduler prevents nodes from making moves
with 0.5 probability, but guarantees global progress by privileging at least one vertex in
each step.

We used random geometric network models in order to simulate WSNs. Each vertex
of the given graph G(V,E) is scattered to a 2D area A. The sizes of the randomly generated
WSNs vary from 50 to 300 (with 50 steps), in which the nodes are considered connected if
the Euclidean distance between two of them is smaller than their transmission range r, as
applied in [47]. WSNs are classified for various densities that have three, five, seven and
nine average degrees. Each performance metric is obtained with 30 different simulation
scenarios. We randomly assign a weight to each vertex in the interval [1− 50]. Furthermore,
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we assign to each vertex i a cap value in the interval [1 − ∆], where ∆ represents the
maximum degree of a network.

In addition to the algorithms we proposed, we implemented the algorithms of Kiniwa [38]
and Turau [39], which are state-of-the-art algorithms for self-stabilizing vertex cover domain.
To provide the capacity constraint for the algorithms of Kiniwa and Turau, we added nex
and cap and weight variables and two rules which are shown in Algorithm 3. Furthermore,
we provided the 1-hop implementation of the SS-CVC2 algorithm thanks to the transformer
proposed in [46].

Algorithm 3 Additional rules

process i
R1: coveredi = 1∧ nexi 6= d |N(i)|

capi
e

⇒ nexi := d |N(i)|
capi
e

R2: coveredi = 0∧ nexi 6= 0
⇒ nexi := 0

All variables for each node are initialized randomly before the algorithm starts. When
a node changes its state, all 1-hop neighbors can see this move (For SS-CVC2, 2-hop informa-
tion is provided). We compared the algorithms in terms of move count, step count, the total
weight of vertex cover, and cardinality of vertex cover multi-set. In addition, we measured
important WSN metrics such as sent bytes, received bytes and energy consumption. The
energy consumption of an algorithm is the energy required for its execution. Move count
plays a crucial role in the WSN because a node must send their new state to its neighbor
after a move. The count of moves has a direct impact on the complexity of the message. Step
complexity is important to see how long it takes to reach the stable algorithm configuration
(the time passed during the execution of the algorithm in WSN). The weight and cardinality
of the vertex cover are other important metrics to facilitate when comparing the algorithms,
since we want to formulate a desirable solution in the shortest possible time. Although
Kinawa’s and Turau’s algorithms have been proposed for unweighted graphs, we carried
out weighted experiments to compare all algorithms.

Thereafter, Turau’s basic and improved algorithms and Kiniwa’s algorithm will be
called TURAU1, TURAU2 and KINIWA, respectively. The transformed version of the
SS-CVC2 algorithm is called T-SS-CVC2.

6.2. Evaluations

Move counts of the algorithms are shown in Figure 7 with a fixed average degree and
a fixed network size. It is seen clearly that the move counts increase with the number of
nodes in the network for each algorithm, as shown in Figure 7a. The KINIWA algorithm
makes the maximum number of moves to reach a stable configuration and is followed
by TURAU2. In networks with 250 vertices, KINIWA took 1347 moves to stabilize, while
our proposed algorithms, SS-CVC1 and SS-CVC2, needed 332 and 309 moves, respectively,
on the same networks. The closest algorithm to our algorithm regarding move count is
TURAU1, which makes 833 moves until reaching the stable configuration on the 250-sized
networks. The density of the networks does not significantly affect the move counts of the
algorithms, as seen in Figure 7b. Especially, SS-CVC1 and SS-CVC2 have been minimally
affected by density. The SS-CVC2 algorithm makes 173, 184, 192 and 194 moves in networks
which have 3, 5, 7 and 9 average degrees, respectively. KINIWA needs 669, 783, 854 and
919 moves on average in the same types of networks. Our proposed algorithm, SS-CVC2,
showed 2.5 times better performance than its nearest counterpart, TURAU1, in terms of
move counts.
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Figure 7. Move counts of algorithms on weighted networks: (a) Move count against node count on
the fixed average degree 5; (b) Move count against node count on the fixed network size 150.

The step count of SS-CVC2 varies between 33 and 68, while SS-CVC1 has less than
34 step counts, as shown in Figure 8a. KINIWA needs 78–148 steps to stabilize for each size
of the graph. The algorithm that has the closest step count to our algorithm is TURAU1
with 45 to 74 steps. Compared with TURAU1, the SS-CVC1 and SS-CVC2 algorithms
need 1.10 and 2.15 times less steps, respectively, to stabilize. SS-CVC1 and SS-CVC2 are
4.22 and 2.17 times faster than KINIWA, respectively, which has the greatest step size
for all graph sizes. As seen in Figure 8b, the step count of SS-CVC1 stayed stable at
around 28 as the density of the graph increased, while SS-CVC2’s step count increased
with the density. Starting with the average degree of 7, the SS-CVC2 algorithm exceeds the
TURAU1 algorithm. However, in most graph types, the SS-CVC1 and SS-CVC2 algorithms
outperformed other algorithms in terms of step count.
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Figure 8. Move counts of algorithms on the weighted networks: (a) Step count against node count on
the fixed average degree 5; (b) Step count against node count on the fixed network size 150.

Figure 9 depicts the sent bytes for each algorithm on the whole network in kB. The
SS-CVC1 and SS-CVC2 algorithms need the lowest message passing traffic related to
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their move count performance, which directly impacts message traffic because nodes must
inform their neighbors after each move. Note that the other factor for sent byte performance
is the message size. For example, the message size for the SS-CVC1 algorithm is 5 bytes,
while SS-CVC2 holds 9 bytes for each package. Due to this difference, the slope of the sent
bytes and the move counts line of SS-CVC2 remain stable, but the sent bytes exceeded
SS-CVC1, as seen in Figure 9a,b. The size of the network directly influences the number of
bytes sent by nodes since a larger network needs more move and message passing. For
the networks with 250 nodes, TURAU1, TURAU2 and KINIWA send 3.26 kB, 6.1 kB and
6.57 kB of messages in total, respectively, while the SS-CVC1 and SS-CVC2 algorithms need
1.62 kB and 2.72 kB messages, respectively, to stabilize. The SS-CVC1 algorithm has a two
times better performance against its closest competitor, TURAU1. Network density did not
play a crucial role on the sent byte performance of algorithms, as seen in Figure 9b.

The received bytes is another important measurement to determine the quality of the
algorithm because they affect the lifetime of the network. Figure 10 shows the performances
of the algorithms in terms of received bytes for the whole network until the system reaches a
stable configuration. Figure 10a compares the received bytes performance of the algorithms
with respect to the size of the network. As seen in Figure 10a, there is a linear correlation
between received bytes and the size of the network because the increasing node count
directly affects the transmitted byte count. The SS-CVC1 algorithm outperformed all other
algorithms since it has smaller packages to send and less message traffic. For example, the
SS-CVC1 algorithm needed 9.72 kB average received bytes for networks with 300 nodes; on
the other hand, KINIWA needed 39.1 kB to stabilize in same type of networks. The best
algorithm after SS-CVC1 is the TURAU1 algorithm, which needs two times more received
bytes in total. The SS-CVC2 algorithm showed poor results since it assumes messages are
passed to the 2-hop neighborhood. Figure 10b shows the performance of the algorithms
as the average degree of the networks increases. Increasing the density of the network
increases the received byte counter linearly since the transmitted messages reach more
neighbors. Unlike the sent byte performance of algorithms, the density of the networks
impacts the received byte performance of the algorithms. However, this impact is minimal
for SS-CVC1 in comparison to the other algorithms, as seen from the slopes of lines. In
networks with 150 nodes, SS-CVC1 always stayed below 9 kB for all density types.
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Figure 9. Sent bytes of algorithms on weighted networks: (a) Sent bytes against node count on the
fixed average degree 5; (b) Sent bytes against node count on the fixed network size 150.
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Figure 10. Received bytes of algorithms on weighted networks: (a) Received bytes against node
count on the fixed average degree 5; (b) Received bytes against node count on the fixed network
size 150.

E ≈ ((S× 17 + R× 16)/31.25)× 3.3 mJ (4)

Figure 11 illustrates the energy consumption of each node in the network. The en-
ergy consumption is formulated according to the IRIS datasheet, where each IRIS device
consumes 17 mA in transmit mode and 16 mA in receive mode when it works with the
maximum transmission power. The devices needs 3.3 V to operate. The transmit data
rate of each node is 250 kb/s, which is equal to 31.25 kB/s. By using the energy formula
E = V × I × T, we can obtain Equation (4) [48,49]. As seen in Figure 11a, the SS-CVC1
algorithm consumes 67.44 mJ per node as the most energy-efficient algorithm among all
implemented algorithms. Since the energy calculation takes into account the received
bytes count, the SS-CVC2 algorithm consumes more energy than its counterparts. After
the SS-CVC1 algorithm, TURAU1 consumes 136.08 mJ per node to reach the stable config-
uration. The SS-CVC1 algorithm solves the capacitated vertex cover problem two times
more efficiently than its nearest counterpart. Figure 11b shows the impacts of the network
density on energy consumption for algorithms. Again, SS-CVC1 has the best performance
among the other implemented algorithms.
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Figure 11. Energy consumption of algorithms on weighted networks: (a) Energy consumption against
node count on the fixed average degree 5; (b) Energy consumption against node count on the fixed
network size 150.
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Figure 12a,b show that the cardinality of the VC solution is directly affected by the
size and density of the network. Intuitively, when the network becomes larger and denser,
it must choose more vertices to cover all edges in the network because the edge count
increases by the node count and the average degree of the network. The SS-CVC2 algorithm
produced the best VC solution for all network sizes and densities. The SS-CVC2 produced
a VC multiset that contains 291 vertices on the 250-sized network. The SS-CVC1 algorithm
is the runner-up with a multiset that contains 360 vertices on the networks that have
250 vertices. The SS-CVC2 algorithm produced 1.75, 1.59 and 1.48 times smaller vertex
cover solutions in comparison to TURAU1, TURAU2 and KINIWA, respectively. As the
network becomes denser, the SS-CVC2 algorithm is less affected by the density when we
compare it against the other algorithms. On the 150-sized networks, SS-CVC2 produced
VCs in sizes of 140, 168, 183 and 194 in networks whose average degrees vary between 3
and 9, while the best matching-based algorithm KINIWA produced 183-, 249-, 281- and
320-sized VC solutions.

When we investigate Figure 13, it can be stated that the weight of the VC has the
same characteristic as the cardinality of the VC. The SS-CVC1 and SS-CVC2 algorithms
produce vertex cover solutions that have less weight than the other algorithms. SS-CVC1,
KINIWA, TURAU2 and TURAU1 produced weighted vertex covers which are 1.23, 1.58,
1.70 and 1.88 times bigger, respectively, than SS-CVC2’s solutions for networks in size 300.
The density of the networks affects the weight of the solution, as seen in Figure 13 for
all algorithms; however, our proposed algorithm SS-CVC2 produced the lowest weights
among all other algorithms for all network densities.
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Figure 12. VC size of algorithms on the weighted networks: (a) VC size against node count on the
fixed average degree 5; (b) VC size against node count on the fixed network size 150.

We elaborate the approximation ratios of the weights of the algorithms in Tables 1–3.
We obtained the optimal solution using the SageMath programming language by imple-
menting Guha’s integer linear programming algorithm proposed for capacitated vertex
cover in [12]. The implemented algorithm is executed on a server that has an Intel-Xeon
E5-2620 v4 processor. The tables show us that the SS-CVC2 algorithm has better approx-
imation ratios among all algorithms. After the SS-CVC2 algorithm, the second lowest
approximation belongs to SS-CVC1 for all network types. Matching-based vertex cover
algorithms produced more than two approximation ratios. Since these algorithms have
not been proposed for weighted networks, they exceeded theoretical approximation ratios.
The density of the networks affects the approximation ratios of all algorithms, while the
network size has no correlation with the approximation ratio.
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Figure 13. VC Weight of algorithms on the weighted networks: (a) VC weight against node count on
the fixed average degree 5; (b) VC weight against node count on the fixed network size 150.

Table 1. Approximation ratios of algorithms (Avg. degree = 3).

SS-CVC2 SS-CVC1 KINIWA TURAU2 TURAU1

50 1.55 1.71 2.17 2.50 2.88

100 1.53 1.65 2.16 2.48 2.90

150 1.56 1.69 2.19 2.56 2.92

200 1.56 1.71 2.18 2.54 2.92

Table 2. Approximation ratios of algorithms (Avg. degree = 5).

SS-CVC2 SS-CVC1 KINIWA TURAU2 TURAU1

50 1.62 2.03 2.61 2.77 3.06

100 1.61 1.98 2.56 2.75 3.03

150 1.61 1.93 2.54 2.70 2.99

200 1.62 1.96 2.55 2.74 3.03

Table 3. Approximation ratios of algorithms (Avg. degree = 7).

SS-CVC2 SS-CVC1 KINIWA TURAU2 TURAU1

50 1.67 2.23 2.78 2.99 3.18

100 1.66 2.18 2.74 2.84 3.07

150 1.63 2.16 2.68 2.83 3.03

200 1.62 2.11 2.67 2.78 3.01

We provide the move count and step count performances of the transformer proposed
by Turau in Figure 14. The transformer provides an interface that enables executing an
algorithm which is designed for 2-hop with 1-hop information with O(m) slow-down
factor. The move count and step count of the transformed SS-CVC2 (namely, T-SS-CVC2)
are always higher than SS-CVC2 due to slow-down factor. T-SS-CVC2 needs to make moves
at least 15.4 times more than SS-CVC2 to reach the capacitated vertex cover solution since
the SS-CVC2 algorithm stabilizes after 309 moves while the T-SS-CVC2 algorithm needs
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4773 moves to reach the stable configuration on the 250-sized network. We could infer
the same with respect to the step count, which is 15 times more for the T-SS-CVC2 on the
50-sized network. To reach a stable configuration, T-SS-CVC2 needs more message traffic,
as shown in Figure 15. As mentioned before, message sending is tightly related to the move
count of the algorithm. Nodes in T-SS-CVC2 send 15 times more bytes and receive 4 times
more message bytes in comparison with SS-CVC2. As shown in Figure 16a, T-SS-CVC2
needs approximately five times more energy to produce a vertex cover set on average. In
terms of the weight of the vertex cover, the SS-CVC2 and T-SS-CVC2 algorithms produced
the same results as those given in Figure 16b.
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Figure 14. Move and step count performances of T-SS-CVC2 algorithm against SS-CVC2: (a) Move
count against node count for the fixed average degree 5; (b) Step count against node count for the
fixed average degree 5.
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Figure 15. Sent and received bytes performances of the T-SS-CVC2 algorithm against SS-CVC2:
(a) Sent bytes against node count for the fixed average degree 5; (b) Received bytes against node
count for the fixed average degree 5.
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Figure 16. Energy consumption and solution performances of the T-SS-CVC2 algorithm against
SS-CVC2: (a) Energy consumption against node count on the fixed average degree 5; (b) VC weight
against node count on the fixed average degree 5.

7. Conclusions

In this study, we proposed two self-stabilizing capacitated vertex cover algorithms for
IoT-enabled WSNs. First of all, we modified Ikeda’s algorithm by adding two new rules
and changing the existing rules. Furthermore, we proposed a new algorithm based on
greedy heuristic for WSNs. The first algorithm, named SS-CVC1, needs 1-hop information
about the topology to reach a stable configuration to satisfy the capacitated vertex cover
property. SS-CVC2 requires 2-hop information to achieve the goal of capacitated vertex
cover. We provided sample executions of both algorithms and analyzed these two heuristic
algorithms for WSNs and proved self-stabilizing properties and step complexities that are
O(n2) and O(n) under the unfair scheduler.

We evaluated the performance of our algorithms together with their counterparts in the
literature on randomly generated geometric networks and provided extensive performance
analysis in different types of measurement including sent bytes, received bytes, energy
consumption, move count and approximation ratio. The experimental results show that the
SS-CVC2 and SS-CVC1 algorithms outperformed the existing matching based algorithms in
terms of move counts, step counts and vertex cover solutions. On the other hand, the sent
and received bytes of the SS-CVC1 algorithm are the lowest among all other algorithms.
Through our extensive experiments, we can state that the SS-CVC1 algorithm is the most
energy-efficient algorithm. The approximation ratio of the SS-CVC2 is not greater than
1.7 for all network types, while the other matching-based algorithms produced at least
two times greater ratios than the optimal solution. In addition to these, we provided the
performance results of the transformed version of SS-CVC2, which requires more time and
energy to stabilize under an unfair scheduler but produces the same solution as SS-CVC2.

Conclusively, we can state that the SS-CVC2 algorithm is better than the others when
2-hop information is provided, in cases where the time and approximation ratio are the
concern. However, if these are not provided, the SS-CVC1 algorithm is a very promising
option to find the capacitated vertex cover rather than other matching-based vertex cover
algorithms, accompanied by the advantage of energy efficiency. T-SS-CVC2 provides the
same result in terms of vertex cover, but it needs more energy than SS-CVC2. In the future,
we plan to study the hard capacitated version of the vertex cover and its application in
real-world examples.
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