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Abstract: Over the past couple of decades, many telecommunication industries have passed through
the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into
the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and
mining are now fully considered vital drivers for business growth in these industries. Machine
learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big
data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive
learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities
of different key machine-learning-based regression models is provided for extrapolative analysis of
throughput data acquired at the different user communication distances to the gNodeB transmitter in
5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined
with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further
extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein
referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn
the possible RF weak learners to form stronger ones, resulting in a single strong prediction model,
the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values,
thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance.
The application of the proposed RF-LS-BPT method showed superior prediction accuracy over
the ordinary random forest model and six other machine-learning-based regression models on the
acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE)
values obtained for the throughput prediction at different user locations using the proposed RF-LS-
BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models
attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction
accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter
tuning/optimization in developing precise and reliable machine-learning-based regression models.
The projected model would find valuable applications in throughput estimation and modeling in 5G
and beyond 5G wireless communication systems.

Keywords: 5G performance measurement; throughput data; adaptive learning; machine learning;
random forest; hyperparameter tuning; optimization; least-squares boosting

1. Introduction

Effective data processing and analysis have become a huge task due to the upsurge
in massive data collection from various wireless communication devices and cellular
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networks [1]. Massive data can be classified into two main parts, right and raw data. The
present generation of cellular broadband networks, such as 4G and 5G and including the
envisioned 6G, can be improved if the correct data are extracted from the available massive
data and mined resourcefully to reveal the actual quality status [2]. Predictive mining
of such data can also aid in optimal planning and optimization of such system networks
due to the emergence of artificial intelligence and machine learning, which enable such
interconnected processes to be achieved through robust and efficient data analytics [3–5].

In recent decades, machine-learning-based regression models have emerged as vital
models in carrying out prognostic modeling and analysis of relevant datasets in all fields of
physical sciences, medical science, and engineering domains [6–15]. One notable advantage
of machine learning over other data analytic techniques is its ability to identify patterns
and trends with ease and high accuracy adaptively. Another significant advantage is its
capability to automate and solve many complex decision-making tasks.

Several machine learning techniques have been explored [16–21]. Some of the key
ones include random forest (RF) [22,23], support vector machine (SVM), neural networks
(NNs), K-nearest neighbor (KNN), and the Gaussian process (GP). Among these tech-
niques, RF stands out owing to its distinctive adaptive learning and predictive modeling
capability [1,24,25]. RF is suitable for adaptive regression-based learning and the effec-
tive classification of extensive data. It can handle both simplified and complex datasets
containing real or contiguous values. Interestingly, RF is less sensitive and robust to out-
liers. RF can be explored for prognostic estimation and mapping high-dimensional data.
These exceptional and matchless capabilities of RF have led to its increasing popularity for
constant usage in diverse research fields, including sciences and engineering. However,
the performance accuracy of regression-learning-based RF models is influenced mainly
by the input data, training algorithm, and regulating hyperparameters [6–8]. One of the
hyperparameters is the tree number and value. The selection of tree numbers that are too
large or small can cause overfitting, poor generalization, slow implementation, and poor
real-time predictions.

Many attempts have been made to handle RF hyperparameter tuning problems in
the literature to boost its predictive application performance. In the literature [6,7], the
authors examined how to determine the optimum number of RF trees. Particularly in [8],
the work investigated how to optimally employ the RF feature set size for robust regression
analysis of 56 different datasets. The researchers found that the optimal size tends to be
comparatively small if the dataset features are correlated and vice versa. In [9], the influence
of tree size was also studied. The study developed a new ensemble technique for refining
and growing trees in depth for the RF model. In [10], a weighted voting technique was
introduced into a random forest algorithm to enhance its application for employee turnover
prediction. The authors in [11] added the self-organizing mapping technique to the RF
modeling process to boost pediatric fracture healing time predictive analysis. In [12], the
authors engaged the class weight RF algorithm to solve and analyze medical class imbalance
data effectively. In the context of classification, References [13–15] examined and reported
the influence of feature set size on RF prognostic estimation performance. A summary of
related works [26–33] which employ machine-learning-based models, capturing their focus
and coverage, key limitations, and a comparison with this paper, is presented in Table 1.
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Table 1. Limitations of some related works.

Year Reference Focus and Coverage Limitations Comparison with This Paper

1989 Battiti [26]

The work focuses on accelerated
backpropagation learning,

considering two optimization
techniques.

There is a need to assess the
performance of the models for

networks with a large number of
weights.

This paper presents a detailed
statistical analysis of the

acquired throughput data
through performance status

quality reporting at the different
user equipment terminal

locations.

2008 Castillo [27]

Adaptive learning algorithms for
Bayesian network classifiers

were projected. The work aims
to handle the cost–performance
trade-off and deals with concept

drift.

The work did not provide
adequate information on how to
resolve the bottleneck challenges

in a prequential learning
framework as the training data

increase over time.

The current work examined the
performance of the projected
learning-based models for 5G

wireless networks using
large-scale throughput data

acquired from several network
operators in the United States.

2011
Khan,

Tembine, and
Vasilakos [28]

The work presents game
dynamics and the cost of

learning in heterogeneous 4G
networks.

The work provides numerical
examples and OPNET

simulations concerning network
selection in WLAN and LTE.

However, experimental
validation of the numerical

results is missing.

Our work presents performance
benchmarking of adaptive

learning capabilities of different
machine-learning-based

regression models based on the
experimental 5G throughput

data.

2016 Pandey and
Janhunen [29]

The work presents a method
based on reinforcement learning

for automating parts of the
management of mobile

networks.

The work did not cover the
concept of learning with partial
observability and cooperative

learning that considers the
neighboring base stations.

Our work addresses the problem
of learning with partial

observability and cooperative
learning by integrating the

neighboring base stations based
on the 5G data analyzed.

2018 Li, Cao and
Hao [30]

The work presents an
adaptive-learning-based

network selection approach for
5G dynamic environments. The

system enables users to
adaptively adjust their selections
in response to the gradually or

abruptly changing environment.

Though the proposed approach
enables a population of terminal
users to adapt effectively to the

network dynamics, experimental
validation of the proposed

approach is missing.

Our work proposed an
RF-LS-BPT regression model for

improved dataset predictive
modeling and learning based on

5G experimental datasets.

2020 Narayanan
et al. [31]

The work focuses on commercial
5G performance on smartphones

using 5G networks of three
carriers in three US cities.

Additionally, the work explored
the feasibility of using location

and other environmental data to
predict network performance.

The work developed practical
and sound measurement

methodologies for 5G networks
on COTS smartphones but did
not provide the learning-based
models for the 5G performance

measurements.

The current work projected
learning-based models for

improved dataset predictive
modeling and learning based on

the 5G throughput data.

2021
Moodi,

Ghazvini, and
Moodi [32]

The work considers a hybrid
intelligent approach to detect
android botnets using a smart
self-adaptive-learning-based

PSO-SVM.

The authors observed that one of
the factors influencing the

selection of important features of
a dataset is the approach and the
parameters used on that dataset.
However, practical deployment

of the projected hybrid
intelligent approach was not

considered.

An optimized RF-LS-BPT
regression model was proposed

for accurate throughput data
modeling and learning using

different performance indicators
based on experimental datasets.
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Table 1. Cont.

Year Reference Focus and Coverage Limitations Comparison with This Paper

2022
Hervis

Santana et al.
[33]

The work examines the
application of a

machine-learning-based
algorithm to approximate a

complex 5G path loss prediction
model. Specifically, the decision

tree ensembles (bagging)
algorithm was employed to

build a generic model which was
used to estimate the pathloss.

Time optimization for the feature
(input) calculation process was

not considered in this work.
Experimental validation of the

proposed model is also missing.
Lastly, practical testing of the
model for accurate wireless

network planning is required.

The current work captured
optimization for the features

(inputs) variables and
experimentally validated the

proposed model using practical
5G throughput data.

In view of the preceding literature, there is no existing work that reports a machine-
learning-based boosted regression ensemble combined with hyperparameter tuning for
optimal adaptive learning. To this end, this paper proposes a random forest machine-
learning-based model combined with a least-squares boosting algorithm and Bayesian
hyperparameter tuning to boost its predictive application performance. The proposed
regression model is termed the RF-LS-BPT model. A detailed application of the proposed
RF-LS-BPT model to real-time throughput data acquired at different user equipment termi-
nal locations in 5G mobile broadband cellular networks was investigated. Our proposed
RF-LS-BPT model offers a new hybridized predictive modeling method to help network
operators and engineers regularly conduct improved extrapolative analysis of different
cellular network data for planning and management purposes.

The foremost contributions of this research paper are highlighted as follows:

• We first give a detailed statistical analysis of the acquired throughput data through
performance status reporting at the different user equipment terminal locations with
respect to the tested communication distances from the transmitter.

• We provide performance benchmarking of adaptive learning capacities of different key
machine-learning-based regression models with the choice regression model, which is
the random forest.

• We propose an RF-LS-BPT regression model for improved dataset predictive modeling
and learning.

• The proposed RF-LS-BPT regression model was applied in detailed, accurate through-
put data modeling and learning using different performance indicators.

The remaining part of this paper is structured into four sections as follows. Section 2
contains the related work and background information. Section 3 offers the machine-
learning-based boosted regression method, 5G throughput measurement campaign, and
the proposed RF-LS-BPT algorithm and implementation process. Section 4 focuses on the
results and discussion. Finally, the conclusions are drawn in Section 5.

2. Theoretical Background

First, the general concept of random forest is described, and the exploratory data
analysis (EDA) method applied is highlighted in this section. The mathematical description
of the RF regression model and least-squares boosting (LS-Boost) is also broached.

2.1. Random Forest (RF)

The RF is an ensemble of decision-tree-based machine learning methods. It was
proposed in [34] by Breiman to address both data classification and regression problems. It
operates by growing and assembling a host of self-regulating decision trees to solve complex
real-world problems. While the trees grow, the data are shared using a principle in several
steps. The performance accuracy of regression-learning-based RF models is primarily
influenced by the input data, training algorithm, and regulating hyperparameters [35].
Here, ‘hyper’ indicates top-level parameters that can be explored to regulate the machine
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learning process and produce better results. Some of the vital RF hyperparameters include
the decision tree number, tree type, and the feature set size (number of features), all of
which control performance. Hyperparameter tuning or optimization is a robust method of
identifying and finding the best feasible values of hyperparameters for a machine learning
model to attain the desired resultant modeling outcome. Popular hyperparameter tuning
algorithms in the literature include random search, grid search, and Bayesian optimization
search [36,37].

Generally, many factors impact on predictive modeling capacities of machine-learning-
based models and methods, especially the surrogate types such as the RF, SVM, DT,
GPR, and NN. These include the learning rate, tree number, training algorithm, and
hyperparameter tuning algorithm. In [7], the authors concentered on how to explore
different key RF modeling parameters such as tree number (size) and related features to
effectively mine different datasets. Particularly in [8], the researchers’ interest was how
to optimally implore the RF feature set size to conduct a robust regression analysis of
large datasets.

In this study, an integrated exploratory approach was taken to examine some of the
aforementioned factors in RF predictive modeling performance capacity. Our exploratory
approach considers the integration of a random forest (RF)-based machine learning model
combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning
method for real-time extrapolative data analysis.

2.2. Exploratory Data Analysis Procedure

The exploratory data analysis (EDA) method [38] was utilized in this study. It is a
systematic method of investigating and analyzing datasets to discover patterns and ensure
that valid results are produced according to desired goals. A regression-based machine
learning model is expected to learn a dataset adaptively, thereby identifying and bringing
out the relationships between data input values and targeted output response during
training. Effective predictive data processing is part of a critical step in discovering patterns
in data.

2.3. The RF Regression Model and Least-Squares Boosting (LS-Boost)

In broad mathematical terms, an RF is a special predictor whose main constituents
are built on randomized tree ensembles {Y(x;Θat , Rn)}1≤a≤A. The sequence {(Θat)}1≤a≤A
encloses the random variables Θ that regulate the probabilistic mechanism wherein each
tree is built.

For a finite tree number, A, the RF estimate can be expressed as (1):

YA(X;Θ1t , Θ2t . . . , ΘAt Rn) :=
1
A

M

∑
a=1

Y(X;Θat Rn) (1)

For an infinite tree number (i.e., M is sufficiently large), the RF estimate turns to (2):

YA(X,Rn) := EΘ[Y(X;Θat Rn)] (2)

where EΘ indicates the expectation value in correspondence with Θ.
The individual tree predictor can be defined by (3):

Y(X) := ∑ EΘ[Wi]Yi (3)

where Wi :=
1(x∈t)
N(t) indicates the averaging weight.

Consider a data training sample <a = [(Y1, X1), (Y2, X2)], . . . , [(YA, XA)] of [0, 1]p , of
real-valued random variables. The leading objective is to predict the target response Y
connected to the random variable, X, employing a regression function f (x) = E[|Y|X = x].
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Accordingly, the loss function which defines the mean squared error (MSE) can be estimated
using (4):

L(Y, f (Xi)) =
K

∑
i=1

(Y1 − f (Xi))

2

(4)

Owing to the hypothetical bias and variance issues, the fitted model and the resulting
predicted outcome may severely suffer from underfitting or overfitting problems, leading to
a high error between the targeted response and the estimated variables. In order to address
such drawbacks, the inconsistency of f (X1) in Equation (4) needs to be placed under control
by employing the bagging (Bag) or least-squares boosting (LS-Boost) algorithm. This paper
considers the LS-Boost algorithm but employs bagging to benchmark the results. In the
LS-Boost algorithm, hundreds or more weak learners (trees) are engaged for training, and
it iteratively updates the error to become a strong learner [34,38]. At every iteration step,
the ensemble fits in a fresh learner. The MSE are expressed in Equation (4).

3. The Proposed Machine-Learning-Based Boosted Regression Ensemble Combined
with Hyperparameter Tuning

This section presents detailed information on the entire procedure engaged to achieve
the research aim. Particularly, the method of 5G throughput data collection, the proposed
RF-LS-BPT implementation algorithm, and its implementation process are provided in
this section.

3.1. 5G Throughput Measurement Campaign

The current study utilized field measurements taken in diverse urban environments
in the United States to test and validate the proposed learning-based models. The field
measurements were taken to assess the commercial 5G performance on smartphones and
made available online [31]. The 5G networks of three carriers in three US cities were
examined. Specifically, a systematic analysis of the various mechanisms used for handoff
in the 5G network was explored. The impact of these handoff mechanisms on network
performance was also feasibly explored to determine whether the location and other
dynamic environmental conditions can be used to predict network performance.

Additionally, the performance of the app in terms of web browsing, HTTP download,
and volumetric video streaming over 5G was critically examined. The experiments, which
consume over 15 Tb data, were carried out over T-Mobile, Sprint, and Verizon 5G networks.
Verizon offers operational mm-wave-based 5G services to subscribers in the investigated
environments where dense 5G base stations are deployed. T-Mobile employs mm-wave,
while Sprint uses a mid-band frequency at 2.5 GHz. In the field measurements, the authors
captured about 6.8 million data points obtained from the 5G coverage in downtown
Minneapolis, USA [31].

Two types of commercially available off-the-shelf (COTS) 5G-capable smartphones
were used in the experiments. These were the Motorola Moto Z3 and Samsung Galaxy S10
5G (SM-G977U). For brevity, these are described as MZ3 and SGS10, respectively. The SGS10
uses an in-built 5G radio, while the MZ3 uses an external 5G mod to access 5G networks.
The mobile device used is the SGS10, and it is 4G- and 5G-compatible, allowing comparison
on the same device. Four locations were considered for the experiments carried out on
Verizon’s network [31]. Typically, the locations are a good representative of open/crowded
spaces, low/high buildings, indoor/outdoor environments, and more. The experimenta-
tion was conducted using a Microsoft Azure server to achieve the highest statistical 5G
throughput. The server also helps to achieve approximately 3 Gbps throughput.

3.2. The Proposed RF-LS-BPT Process

The entire RF-LS-BPT process, which is revealed using the flowchart in Figure 1 and
its stepwise implemented method using MATLAB, is outlined as follows. Also, the RF
regression with least-squares boost (LS-Boost) is given in Algorithm 1.
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a. Load the throughput datasets into MATLAB.
b. Examine the datasets to obtain relevant insights.
c. Presence of correlated features.
d. Missing values and outliers.
e. Preprocess the datasets to cater for the identified missing values and outliers.
f. Transform the datasets RF-LS-BPT modeling format.
g. Split the datasets into two, with 0.3 portions for testing and 0.7 portions for training.
h. Engage the default RF ensemble fitting tool in MATLAB for the data training and testing.
i. Evaluate the default RF ensemble fitting through data training and testing.
j. Choose an appropriate RF aggregation technique. LS-Boost was chosen here.
k. Identify the most relevant RF hyperparameters.
l. Determine optimal values of the RF hyperparameters using the optimization option

I MATLAB (‘OptimizeHyperparameters’, ‘auto’), which is based on the Bayesian
optimization process.

m. Optimize the RF Regression ensemble results using the cross-validation process.
n. Build the final RF-LS-BPT model combing the LS-Boost algorithm with tuned optimal

RF hyperparameter values.
o. Engage the resultant RF-LS-BPT model on the entire throughput quality datasets.
p. Test the resultant RF-LS-BPT using a 0.3 portion of the data and new data.
q. Assess and report the predictive performance of the resulting RF-LS-BPT model.

Algorithm 1: Also, The RF Regression with least-squares boost (LS-Boost) is given in Algorithm 1.

Input:
Training set:[(y1, x1), (y2, x2)], . . . , [(yK , xK)].
Learning rate value, v and Tree number, A, obtained through Bayesopt,
Loss function, L(y, f (xi)).
Output:
Regression mode, Fa(x), f (xi) = y
Training Process:
For a = 1 to A, do :
f (xi) = (y− Fa−1(x))k

i
Train Ba(x) using (x, y)k

i

pa(x) = arg minp ∑[y− pBa(x)]
2

Fa(x) = Fa−1(x) + v
A
∑

a=1
paBa(x)

End
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Figure 1. (a) Flowchart for the Proposed RF-LS-BPT model; (b) the RF-LS-BPT model and its
hyperparameter tuning implementation process.

3.3. Key Evaluation Metrics

The mean absolute error (MAE) [39] given in (5), the normalized mean squared error
(NRMSE) given in (6), the coefficient of determination (Rsq) given in (7), and the percentage
error (PE) are the five key evaluation metrics used in this paper to examine the performance
of the RF-LS-BPT method. The proposed method is better if the MAE and NRMSE values
are low but have higher Rsq values.

MAE = 1/K
K

∑
i=1

∣∣ymi − ypi
∣∣ (5)

NRMSE =

√√√√1/K
K

∑
i=1

(
ymi − ypi

)2
/(

ypi(max) − ypi(min)

)
(6)
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R2 = 1−


K
∑

i=1

(
ymi − ypi

)2

K
∑

i=1

(
_
y mi − ypi

)2

 (7)

4. Results and Discussion

Detailed results and discussion are contained in this section. All computations, coding,
implementation, and graphics were conducted using MATLAB software environment with
the aid of an HP laptop (Elitebook) with an Intel® Core™ i3-10110U and Intel® Turbo Boost
Technology, 4 MB L3 cache, 2 cores was used. First, in this section, we start by revealing the
status of the acquired 5G throughput qualities attained at close communication distances
of 25, 50, 75, 100, and 160 m between the transmitter and UET. This is followed by results
and discussion on the throughput data training and testing accuracy achieved using seven
machine learning models with their default parameters. Also contained in this section
are throughput data training and testing results achieved using the proposed RF-LS-BPT
model versus the standard RF modeling approach, plus results on throughput data training
and testing using LS-boosting and bagging.

4.1. Throughput Quality Status Analysis

The throughput quality remains an exclusive higher-layer performance indicator for
assessing data transmission quality and integrity in mobile broadband networks. Remark-
ably, the actual throughput quality at the UET can be influenced by critical factors such as
user location and communication distance from the transmitter. The user data throughput
expresses the speed at which a user can reliably send data and receive the same at the user
equipment terminal (UET). It also expresses the quantity of data in bits per second (bps)
conveyed and delivered over the cellular network within a specific period. The graphs
in Figure 2 display the measured throughput qualities attained at close communication
distances of 25, 50, 75, 100, and 160 m between the transmitter and UET. All the graphs
show that the network experiences low throughput quality in the range of 50 to 100 Mbps
at first user download before experiencing upward but fluctuating quality improvement
as the user stays in the network. The low throughput quality experienced at the UET
shows that the network has serious delay problems during the initial network log-in. The
general fluctuations in throughput quality across the various measurement distances can be
attributed to several influencing factors, which include network propagation environment,
user location, communication distance, the asymmetry between upload and download
rates, available channel bandwidth, network traffic load, propagation channel conditions,
signal quality, signal coverage, and modulation/coding scheme [40].

Throughput quality status in terms of maximum, minimum, and mean throughput
quality values attained at the various distances are summarized in Table 2. For maximum
quality, about 2350, 2080, 2070, 1970, and 1990 Mbps values were attained at 25, 50, 75, 100,
and 160 m UET location distances. A close look at the values shows that the maximum
quality value attained by the UET degrades as communication distance increases for
the connecting transmitter. This result confirms that user equipment location regarding
communication distance from the transmitter antenna is a major factor influencing the
quality level received. Overall, the mean throughput quality attained at the UET is quite low
compared to the at least 1000 Mbps quality value envisioned for 5G broadband networks,
even at such close distances.
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Table 2. Throughput quality status attained from 25 to 160 m UET communication distance.

Distance (m) Max. Min. Mean Median STD

25 2.35 × 103 31.43 947.61 450.56 625.27

50 2.08 × 103 335.54 925.27 734.02 604.43

75 2.07 × 103 906.13 807.38 807.38 614.36

100 1.97 × 103 10.49 855.26 718.17 540.10

160 1.99 × 103 146.79 808.43 655.34 482.53

4.2. Throughput Data Training and Testing Using Different Machine Learning Models with Their
Default Parameters

In addition to hyperparameters, machine learning models have their default param-
eters internally built for specific tasks. While the default parameters are inevitably used
to learn, hyperparameters are objectively set by the user to guide the learning process
optimally. Here, five key machine learning models with default parameter regression
settings were first engaged for throughput data training and testing. The machine learning
models are the multi-layer perceptron neural network (MLP-NN), random forest (RF),
support vector machine (SVM), K-nearest neighbor (KNN) model, Gaussian process re-
gression (GPR), and decision tree (DT). The generalized least-squares (GLS) model was
also employed in the regression process. The main aim of using other machine learning
methods is also to assess their adaptive learning capability with the choice of RF method.
Shown in Figure 3 is a plot displaying the throughput quality comparison of different
machine learning models. The prediction performance of the individual methods explored
in terms of their accuracy using MAE and R-Squared (Rsq) is shown in Figures 4 and 5.
The MAE and Rsq values attained for GLS, MLP-NN, RF, SVM, KNN, GPR, and DT were
276.96, 57.54, 137.01, 58.94, 125.66, 276.96, and 9.27 dB and 0.6746, 0.9602, 0.8642, 0.9644,
0.87.55, 0.9728, and 0.9989, respectively. The RF regression model achieved the lowest MAE
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value of 9.27 dB and the best 0.9998 Rsq value from these throughput data training results.
Similar superior prediction efficiency results were obtained with the RF regression model
when engaged for throughput data testing. Still, the results are excluded here for the sake
of brevity. The better prediction efficiency of RF could be due to its robust ability to handle
large dimensionality datasets efficiently with high precision. On the other hand, the GLS
attained the worst results because of its poor performance in handling stochastic datasets
with high variance and large dimensionality [41,42].
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(b) Neural networks (NNs). (c) Support vector machine (SVM). (d) Decision tree (DT). (e) Gaussian
process regression (GPR). (f) K-nearest neighbor (KNN). (g) Random forest (RF).



Sensors 2022, 22, 3776 12 of 22Sensors 2022, 22, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 4. Throughput quality prediction accuracy with MAE attained by the different machine 
learning models. (a) Least-squares (LS). (b) Neural networks (NNs). (c) Support vector machine 
(SVM). (d) Decision tree (DT). (e) Gaussian process regression (GPR). (f) K-nearest neighbor (KNN). 
(g) Random forest (RF). 

 

Figure 4. Throughput quality prediction accuracy with MAE attained by the different machine
learning models. (a) Least-squares (LS). (b) Neural networks (NNs). (c) Support vector machine
(SVM). (d) Decision tree (DT). (e) Gaussian process regression (GPR). (f) K-nearest neighbor (KNN).
(g) Random forest (RF).

Sensors 2022, 22, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 4. Throughput quality prediction accuracy with MAE attained by the different machine 
learning models. (a) Least-squares (LS). (b) Neural networks (NNs). (c) Support vector machine 
(SVM). (d) Decision tree (DT). (e) Gaussian process regression (GPR). (f) K-nearest neighbor (KNN). 
(g) Random forest (RF). 

 

Figure 5. Throughput quality prediction accuracy with Rsq attained by the different machine learning
models on throughput quality. (a) Least-squares (LS). (b) Neural networks (NNs). (c) Support vector
machine (SVM). (d) Decision tree (DT). (e) Gaussian process regression (GPR). (f) K-nearest neighbor
(KNN). (g) Random forest (RF).



Sensors 2022, 22, 3776 13 of 22

4.3. Throughput Data Training and Testing Using Proposed RF-LS-BPT Model versus Standard
RF Modeling Approach

Although the RF-based regression model outperforms other selected machine learning
models, which used benchmarks, as shown above, some hyperparameters can be tuned to
further optimize it for improved performance during predictive data modeling and learning.
Furthermore, the large prediction error attained by the standard RF-based regression
model can be attributed to the high divergence between the input variables and targeted
response. As mentioned earlier, the target error response can be reduced using the LS-
Boosting technique, hence the proposed RF-LS-BPT model. In order to prevent overfitting or
underfitting, the hyperparameters were tuned to minimize the prediction error further [43].
In order to implement the proposed technique, first, a data training set was conveyed
through an intended RF regression model empowered with an LS boost ensemble. We
then used the Bayesian optimization search-based process to tune and obtain the values
of the optimal hyperparameters. The three main focused hyperparameters for tuning are
learning rate, number of training cycles (the tree maximum depth), and maxisplits. The
same process was repeated, but the Grid search-based hyperparameter tuning method
was employed. Figures 6 and 7 display the tuning process patterns and the values of the
optimal hyperparameters obtained using grid search and Bayesian optimization search.
Notably, the curves in Figure 7 comprise the minimum cross-validated MSE arising after
determining optimal hyperparameter values, as shown in Table 3. The table shows the
learning rate, tree number, and maximum splits. In order to develop the proposed RF-LS-
BPT method, the Bayesian optimization-based search was considered over the grid search
since it yielded the lowest error.
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standard RF models are in the range of 0.9644 to 0.9944. Throughput prediction results 
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Table 3. Optimal hyperparameter values using grid search and Bayesian search.

Hyperparameters Best Grid Search Hyperparameter Values Best Bayesian Search Hyperparameter Values

Learning Rate 0.25 0.29025

Num. Trees 52 23

MaxNumSplits 32 195

Figures 8–12 are the results of the proposed RF-LS-BPT regression model. The graphs
showing the throughput predictive accuracy attained in MAE values using the proposed
RF-LS-BPT method compared to the standard RF approach are shown at different distances.
The results show that proposed the RF-LS-BPT method provided the best prediction ac-
curacy. As a case in point, while the proposed method attained 2.40, 0.24, 0.86, 2.95, and
4.29 dB MAE values, the standard RF approach attained poorer throughput predictive accu-
racy with 9.27, 5.47, 6.58, 7.84, and 12.56 dB MAE values. Similarly, in terms of correlation
performance plots, as shown in Figures 13–17, the Rsq values attained by the proposed
method are in the range of 0.9800 to 0.9999. In contrast, the Rsq values attained by standard
RF models are in the range of 0.9644 to 0.9944. Throughput prediction results using key
prediction results are summarized in Tables 4 and 5. These attained throughput prediction
performance improvements across the study location show the relevance of the developed
RF-LS-BPT regression model over the standard regression approaches.
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Table 4. Proposed RF-LS-BPT and standard RF regression model accuracy for training.

Accuracy 25 50 75 100 160

Optimized RF MAE 1 2.40 0.42 0.86 2.95 4.24

Standard RF MAE 2 9.24 5.47 6.58 7.84 12.56

Optimized RF NRMSE 1 0007 0.0001 0.0027 0.0111 0.081

Standard RF NRMSE 2 0.009 0.0045 0.0049 0.0117 0.02

Optimized RF Rsq 21 0.9999 0.9999 0.9999 0.9986 0.9890

Standard RF Rsq 22 0.9998 0.9998 0.9997 0.9983 0.9488
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Table 5. Proposed RF-LS-BPT and standard RF regression model accuracy for testing.

Accuracy 25 50 75 100 160

Optimized RF MAE 1 1.33 0.88 1.12 11.37 11.92

Standard RF MAE 2 9.27 2.41 3.84 12.88 13.82

Optimized RF NRMSE 1 0.0041 0.0025 0.0029 0.2700 0.0490

Standard RF NRMSE 2 0.0043 0.0029 0.0035 0.2720 0.0494

Optimized RF Rsq 21 0.9998 0.9999 0.9999 0.9926 0.9881

Standard RF Rsq 22 0.9990 0.9977 0.9997 0.9920 0.9800

4.4. Throughput Data Training and Testing Using LS-Boosting and Bagging

Due to hypothetical bias and variance issues, the predicting model or the targeted
response may severely suffer from underfitting or overfitting problems, leading to high
error between the targeted response and the estimated variables. In order to address such
drawbacks, the prediction model needs to be placed under control by employing the bag-
ging (Bag) or least-squares boosting (LS-Boost) algorithm. While bagging employs a simple
technique of result averaging to aid a model in achieving its desired prediction, boosting
utilizes a weighted mean of results in aiding a model in actualizing its prediction method.
In the LS-Boost algorithm, hundreds or more weak learners (trees) are engaged for training,
and the error is iteratively updated to improve learning. Here, the robust performance of
the adopted LS-Boost algorithm in the proposed RF-LS-BPT model compared to the bagging
algorithm in training and testing to learn the throughput data obtained at collection points
is provided in Figure 18 using MAE values. Also shown in Tables 6 and 7 are summaries
of accuracy attained by the two RF ensemble algorithms. The robust prediction accuracy
achieved in terms of MAE, NRME, and Rsq with the LS-Boost algorithm with the proposed
model shows that it helped to considerably improve the extrapolative performance capacity
between the targeted throughput data and the estimated variables. Brain and Webb [44,45]
opined that models with low bias during learning are generally sought after for large
dataset analytics, hence the superiority of our proposed model.
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Table 6. Throughput data training accuracy using LS-Boosting and bagging.

Accuracy 25 50 75 100 160

Training (LS-Boosting) MAE 1 1.71 0.66 0.72 2.73 5.21

Training (Bagging) MAE 2 63.03 42.37 37.77 33.57 49.97

Training (LS Boosting) NRMSE 1 0.0052 0.0012 0.0104 0.0102 0.0210

Training (Bagging) NRMSE 2 0.0684 0.0500 0.0342 0.0353 0.0560

Training (LS Boosting) Rsq 0.9996 0.9999 0.9999 0.9986 0.9935

Training (Bagging) Rsq 0.9835 0.9984 0.9984 0.9883 0.9719

Table 7. Throughput data testing accuracy using LS-Boosting and bagging.

Accuracy 25 50 75 100 160

Testing (LS-Boosting) MAE 1 4.22 0.71 1.79 8.65 8.07

Testing (Bagging) MAE 2 77.39 27.91 47.58 43.76 50.08

Testing (LS-Boosting) NRMSE 1 0.012 0.0024 0.0047 0.024 0.0374

Testing (Bagging) NRMSE 2 0.090 0.0032 0.0466 0.047 0.0696

Testing (LS Boosting) Rsq1 0.9983 0.9999 0.9998 0.9947 0.9860

Testing (Bagging) Rsq2 0.9935 0.9935 0.9935 0.9818 0.9654

5. Conclusions

The throughput quality remained an exclusive higher-layer performance indicator for
assessing data transmission quality and integrity in mobile broadband networks. The user
data throughput expresses the speed at which a user can reliably send data and receive the
same at the user equipment terminal (UET). Generally, the amount and quality of through-
put at the UET can fluctuate significantly, subject to many influencing factors. However,
many factors can influence user data throughput quality. The key ones include network
propagation environment, user location, communication distance, the disproportion be-
tween upload and download rates, available channel bandwidth, network traffic load,
propagation channel conditions, signal quality, signal coverage, and modulation/coding
scheme. The first objective of this research was to determine the actual throughput quality
attained at the UET at a close communication distance of 25, 50, 75, 100, and 160 m from the
transmitter over a typical 5G mobile broadband cellular network. The second objective was
to appraise the popular machine learning predictive modeling techniques in the literature
and optimize the best one using a robust approach for optimal adaptive prediction model-
ing and learning of the acquired stochastic throughput quality. By following the two main
objectives, the aims of the proposed learning-based models were achieved. Apart from ex-
amining the impact of transmitter–receiver communication distances on throughput quality
status as in this study, there is also a need to conduct a detailed empirical investigation
of the influence of variables on throughput quality. This need, however, is slated for our
future research. In addition, future work would investigate the predictive capability of deep
neural network models such as long short-term memory and other evolutionary-based
regression techniques such as particle swarm optimization and genetic algorithms.
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4/5/6G Fourth/fifth/sixth generation
AI Artificial intelligence
BOA Bayesian optimization algorithm
Bps Bits per second
COTS Commercially available off-the-shelf
DT Decision tree
EDA Exploratory data analysis
GLS Generalized least squares
GN Gauss-Newton
GP Gaussian process
GPR Gaussian process regression
GS Grid search
KNN K-nearest neighbor
LM Levenberg–Marquart
LTE Long-term evolution
LS Least squares
LS-Boost Least-squares boosting
MAE Mean absolute error
ML Machine learning
MLP-NN Multilayer perceptron neural network
NN Neural network
NRMSE Normalized root mean squared error
PE Percentage error
RF Random forest
RMSE Root mean square error
RS Random search
SVM Support vector machine
UET User equipment terminal
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