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Abstract: Computer vision-based structural deformation monitoring techniques were studied in a
large number of applications in the field of structural health monitoring (SHM). Numerous labo-
ratory tests and short-term field applications contributed to the formation of the basic framework
of computer vision deformation monitoring systems towards developing long-term stable moni-
toring in field environments. The major contribution of this paper was to analyze the influence
mechanism of the measuring accuracy of computer vision deformation monitoring systems from two
perspectives, the physical impact, and target tracking algorithm impact, and provide the existing
solutions. Physical impact included the hardware impact and the environmental impact, while the
target tracking algorithm impact included image preprocessing, measurement efficiency and accuracy.
The applicability and limitations of computer vision monitoring algorithms were summarized.

Keywords: computer vision; structural deformation monitoring; field environment; environmental
impact; target tracking algorithm impact

1. Introduction

Transportation infrastructure systems such as bridges, tunnels and railroads are im-
portant component systems for national social production and national development. With
the tremendous development of social productivity, these transportation infrastructures
are tested in two major ways. On the one hand, the tonnage and number of existing
means of transportation may exceed the design load-carrying capacity; on the other hand,
civil engineering structures including bridges, are subjected to various external loads or
disasters (such as fire and earthquakes) during their service life, which in turn reduces
the service life of the structures. By carrying out inspection, monitoring, evaluation, and
maintenance of these structures, we can ensure the long life and safe service of national
infrastructure and transportation arteries, which is of great strategic importance to support
the sustainable development of the national economy.

In the past two decades, structural health monitoring (SHM) has emerged with the
fundamental purpose of collecting the dynamic response of structures using sensors and
then reporting the results to evaluate the structures’ performance. Their wide deployment in
realistic engineering structures is limited by the requirement of cumbersome and expensive
installation and maintenance of sensor networks and data acquisition systems [1–3]. At
present, the sensors used for SHM are mainly divided into contact type (linear variable
differential transformers (LVDT), optical fiber sensors [4–9], accelerometers [10,11], strain
gauges, etc.) and non-contact types (such as global positioning systems (GPS) [12–14], laser
bibrometers [15], Total Station [16], interferometric radar systems [17], and level computer
vision-based sensors). Amongst the existing non-contact sensors, the GPS sensor is easy to
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install, but the measurement accuracy is limited, usually between 5 mm and 10 mm, and the
sampling frequency is limited (i.e., less than 20 Hz) [18–22]. Xu et al. [23] made a statistical
analysis of the data collected using accelerometers and pointed out that the introduction
of maximum likelihood estimation in the process of fusion of GPS displacement data and
the corresponding acceleration data can improve the accuracy of displacement readings.
The accuracy of the laser vibrometer is usually very good, ranging from 0.1 mm to 0.2 mm,
but the equipment is expensive and its range is usually less than 30 m [24]. Remote
measurements can be performed with better than 0.2 mm accuracy using a total station or
level, but the dynamic response of the structure cannot be collected [25,26].

With the development of computer technology, optical sensors and image processing
algorithms, computer vision has been gradually applied in various fields of civil engineer-
ing. High-performance cameras are used to collect field images, then various algorithms
are used to perform image analysis on a computer to obtain information such as strain,
displacement, and inclination. After further processing of these data, the dynamic charac-
teristics such as mode shape, frequency, acceleration and damping ratio can be obtained.
Some researchers extract the influence line [27,28] and the influence surface [29] of a bridge
structure from the spatial and temporal distribution information of vehicle loads, which are
used as indicators to evaluate the safety performance of the structure. However, the long-
term application of computer vision in the field is limited in many ways; for example, the
selection of targets, measurement efficiency and accuracy, environment impact (especially
the impact of temperature and illuminate changes).

This paper reviews the computer vision-based studies in field environments, including
the system composition, target tracking algorithms, environmental influencing factors and
current achievements. It is organized as follows: Section 2 briefly describes the basic
hardware composition of the computer vision monitoring system; Section 3 introduces the
flow of monitoring, camera calibration methods, feature extraction and different target
tracking algorithms. Section 4 reviews the current application scenarios of computer
vision in the field of SHM, analyzes the shortcomings in field applications and lists the
corresponding solutions, and finally briefly describes some basic requirements of long-term
monitoring. Section 5 makes a summary and points out the important problems that need
to be further studied in long-term field applications of deformation monitoring systems
based on computer vision.

2. System Composition

A computer vision-based structural deformation monitoring system includes an image
acquisition system and an image processing system. The image acquisition system includes
a camera, lens, and target to collect video images, while the image processing system per-
forms camera calibration, feature extraction, target tracking, and deformation calculation,
which purpose is to process the acquired image and calculate the structural deformation.
This section will briefly introduce the basic components of the image acquisition system in
the computer vision monitoring system. The image processing system will be introduced
in Section 3.

2.1. Camera

The camera is an important part of the image acquisition system, and its most essential
function is to transform received light into an electrical signal through a photosensitive
chip and transmit it to the computer. Photosensitive chips can be divided into CCD and
CMOS according to the different ways of digital signal transmission. The main differences
between them are that CCD has advantages over CMOS in imaging quality, but its cost is
much higher than that of CCD, so it is suitable for high-quality image acquisition; CMOS is
highly integrated and saves electricity compared with CCD, but the interference of light,
electricity and magnetism is serious and its anti-noise ability is weak, so it is more suitable
for high-frequency vibration acquisition [30,31].
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The selection of the camera needs to consider the following points: (1) the appropriate
chip type and size is to be selected according to the measurement accuracy and application
scenario; (2) because of the limited bandwidth, the frame rate and resolution of the camera
are contradictory, so the frame rate and resolution should be balanced in camera selection;
(3) industrial cameras appear to be the only option for long-term on-site monitoring.

2.2. Lens

The lens plays an important role in a computer vision system, and its function is similar
to that of the lens in a human eye. It gathers light and directs it ontp the camera sensor to
achieve photoelectric conversion. Lenses are divided into fixed-focus lenses [32,33] and
zoom lenses [34]. Fixed-focus lenses are generally used in laboratories, and high-power
zoom lens are generally used for long-distance monitoring such as of long-span bridge
structures and high-rise buildings. The depth of field is related to the focal length of the
lens; the longer the focal length, the shallower the depth of field.

The following points need to be considered in the selection of shots: (1) a low distortion
lens can improve the calibration efficiency; (2) an appropriate focal length for the camera
sensor size, camera resolution and measuring distance should be selected; (3) a high-power
zoom lens is appropriate for medium and long-distance shooting.

2.3. Target

The selection of targets directly affects the measurement accuracy, and an appropriate
target can be selected according to the required accuracy. There are mainly two kinds of
target: artificial targets and natural targets. Ye et al. [35] introduced six types of artificial
targets [19,36,37] (flat panels with regular or irregular patterns, artificial light sources,
irregular artificial speckles, regular boundaries of artificial speckle bands, and laser spots)
and a class of natural targets [38,39]. Artificial targets can provide high accuracy and are
robust to changes in the external environment, just as artificial light sources can improve the
robustness of targets in light and the possibility of monitoring at night. The disadvantage
of artificial target is that they need to be installed manually, which may change the dynamic
characteristics of the structure. Natural targets rely on the surface texture or geometric
shape of the structure, which is sensitive to changes of the external environment, and their
accuracy is not high.

The following points should be noted in the selection of targets: (1) when the target
installation conditions permit, priority should be given to selecting artificial targets to
obtain stable measurement results; (2) the selection of targets should correspond to the
target tracking algorithm in order to achieve better monitoring results.

3. Basic Process

The flowchart of deformation monitoring based on computer vision is shown in
Figure 1, and can be summarized as follows: (1) assemble the camera and lens to aim at
artificial or natural targets, and then acquire images; (2) calibrate the camera; (3) extract
features or templates from the first frame of the image, then track these features again in
other image frames; (4) calculate the deformation. The following is a brief description of
camera calibration, feature extraction, target tracking and deformation calculation.
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Figure 1. Process of deformation monitoring based on computer vision.

3.1. Image Acquisition

Image acquisition includes these steps: (1) determine the position to be monitored;
(2) arrange artificial targets or use natural targets on the measurement points; (3) select an
appropriate camera and lens; (4) assemble the camera lens and set it firmly on a relatively
stationary object; (5) aim at the target and acquire images.

3.2. Camera Calibration

Camera calibration [40] is the process of determining a set of camera parameters which
associate real points with points in the image. Camera parameters can be divided into
internal parameters and external parameters: internal parameters define the geometric
and optical characteristics of the camera, while external parameters describe the rotation
and translation of the image coordinate system relative to a predefined global coordinate
system [41]. In order to obtain the structural displacement from the captured video image,
it is necessary to establish the transformation relationship from physical coordinates to
pixel coordinates. The common coordinate conversion methods are full projection matrix,
planar homography matrix, and scale factor.

3.2.1. Full Projection Matrix

The full projection matrix transformation reflects the whole projection transformation
process from 3D object to 2D image plane. The camera internal matrix and external
matrix can be obtained by observing a calibration board, which can be used to eliminate
image distortion and has a high accuracy [42]. Commonly used calibration boards include
checkerboard [43] and dot lattice [44].

Figure 2a shows the relationship between the camera coordinate system, the image
coordinate system and the world coordinate system. A point T (X, Y, Z) in the real 3D
world appears at the position t (x, y) in the image coordinate system after the projection
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transformation (where the origin of the coordinates is P). The relationship between the
pixel coordinate system and the image coordinate system is shown in Figure 2b. Therefore,
the equation for converting a point from a coordinate in the 3D world coordinate system to
a coordinate in the pixel coordinate system is

S

 x
y
1

 ==

 f x γ ux 0
0 f y uy 0
0 0 1 0

[ R t
0 1

]
X
Y
Z
1

 = M1M2X (1)

where S is the scale factor from Equation (3), fx and fy are the camera lateral axis and
vertical axis focal lengths, γ is the angle factor of the lens, ux and uy are lateral and vertical
offsets of the principal axs, respectively, R is the rotation matrix of size 3 × 3 and t is the
translation matrix of size 3 × 1, M1 is the camera internal parameter, and M2 is the camera
external parameter.
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Park et al. [45] and Chang et al. [41] calibrated with T-bar and checkerboard respec-
tively to eliminate the measurement error caused by camera distortion and accurately
measure the 3D dynamic response of a structure.

3.2.2. Planar Homography Matrix

In practical engineering applications, the above calibration process is relatively com-
plex. To simplify the process, Equation (1) can be expressed

S

 x
y
1

 =

 k11 k12 k13
k21 k22 k23
k31 k32 k33

 X
Y
1

 = K

 X
Y
1

 (2)

where K is called planar homography matrix [46], which can reflect the relationship between
the corresponding points on two images and is not affected by the angle between the optical
axis and the structural plane [43].

The planar homography matrix is suitable for the case where there is an angle be-
tween the image plane and the moving plane of the object, and the angle is not easy to
measure [42]. The position of at least four known points on the moving plane can be used
to solve the planar homography matrix. Khuc et al. [29] and Xu et al. [47,48] both used
known structural dimensions to solve for the planar homography matrix, construct the
corresponding relationship between image coordinates and 3D world coordinates, and
estimate the time history information of lateral and vertical displacement of a bridge.
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3.2.3. Scale Factor

The scale factor (S) provides a simple and practical calibration method. As shown
in Figure 3a, when the camera optical axis is perpendicular to the surface of the object, S
(unit: mm/pixel) can be obtained based on the internal parameters of the camera (focal
length, pixel size) and the external parameters of the camera and the surface of the object
(measurement distance) in a simplified calculationfrom the simplified formula

S =
L
f

dpixel =
D
d

dpixel (3)
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When the optical axis of the camera is not perpendicular to the surface of the mea-
sured object (as shown in Figure 3b), the included angle would affect the measurement
accuracy [49]. Feng et al. [1] studied the influence of different angles between the optical
axis and the surface of the measured object on the accuracy, and found that S can be
determined by:

S =
L

f cos2 θ
dpixel =

D
d cos2 θ

dpixel (4)

where f represents the focal length; L represents the distance from the camera to the
measured object surface along the optical axis, also known as object distance; D represents
the distance from the measuring point to the optical axis; and d represents the distance
from the measuring point on the image to the origin.

References [50–55] build S according to known physical dimensions on the surface of
the object (such as the dimension of an artificial object or the dimension of the structural
member obtained from the design drawing) and the corresponding image dimensions to
measure the displacement of the structure.

Among these camera calibration algorithms, the appropriate coordinate conversion
method needs to be selected according to the field environment and measurement purpose.
The full projection matrix and the planar homography matrix have no restraint on camera
position but need a calibration plate. The full projection matrix is suitable for 3D deforma-
tion monitoring, and the planar single response matrix and scale factor are suitable for 2D
deformation monitoring.

3.3. Feature Extraction and Target Tracking

Feature extraction is used to obtain the unique information in the image (such as shape
features, feature points, grayscale features, and particle features). The purpose of target
tracking algorithms is to find these features again in other image frames. Common target
tracking algorithms in civil engineering structural deformation monitoring include shape
matching, feature point matching, optical flow estimation and digital image correlation
(DIC) template matching.
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3.3.1. Shape Matching

In an image, shape is a description of an edge or region, and shape matching is an
image matching algorithm to identify and locate measured objects through image edge
features. There are many algorithms for edge detection, such as Zernike operator [56],
Roberts operator, Sobel operator [57], Log operator [58], Canny operator [59] and general-
ized Hough algorithm [60]. Among them, the Canny operator is widely used because of its
high performance [61,62].

The principle of shape matching is relatively simple and can be used for displacement
monitoring of structures with obvious shapes. The advantages are: (1) the calculation is
relatively simple and the matching speed is fast; (2) it is robust to change of illumination be-
cause it tracks the geometric boundary of the object; (3) this measurement has an advantage
for linear structures such as slings.

3.3.2. Feature Point Matching

Feature point matching is a target tracking method based on feature extraction and
matching. The key points in computer vision are those which are stable, unique and invari-
ant to image transformation, such as building corners, connection bolts, or other shaped
targets [63,64]. The common methods of feature point detection include Harris Corner [65],
Shi–Tomasi Corner [66], scale invariant feature transform (SIFT) [32,67], speed-up robust
feature (SURF) [68], binary robust independent elementary features (BRIEF) [69], binary
robust invariant scalable keypoint (BRISK) [70], and fast retina keypoint (FREAK) [71].

A feature point matching algorithm needs to select appropriate feature descriptors
according to the measurement object to describe feature points mathematically and carry
out image registration. It is usually suitable for structures with rich textures or certain
shapes (Such as circle, hexagon or rectangle). Feature point matching has the following
characteristics: (1) it deals with the whole image area and has accurate matching perfor-
mance [72]; (2) it extracts texture features of the structure and is not sensitive to illumination
and shape transformation; (3) the greater the number of feature points used, the higher is
the precision (however, this increases the calculation time).

3.3.3. Optical Flow Algorithm

Optical flow algorithm is an image registration technique in which the surface motion
in a three-dimensional environment is approximated as a two-dimensional field by using
the spatio-temporal pattern of image intensity [73]. The optical flow algorithm can accu-
rately provide the velocity and displacement of the object by tracking the trajectories of
pixels, but it has great limitations and makes the following assumptions [74]: (1) the bright-
ness of objects in adjacent frames remains unchanged; (2) the motion of objects in adjacent
frames is small enough; (3) the motion between adjacent pixels is consistent [75]. Com-
mon optical flow algorithms include Lucas–Kanade [76,77], Horn–Schunck method [78],
Farneback method [79], block match method [80], and phase-based optical flow [45,81,82].
Among those, Lucas–Kanade is fast and easy to implement, and it can perform motion
tracking in the selected measurement area, especially of robust feature points, while other
algorithms need to calculate every pixel in the image, which is slow.

The optical flow algorithm is similar to the feature point matching algorithm in
that it tracks feature points on the image and prefers target patterns with distinct and
robust features over the whole test period. The optical flow algorithm has the following
characteristics: (1) target features need to be clear; (2) sensitivity to illumination changes;
(3) only motion components perpendicular to local edge direction can be detected, such
as bridge cable vibration; (4) optical flow describes the motion information of the image
brightness and is more suitable for measuring dynamic displacement.

3.3.4. DIC Template Matching

The basic principle of DIC is to compare the same points (or pixels) recorded between
two images before and after deformation, and to calculate the motion of each point [83]. As
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a representative non-interference optical technique, DIC has the advantage of continuous
measurement of the whole displacement field and strain field. It is a powerful and flexible
surface deformation measurement tool in experiments on solids, and it has been widely
accepted and used [84–87]. If we track only a small pixel area, we can track and monitor
the displacement of the measuring points of the structure [88,89], which is called template
matching. The basic process of monitoring displacement by template matching is as
follows [90–92]: (1) select some areas of the first frame image as templates; (2) use these
templates to scan line by line in a new image frame; (3) then use the relevant criteria to
match the degree of similarity and determine the pixel coordinates of the matched template;
(4) calculate the pixel displacement and convert it to the actual displacement.

The relevant criteria include the following six mathematical algorithms: (1) cross-
correlation (CC); (2) normalized cross-correlation (NCC); (3) zero-normalized cross-correlation
(ZNCC); (4) sum of squared differences (SSD); (5) normalized sum of squared differences
(NSSD); and (6) zero-normalized sum of squared differences (ZNSSD) [93].

In computer vision-based displacement measurement, the NCC matching method is
the most popular, and there are numerous applications of the method. Template matching
based on DIC has the following characteristics: (1) it is not very robust to light changes,
slight occlusions, and scale changes; (2) an artificial target is beneficial to improve the
success rate of matching; (3) huge computational expense during the template matching;
calculation in the frequency domain can save computation time.

3.4. Deformation Calculation

Deformation computation is the process of transforming pixel displacement into actual
displacement. First, high quality images are collected; then, 3D motion in the real world
is decomposed into planar motion by camera calibration; later, the matching algorithm
is used to track and calculate the pixel distance of the target moving in the image plane.
Finally, the pixel distance is converted into proportional actual distance.

The accuracy of displacement depends not only on the camera calibration method and
target tracking algorithm, but also on the environment, so the influence of environment on
the accuracy of displacement calculation needs to be understood. This is the problem that
needs to be solved in current field applications. The most important thing is to improve the
algorithm so that it can adapt to the changing environment.

4. Computer Vision-Based Deformation Monitoring in Field Environment

Computer vision-based sensors have made great strides in the lab, and computer
vision-based monitoring systems have the following advantages over conventional attached
sensors and other non-contact optical sensors: (1) providing displacement measurements in
both time and frequency domains [94]; (2) measuring multiple targets simultaneously [95];
(3) non-contact long-distance high-precision measurement; (4) simple setup and lower
labor intensity [96].

Although computer vision-based structural deformation monitoring has broad prospects,
there are still some challenges and problems to be studied. Up to now, there have been few
cases in which the structural deformation monitoring system based on computer vision
could be used stably in structural health monitoring for a long time. In the process of in-
door experimental application research, a controllable experimental environment enables
the image acquisition system to stably collect high-quality images or video files and to get
better results by post-processing. However, in on-site long-term monitoring, the erection
conditions of targets and cameras are limited by the on-site environment through factors
such as target installation difficulty, environmental vibration, measuring distance, and image
acquisition and transmission rate. Image processing also needs to meet the requirements
of long-term stable real-time monitoring under uneven changes of temperature and light,
occlusion, and real-time processing of image data, and to output reliable displacements.
These challenges and problems will be important parts to be considered in future research
and engineering practice.
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4.1. Application Scenario of Computer Vision Monitoring System

Researchers began to use video analysis in civil engineering structure monitoring
and achieved results. At present, computer vision-based monitoring technology has been
applied to many fields of SHM, including bolt looseness detection [97–99]; quantifying
disaster impact [100–104]; cable force monitoring [55,105–108]; modal frequency mon-
itoring [2,19,52,63,74,95]; structural deformation measurement in 2D [34,109–112] and
3D [50,113]; bridge structural influence line [27,28] and influence surface measurement [29];
structural damage detection and localization [51,52]; updating finite element models of
structures [114,115]; static and dynamic rotational angle measurement of large civil struc-
tures with high resolution [116], and spatio-temporal distribution of traffic loads [117].

In practice, researchers have found the influence of computer vision-based mon-
itoring system on practical applications. According to the system composition, these
influencing factors are divided into two aspects: physical influence research and target
tracking algorithm influence research. Physical influence corresponds to the image acqui-
sition system, and target tracking algorithm corresponds to the image processing system.
Sections 4.2 and 4.3 will focus on the impacts of these two aspects, analyze their influence
mechanisms, and present some solutions.

4.2. Hardware Impact and Environmental Impact
4.2.1. Hardware Impact

The camera and targets are the main parts of the image acquisition system. In field
applications, we need to consider the stability of the long-term use of the camera and solve
the problem that target cannot be installed on some structures.

• Camera

Shutter mode and photosensitive chip size can lead to a difference in imaging. The
rolling shutter method may cause image distortion when recording fast-moving objects.
When using this type of camera, the effect of this distortion on the measurement results
should be corrected, and a global shutter can solve this problem [110,118]. The bigger the
photosensitive chip, and the higher the picture pixel density, the higher the theoretical
measurement accuracy, but the higher the economic cost. In addition, camera heating will
cause chip heating, resulting in errors. Ma et al. [119] conducted an in-depth study on the
strain measurement errors caused by self-heating of CCD and CMOS cameras. When the
temperature increases, the virtual image expansion will cause a 70–230 µε strain error in
the DIC measurement, which is large enough to be noticed in most DIC experiments and
hence should be eliminated.

The inherent frequency of a structure determines the sampling frequency of the camera.
According to Nyquist’s Theorem, when the sampling frequency is less than twice that of
the measured signal, aliasing (i.e., false low-frequency components in the sampled data)
may occur. Different sampling frequencies should be adopted for different structures: a
rigid structure needs high sampling frequency, while a flexible structure can permit a lower
sampling frequency. This not only can save energy, but also can reduce calculation and
allow real-time monitoring. For example, if the highest frequency at which significant
(visibly detectable) motion of the bridge structure occurs is below 10 Hz, then a sampling
rate of 20 Hz should be sufficient to avoid aliasing.

• Target

The target is key to the accuracy of computer vision measurement. There are two types
of targets: artificial targets and natural targets. The artificial target is an obstacle in the
field application of current computer vision-based measurement methods. It must be
attached to the surface of the measured object. The installation of artificial targets may
require equipment such as a bridge inspection vehicle, which is not only time-consuming,
but also unsafe. In addition, the installation of artificial targets may change the dynamic
characteristics of the structure [74]. Brownjohn et al. [112] studied the effect of the properties
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of targets (including both artificial targets and edge features of the structure). The results
show that the noise of the vision sensor is inversely proportional to the size of the target.

Ehrhart et al. [120] attached a circular target to a pedestrian bridge to measure the
bridge vibration, and proved that, for a single frame structure and an observation distance
within 30 m, a motion larger than 0.2 mm can be detected. Khuc et al. [32,64] proposed
a new vision-based displacement measurement method that did not require installation
of manual markers and instead used robust features extracted from the image as virtual
targets. Fukuda et al. [2] and Ye et al. [121] used feature matching between continuous
images to realize displacement measurement. Yoon et al. [38] introduced a target-free
approach for vision-based structural system identification using the Kanade–Lucas–Tomasi
(KLT) tracking algorithm and Shi–Tomasi corners. This work could accommodate multi-
point displacement measurement of a six-story building model in the laboratory; however,
it did not provide verification with conventional displacement sensors. Dong et al. [74]
extracted virtual markers from images using robust feature detection algorithms that
represent texture or other unique surface features of the structure, and can select the best
markers according to different scenarios. They thus made the matching algorithm more
adaptive, and verified the effectiveness of the algorithm by measuring structural vibrations
of soccer stadium bleachers. Kim et al. [105] carried out environmental vibration tests
on the Gwangan Bridge in South Korea to measure the sling structure motion without
any target to verify the effectiveness of the non-target strategy in the measurement of the
dynamic characteristics of bridge hanger cables.

At present, feature point matching and shape matching are mainly used in target-
free strategies, because these two methods can effectively utilize original features of the
structure and have robustness to illumination variation.

4.2.2. Environmental Impact

When it comes to field monitoring applications, a variety of external environmental
factors that are rare in the laboratory, such as temperature change, camera movement
caused by environmental vibration, illumination change, and illumination mutation caused
by shielding, will lead to the increase of image noise and the decrease of matching accuracy.
In order to solve these problems, researchers have made efforts to reduce the systematic
errors caused by these factors. This section first classifies these environmental influences
according to their error mechanisms and then summarizes the current solutions.

• Optical refraction

Refraction is a complex optical phenomenon occurring naturally, and vision sensors
are easily affected by optical refraction at high temperature, so it is still a challenge to
monitor a structure remotely using vision sensors. It can be observed that the change of
air density caused by heating causes a change of optical refractive index, which leads to
distortion of video images and thus error in displacement measurement. Optical refraction
error caused by uneven heating of the air is shown in Figure 4. During a field test, when
the air between the camera and the target structure was heated unevenly, measurement
error increased as the measurement distance increased [1].
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At present, the research on optical refraction mainly focuses on techniques related
to static image restoration (that is, processing image distortion). There are many ways to
reduce distortion in a single image, such as lucky image, using region-level fusion based
on the dual tree complex wavelet transform [122], multi-frame super-resolution reconstruc-
tion [123], B-spline-based nonrigid registration [124], and derivative compressed sensing.
However, these techniques are custom-made for static images and therefore do not apply
to distinguishing structural motion. Luo et al. [125] used a normal random distribution
to fit the error caused by optical refraction, which reduces the displacement measurement
error caused by optical refraction by about 67.5%. Luo et al. [126] comprehensively studied
the characteristics of distortion and displacement error caused by hot air, established a hot
air error model, and quantified the measurement error caused by hot air through bridge
displacement measurement experiments carried out in high-temperature weather.

Up to now, the influence of optical refraction on vision-based measurement has rarely
been mentioned. However, the error caused by optical refraction can reach 50 mm, which
shows the importance and necessity of this research. According to Owens’s [127] research,
the refractive index of air varies with air pressure, air temperature and air composition.
Therefore, when considering the influence of thermal haze, the effects of humidity and air
pressure should also be considered.

• Camera motion

In addition to temperature change, the position of the camera will change due to
various influencing factors (e.g., traffic load, thermal expansion and cold shrinkage of
brackets, or loose structures). When measuring a real structure outdoors, the position
and direction of the camera often change slightly due to wind, vibration and ground
instability [128]. Ye et al. [50] believed that the thermal expansion and cold contraction of
the mounting bracket would also cause a small change in the position of the camera, and this
small motion of the camera, even a very small rotation, would lead to a very large error with
increasing range. Figure 5 is a vision-based monitoring system in which the target is fixed,
and Figure 5a,b show the errors caused by camera translation and rotation, respectively.
It can be seen that, when the camera translates a distance dy along the vertical optical
axis, the error is dy; However, when the camera rotates slightly through an angle dθ , the
error caused is L·tandθ , which is unacceptable. Therefore, in order to improve the accuracy
of absolute displacement estimation, several camera motion subtraction techniques have
been developed: (1) digital high-pass filtering (DHF) [15,129]; (2) background modification
(BM) [51,106,130]; (3) inertial measuring unit (IMU) [131]; and (4) ego-motion compensation
(EC) [132].
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At present, DHF and IMU are mainly used in the field of unmanned aerial vehicle
(UAV) displacement measurement, in which DHF can eliminate UAV flight frequencies
the by digital high-pass filtering. Garg et al. [15] removed the low-frequency component
of the UAS using a high-pass Butterworth filter, and measured the displacement response
of a railway bridge under train load; the estimated peak and RMS errors were under 5%
and 10%, respectively. An IMU consists of a DC gyroscope and accelerometers that can
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respond to very low frequency (almost 0 Hz) vibrations. Ribeiro et al. [131] estimated
the displacement and rotation of a UAV by numerical integration, and measured a static
concrete structure with a peak value error of 1.47 mm (15.5% relative error) and an RMS
error of 9.3%.

BM is a simple and convenient method which uses fixed objects such as buildings and
mountains as reference points in the background to calculate the relative displacement of
the target [51,106,130]. This method is effective to measure the absolute displacement of a
structure during the flight of a UAV. Yoon et al. [118] reproduced the vertical dynamic dis-
placement of a pin-connected steel truss bridge undergoing revenue-service train traffic for
250 s in the laboratory using a servo-hydraulic motion simulator. By tracking background
characteristics, the motion of the UAV was modified, and the root mean square error of the
corrected displacement was reduced from 116 mm to 2.14 mm. Yoneyama et al. [128] mea-
sured the plane rotation and translation of a rigid body and changed the camera position
and angle. Even if the camera rotation angle is more than 30◦, the error is less than 0.1 mm,
which verified the feasibility of deducing multi-degree-of-freedom motion of the camera
through background correction. Chen et al. [133] measured the antenna at the top of a
building with the building itself as a reference point, and measured the relative motion of
the antenna. Compared with the frequency measured by a laser vibrometer at close range,
the error was less than 1.7%. Khaloo et al. [134] used a distance-based outlier detection
method based on Chebyshev’s theorem [135] to accurately estimate the flow vector of pixels
in the static background region and subtracted this from the structural pixel flow vector to
correct the undesired camera motion.

When the background conditions cannot be satisfied, Lee et al. [132] proposed a long-
term displacement measurement strategy that uses a sub-camera to aim at a fixed target
near the installation position and calculates the relative motion of the dual-camera system
to correct the displacement measured by the main camera. This technical reduced the
motion error from 44.1 mm to 1.1 mm.

DHF and IMU may be more suitable for the displacement measurement using drones,
because drones always fly with a low-frequency vibration. For long-term monitoring in a
relatively stable environment, where there will be no low-frequency vibration, these two
techniques have high computational complexity and high cost. Therefore, they are not
suitable for long-term monitoring. BM and EC are relatively simple to calculate and have
good adaptability to different scenarios, and researchers have carried out field experiments
for up to four months to verify their effectiveness [50,132]. These are solutions that can be
considered for widespread use.

• Illumination changes and partial occlusion

Optical refraction, camera motion, illumination change and partial occlusion all lead
to measurement errors, but the mechanisms are different. Optical refraction and camera
motion cause measurement errors, but do not cause changes in image quality, while illumi-
nation change and partial occlusion will lead to image quality degradation or even failure
to produce a usable image, resulting in the inability to find the target correctly. Deforma-
tion monitoring methods based on computer vision are easily affected by environmental
conditions when they are applied on a project site [136].

Shi et al. [66] proposed a feature selection criterion based on how the tracker works,
which is an optimality criterion based on construction, through which occlusion and point
mismatched features can be detected. Yuan et al. [137] proposed a new interpretation
standard, which achieves an accuracy of 0.01~0.02 mm under different light intensity
conditions and is more accurate than the NCC method. Ullah et al. [138] proposed ori-
entation code matching (OCM), which is based on matching the gradient information
around each pixel in the form of an orientation code and is robust to background changes
and to illumination fluctuations caused by shadows or highlights. Feng et al. [51,111,114]
developed the OCM algorithm into an application program for civil engineering struc-
tures. Through indoor shaking table tests, the frequency of a frame structure and the
displacement time history of a railway bridge under train load were extracted, and the
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robustness of the proposed vision sensor to adverse environmental conditions such as low
light, background image interference and partial template occlusion was verified. This is of
great significance to the development of computer vision in civil engineering displacement
monitoring. Luo et al. [139,140] proposed a new edge enhancement matching technique,
which can extract both gradient magnitude and gradient direction at the same time, and
can track low-contrast features robustly. This technique was verified on a 16.9 m span steel
girder railway bridge and a 448 m span steel suspension bridge. Lee et al. [33] firstly used
adaptive region of interest (ROI) cropping to narrow the search range, obtained the marker
boundary through an edge detection filter, and verified the robustness of the algorithm
to illumination by field experiments. Khuc et al. [64] used a geometric transformation
method to discard the outliers in the matching pool, so as to reduce the problem of incorrect
matching due to frequent illumination changes and monitor the vibration of a stadium
stand structure.

In order to overcome the influence of illumination change and partial occlusion, deep
learning methods were introduced. Lichao et al. [141] proposed a convolutional neural
network structure to learn the adaptive target template update strategy for a given initial
template, cumulative template and current frame template. Xu et al. [47] proposed a new
algorithm that integrates depth learning, a convolutional neural network and correlation-
based template matching. This algorithm covers adjacent regions by changing the size
and local movement of the template region and can adapt to drastic changes of the target
pattern. It was verified in short-range and long-range monitoring activities, considering
background change, illumination change and shadow effects. Dong et al. [142] used spatio-
temporal context learning and Taylor approximation to track the target, and verified the
robustness under illumination change and fog interference.

Summarizing the above-mentioned methods, there are currently two main types of
methods to solve the light transformation and partial occlusion problems: (1) using image
gradient magnitude and direction to extract image edge information for target tracking,
which is robust to illumination changes and partial occlusion; and (2) using deep learning
methods to train the template and background, which can adapt to constant changes in
illumination and background.

4.3. Impact of Target Tracking Algorithm

Target tracking algorithms directly determine the speed and accuracy of displacement
calculation, and depend on the acquisition of high-quality images. The images collected in
the field are often accompanied by significant noise (such as Gaussian noise, exponential
distribution noise, Rayleigh noise, uniform distribution noise, or salt and pepper noise),
and this noise will lead to reduced target tracking accuracy. This section introduces
(1) field image preprocessing; (2) real-time performance of the algorithm; (3) accuracy of
the algorithm; and (4) the choice of algorithm and how to balance accuracy and efficiency.

4.3.1. Image Preprocessing

The quality of the image directly affects the accuracy of the recognition algorithm, so
preprocessing is needed before image analysis. The main purpose of image preprocessing
is to simplify the data to the maximum extent so as to improve the reliability of feature
extraction, image segmentation, matching and recognition. In field applications, external
factors such as sudden changes of illumination, rain, and environmental vibration cannot be
controlled. In order to estimate the dynamic characteristics of the structure in this case, image
processing technology is especially important [105]. The common digital image processing
technology in computer vision includes image transformation, image coding compression,
image enhancement and restoration, image segmentation and image description.

In order to correct the geometric distortion between a deformed image and an unde-
formed image, Kim et al. [14] developed an image processing algorithm which reduces
the noise in the frequency domain by natural frequency analysis and accurately measures
the dynamic response of a sling. In order to obtain concrete information on steel can-
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tilever beam damage, Song et al. [52] first performed noise filtering by using a discrete
wavelet transform, and then provided precise damage localization by using a continuous
wavelet transform. Javh et al. [143] combined accelerometer and camera data and used the
complex frequency domain least square method to avoid the burden of noise data from
the high-speed camera and to measure the modal frequency of a scaled cantilever model.
Kim et al. [106] applied spatial image enhancement technology, a smoothing filter and a
sharpening filter to reduce image noise and also improve the fuzzy part, which improved
the recognition rate of a sling, resulting in a measured cable force error less than 1.1%.

At present, image processing technology has been widely used in the field of vision-
based monitoring. However, for different application scenarios, it is an unsolved problem to
determine the settings of many parameters (filter, binarization, image pyramid). In addition,
excessive image processing requires lengthy calculations, which makes application of image
preprocessing techniques to vision-based measurement a challenge.

4.3.2. Measurement Efficiency

Most of the short-term laboratory and field applications are post-processing of recorded
images or video files to obtain structural deformation information. On the one hand, the
algorithm cannot process the collected image files in real time; on the other hand, it can analyze
the saved video files many times to get satisfactory results. While a long-term monitoring
system requires real-time and stable output of structural deformation information, the compu-
tational efficiency of algorithms can limit the application of vision sensors when high-frequency
measurements and simultaneous measurements at multiple points need to be obtained.

Lecompte et al. [144] investigated the effect of the size of a subset of the scatter pattern
on the measured in-plane displacement efficiency, and showed that the larger the subset, the
higher the efficiency. Guizar-sicairos et al. [87] proposed the upsampled cross correlation
(UCC), whose registration accuracy is very accurate for nonlinear optimization algorithms,
but greatly reduces the calculation time and memory requirements. Zhang et al. [145] pro-
posed an improved Taylor approximation refinement algorithm and a subpixel localization
algorithm, both of which are at least five times faster than UCC. Feng et al. [1,114] limited
the search area to the predefined ROI near the template position in the previous image, and
then processed the ROI region frame by frame using UCC and OCM algorithms. Through
shaking table tests of a frame structure, it was verified that a vision sensor could quickly
track the multi-point displacement time history of artificial targets or targets on the structure
with a maximum RMS error of 0.72%. Dong et al. [74] used a sparse optical flow calculation
method (Lucas–Kanade method), which greatly reduces the number of calculated pixels
compared with the global optical flow, and accurately measures the dynamic response of
the grandstand structure of a football stadium under crowd load. Guo et al. [146] proposed
an improved inverse synthesis algorithm based on Lucas–Kanade, which can complete
a displacement extraction in 1 millisecond without the need to install any pre-designed
targets on the structure.

In addition to increasing the computational efficiency of the algorithm, improving the
hardware configuration can also increase the measurement efficiency, but raises the cost.

4.3.3. Measurement Accuracy

Measurement accuracy is an important indicator of deformation monitoring perfor-
mance. Unlike indoor measurement, on-site measurement often requires long-distance
measurement, and the measurement accuracy decreases with increase of the measurement
distance. Under certain hardware conditions, the sub-pixel estimation method can solve
the measurement accuracy problem to some extent. Pan et al. [147] summarized subpixel
methods, including the coarse–fine search method, double Fourier transform, genetic
algorithms, artificial neural network methods, correlation coefficient curve-fitting or inter-
polation, Newton–Raphson iteration, and gradient-based methods, and pointed out that
the latter three methods are the most commonly used due to their simplicity, effectiveness
and accuracy. The subpixel method can solve the problem of detection accuracy, and it
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is necessary to improve the computational efficiency of subpixel accuracy for practical
engineering application.

MacVicar-Whelan et al. [148] and Jensen et al. [149] respectively proposed linear in-
terpolation and nonlinear interpolation to improve image resolution, which improves the
measurement accuracy to some extent. Bruck et al. [150] proposed a new digital image pro-
cessing algorithm (Newton–Raphson iteration algorithm), and their experiments show that
the Newton–Raphson iteration algorithm can determine displacement and displacement
gradient more accurately than a coarse-fine search method. Pan et al. [151] combined an
inverse compositional matching strategy with Gauss–Newton without sacrificing subpixel
accuracy, and proposed the inverse-compositional Gauss–Newton (IC–GN) algorithm,
which is 3 to 5 times faster than the Newton–Raphson iterative algorithm, with an accuracy
of less than 0.0222 pixels in the x and y directions. Tian et al. [93] used an efficient and
accurate IC–GN algorithm to track a target point, monitored multi-point displacement
on a steel truss highway railway bridge, and achieved an accuracy of 0.57 mm at 288 m.
Qu et al. [152] proposed an edge detection method combining a pixel level method (So-
bel operator) and a subpixel level method (Zernike operator), which is much faster than
the Zernike operator, but the detection accuracy is close to that of the Zernike operator.
Zhang et al. [145] integrated improved Taylor approximation refinement and localization
refinement into vision-based sensors and measured the vibration of a high-speed railway
noise barrier. These two improved algorithms (Taylor approximation refinement: RMS
error 0.61%, localization refinement: RMS error 0.73%) are at least 5 times faster than tradi-
tional UCC (RMS error 0.75%) when the accuracy is similar. Dong et al. [42] combined SIFT
feature point and Visual Geometry Group (VGG) descriptor (SIFT–VGG) algorithms as a
strategy for vision-based displacement measurement. This integrated strategy improves
the measurement accuracy of the original SIFT method by 24% and greatly improves the
accuracy of displacement recognition. Fukuda et al. [19] used the azimuth obtained by
bilinear interpolation to achieve sub-pixel resolution when measuring structural vibration
(vibration frequency: 0.1 Hz~50 Hz, vibration amplitude: 50 mm), with the standard error
reduced from 0.14 mm to 0.043 mm. Feng et al. [1] used different levels of subpixel accuracy
and pixel accuracy comparison in the laboratory, proved that there is a linear relationship
between subpixel accuracy and subpixel level, and accurately measured structural vibration
of less than 1 mm. Mas et al. [153] proved the realistic limit of sub-pixel accuracy through
a simple numerical model, and found that the maximum resolution enhancement and
dynamic range of the image can be achieved.

In these studies, it is found than subpixel can make the measurement accuracy reach a
higher level. Many studies have shown that subpixel accuracy varies on the order of 0.5 to
0.01 pixels [147,153]. In theory, subpixel algorithms can achieve the maximum accuracy of
displacement calculation, but in practical applications, where real experimental images may
be contaminated by many factors such as environmental vibration, temperature change,
camera heating, and illumination change, the accuracy often fails to reach ideal levels. In
addition, few reported quantitative works have been performed to systematically evaluate
their subpixel registration accuracy and computational efficiency or have attempted to
solve an existing discrepancy. It is necessary to understand the limitations and performance
of these sub-pixel registration algorithms.
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4.3.4. Suggestions for Field Application Algorithms

Reviewing the development of application research and engineering practice of SHM
based on computer vision, we find it has made great progress. Until now, computer
vision has been continuously developed and applied to various fields of civil engineering
monitoring. In the application of structural health monitoring based on computer vision,
target tracking is the most important step, which directly determines the efficiency, accuracy
and reliability of vision sensors. However, the performance of target tracking algorithms
depends on application scenarios, and researchers have found applicability and limitations
of different algorithms in engineering practice. Table 1 summarizes the advantages and
limitations of these algorithms and lists their application scenarios.

Table 1. Characteristics, limitations and application scenarios of the proposed tracking algorithms.

Algorithms Characteristics and
Restraints Application Scenarios

Shape matching

High efficiency, real-time
monitoring, robust properties
to non-uniform illumination

and partial edge blur, distinct
geometry features;

short-distance monitoring

Cable structure, tower,
long-span bridge, stadium

Feature point matching

High efficiency, high accuracy,
robust to illumination change,

distinct geometry features;
rich surface texture, uncertain

number of feature points,
short-distance monitoring

Stadium structure, footbridge,
railway bridge, urban bridge

Optical flow algorithm

Full field displacement,
natural target, suitable for

motion tracking;
short-distance monitoring,
sensitive to illumination

change and partial occlusion

Stadium structure, footbridge,
railway bridge, urban bridge

DIC template matching

Long-distance and
short-distance monitoring;
artificial target, sensitive to

illumination change

Cable structure, long-span
bridge, stadium structure,
footbridge, railway bridge,

urban bridge, tower

4.4. Measurement Results

Table 2 classifies the problems from Sections 4.1–4.3 and presents the current solutions
and the results achieved in practical applications. However, these measurement results were
determined in specific environments, and actual measurement results must be determined
according to the camera resolution, measurement distance, lighting environment and target
contrast used in the field.
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Table 2. Measurement results.

Research Point Reference Algorithms Test Description Results

Target

Ehrhart et al.
[120] (2015)

Shape matching
(artificial target)

Shaking table test, least squares fit of ellipse,
precision quantitative evaluation of accuracy

At the distance of 6 m and 31 m, the error
is less than 0.01 mm and 0.2 mm,

respectively

Tian et al.
[93] (2016)

DIC template matching
(artificial target)

Field test, DIC technology based on IC-GN,
displacement~time history curve

At the distance of 300 m, the average
error is 0.5674 mm

Feng et al.
[115] (2015)

Template matching
(natural target)

Railway bridge test, modal identification,
modify finite element model

At the distance of 9 m, the vision sensor
and the accelerometer measure the exact

same first-order frequency

Khuc et al.
[64] (2017) Feature point matching (natural target)

Stadium grandstand structure test, feature
extraction with Hessian matrix, dynamic

displacement measurement

At the distance of 3 m and 13 m, the error
is less than 0.01 mm and 0.04 mm,

respectively

Khuc et al.
[154] (2020) Feature point matching (natural target) Tower test, Canny edge detection and Hough

transform, modal identification
At the distance of 1.84 m, first-order

natural frequency error below 2%

Camera motion and optical
refraction

Garg et al.
[15] (2019) Digital high-pass filtering Shaking table test, dynamic displacement

measurement

At the distance of 4 m, the maximum
error is between 10~15%, and the RMS

error is between 2~5%

Ye et al.
[50] (2021) Background modification Long-term field monitoring, 3D structural

deformation measurement

Eliminate the error caused by thermal
expansion and cold contraction of

camera bracket

Lee et al.
[132] (2020) Ego-motion compensation Long-term field monitoring, displacement

measurement
Measurement error is reduced from

44.1 mm to 1.1 mm

Ribeiro et al.
[131] (2021) Inertial measuring unit Experiment test, modal identification, dynamic

displacement measurement

The maximum error of displacement
measurement is 1.47 mm and RMS error

is 9.3%

Luo et al.
[125] (2020) Adaptive optical-turbulence error filter Field test, displacement~time history curve

Measurement errors are significantly
reduced by about 67.5% from 0.0845 to

0.0275 mm
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Table 2. Cont.

Research Point Reference Algorithms Test Description Results

Illumination change and
partial occlusion

Ribeiro et al.
[21] (2014) Artificial light source Field test, using artificial light source,

displacement ~ time history curve

At the distance of 15 m and 25 m, the
error is less than 0.1 mm and 0.25 mm,

respectively

Feng et al.
[111] (2015)

A matching algorithm based on the
gradient information

Field test, a matching algorithm based on the
gradient information, dynamic response of
steel and concrete bridges under train load

At the distance of 30.48 m, the maximum
displacement error is 2.83%, and the

average error is 1.39%

Shan et al.
[155] (2015) Shape matching Cable force measurement, shape matching,

cable modal identification

The first three frequencies of free
vibration of stayed-cable model are

accurately measured

Dong et al.
[142] (2019)

A matching method based on
Spatio-Temporal Context Learning

Experiment test, a matching method based on
Spatio-Temporal Context Learning,

illumination change and fog interference,
displacement~time history curve

The proposed subpixel estimation
method is faster than UCC by about

50 times

Xu et al.
[47] (2021) Combined with deep learning Field test, displacement~time history curve Centimeter-level accuracy can be

achieved at distances of more than 715 m

Image preprocessing

Kim et al.
[105] (2013) Image transform technology

Ambient vibration tests, suspension bridge
hanger cables, dynamic response and modal

frequencies

The error of measuring sling modal
frequency and cable force is within 0.5%

Kim et al.
[106] (2013) Image enhancement techniques Ambient vibration tests, smoothing filter and

sharpening filter, stay cables, dynamic response

The error of measuring suspension bridge
hanger cables natural frequency and cable

force is within 2%

Tian et al.
[62] (2019)

Image description and segmentation
technology

Impact test, Hough transform based on
gradient, modal parameters identification

The recognition rate of vibration mode is
more than 84%
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Table 2. Cont.

Research Point Reference Algorithms Test Description Results

Measurement efficiency and
accuracy

Qu et al.
[152] (2005)

Edge detection method using
Sobel-Zernike moments operator numerical tests

The accuracy reaches 87.75% of the
sub-pixel level, and the speed is increased

by 5 times

Pan et al.
[156] (2011)

DIC template matching based on
Newton-Raphson algorithm

Experimental verification, full filed
deformation measurement

Without any loss of measurement
accuracy, the calculation speed is

increased by 120~200 times

Pan et al.
[151] (2013) DIC template matching based on IC-GN Numerical tests and experimental verification The proposed IC-GN is 3~5 times faster

than Newton-Raphson

Zhang et al.
[145] (2016)

Integrate two efficient subpixel level
motion extraction algorithms

Experimental verification, Taylor
approximation refinement algorithm and the
localization refinement algorithm, dynamic

vibration analysis

In the case of similar accuracy, it is at least
5 times faster than the traditional UCC

method (RMS error 0.75%)

Xu et al.
[157] (2019)

Fuse the vision-based displacement
measurement with acceleration data

Field test, short-span railway bridge,
displacement ~ time history curve

The RMS of measurement noise at the
camera-to-target distance of 6.9 m is less

than 0.2 mm
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4.5. Other Impacts

An SHM system requires long-term stability in order to assess the state and perfor-
mance of a structure. The displacement measurement methods in the literature mainly
focus on short-term measurements of up to several hours. For long-term measurements of
up to several months or even years, the uncertainty and reliability of the computer vision
system still need further research. In addition, data acquisition, data transmission and data
processing in computer vision systems are new challenges and require highly specialized
personnel during and after equipment installation and maintenance, which will require
new resources.

When multiple vision-based displacement measurement subsystems need to work
together or to measure the displacement of multiple measurement points at the same
time [158], the problem of time synchronization of multiple cameras must be solved.
Luo et al. [159] developed a vision-based synchronization system using master/slave sys-
tems for wireless data communication in order to simultaneously measure multiple points
of the structure. Fukuda et al. [2] developed a time synchronization system that connected
multiple displacement measurement subsystems using a local area network, enabling
computers to communicate with each other using the TCP/IP protocol. Dong et al. [74]
synchronized all cameras and potentiometers using an NI Multifunction I/O Device to
ensure that multiple cameras and sensors worked synchronously.

5. Conclusions and Prospects

This paper briefly describes the composition of computer vision monitoring systems,
introduces the basic monitoring process and methods, and pays special attention to the
problems and solutions encountered in the application of computer vision in the field
environment. From the examined articles, the following main conclusions can be made:

(1) At present, the main application of computer vision in the field of SHM is still focused
on the measurement of displacement time history curves of scale models under static
and dynamic loading in controlled conditions and for short terms.

(2) A large number of experimental tests and short-term field tests promote the formation
of the basic framework of computer vision deformation monitoring systems, and
existing research has focused on improving the applicability and stability of image
processing algorithms.

(3) Structural deformation monitoring systems based on computer vision have had some
solutions to cope with individual external influences (such as target installation
difficulty, illuminate change, camera movement and climate transformation). The
accuracy and reliability of computer vision-based structural deformation monitoring
has made great progress and is gradually approaching practical long-term monitoring.

It has been more than 30 years since computer vision was first applied to civil en-
gineering structural measurement. Vision based sensors have made great progress and
achievements in technology, but they still face some limitations and challenges. In the
future, we need to do more in these aspects: (1) devise simpler programs or devices to pro-
mote their long-term applications in practical engineering; and (2) uncertainty evaluation
of vision sensors in long-term applications.
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