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Abstract: Laser beam welding offers high productivity and relatively low heat input and is one key
enabler for efficient manufacturing of sandwich constructions. However, the process is sensitive to
how the laser beam is positioned with regards to the joint, and even a small deviation of the laser
beam from the correct joint position (beam offset) can cause severe defects in the produced part.
With tee joints, the joint is not visible from top side, therefore traditional seam tracking methods
are not applicable since they rely on visual information of the joint. Hence, there is a need for a
monitoring system that can give early detection of beam offsets and stop the process to avoid defects
and reduce scrap. In this paper, a monitoring system using a spectrometer is suggested and the
aim is to find correlations between the spectral emissions from the process and beam offsets. The
spectrometer produces high dimensional data and it is not obvious how this is related to the beam
offsets. A machine learning approach is therefore suggested to find these correlations. A multi-layer
perceptron neural network (MLPNN), support vector machine (SVM), learning vector quantization
(LVQ), logistic regression (LR), decision tree (DT) and random forest (RF) were evaluated as classifiers.
Feature selection by using random forest and non-dominated sorting genetic algorithm II (NSGAII)
was applied before feeding the data to the classifiers and the obtained results of the classifiers are
compared subsequently. After testing different offsets, an accuracy of 94% was achieved for real-time
detection of the laser beam deviations greater than 0.9 mm from the joint center-line.

Keywords: laser beam offset; feature selection; laser beam welding; machine learning; spectrometer;
tee joint

1. Introduction

Laser beam welding (LBW) is an important manufacturing process with a widespread
application from automotive and ship building to aerospace and micro-electronics [1,2]. LBW
presents many advantages compared to traditional arc welding such as higher welding travel
speeds, ease of automation, less heat induced residual stress and deformation, deeper penetra-
tion and forming a small heat affected zone [3–6]. In addition, being a non-contact method,
LBW offers extreme flexibility in the geometry of the joint to be welded such as in the case of
tee joints. Tee joints provide higher structural strength and lower weight, and stake welded tee
joints have wide applications for example in marine industry [7–9].

However, just like other manufacturing- and welding processes, defects and disconti-
nuities may be formed during LBW. Some of the defects can be prevented or corrected by
in-process monitoring and control. Furthermore, collected data during the process, can be
used for offline analysis or building machine learning (ML) models to be used in-process
applications such as go/no-go systems.

In-process monitoring of LBW has been subject to extensive research, and different
combinations of sensors and algorithms have been used to detect defects and discontinuities.
Considering the characteristics of LBW, most of the monitoring methods are based on data
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from optical radiations from the welding zone [10]. However, acoustical sensors and X-ray
imaging are also used for monitoring LBW [11–15]. Monitoring methods are developed
based on the target characteristic such as joint gap width variations, spatter, keyhole
stability and laser beam (LB) offset detection. A high-power LBW monitoring system was
developed by Li et al. [16], using X-ray transmission imaging system and high speed
cameras. The research investigated the relation between the molten pool behavior and
formation of spatters. Another monitoring system was developed in [17] for dynamic
keyhole profile monitoring based on the vapor-generated wave.

In another research [18] the correlation analysis of the plasma plume optical spectra
generated during LBW was used for in-process monitoring. As a result, the formation
of weld defects were detected using the optical emissions and the co-variance mapping
technique. The laser-induced plasma plume electron temperature signal, calculated based
on the optical spectra acquired during the LBW process, was also shown in [19] to be
correlated to the occurrence of welding defect. Sibillano et al. [20] utilized an optical
spectroscopic sensor for real-time control of the LBW process. The optical emission above
the keyhole was used to calculate the laser plasma plume electron temperature. The
relationship between the electron temperature and penetration depth was used as the input
to a PI controller with the purpose of stabilizing the penetration depth in overlap welding.
The results were validated afterwards using microscopic analysis of the seam cross sections.

In addition to the spectrometers for real-time and non-destructive monitoring, photo-
diodes also have been utilized for monitoring of LBW [21–23]. However, a combination of
photo-diodes is necessary to cover the whole relevant spectral range. In a study conducted
by Nilsen et al. [24], a dual vision and spectroscopic sensing system was employed to
monitor a varying joint gap during LBW. Image processing techniques followed by Kalman
filter were used to estimate the gap width, using the data captured by a CMOS camera.
In addition, the gap estimation was realized using the intensity of spectral lines provided
by a spectrometer.

Machine learning techniques are widely used for classification and prediction prob-
lems in diverse fields [25–32] as well as welding monitoring and discontinuity detection.
In a research conducted by Chen et al. [33] artificial neural network (ANN) and support
vector machine (SVM) were employed to classify welding defects using emission spectrum
data. Feature extraction methods were applied before feeding data to the classifiers. The
data were divided into 3 labels, namely no defects, pores and bead separation. The results
indicated good performance of the classifiers in detecting defects and ANN demonstrated
slightly better results compared to SVM.

In another research [34], a deep neural network (DNN) was employed for quality
assessment of the LBW. A spectrometer used for collecting data and and the measured data
were converted to RGB values. The collected data were related to 4 classes of unwelded,
incomplete penetration, full penetration and unwelded with a gap. After training the
model, a classification accuracy of 90% was achieved. Fan et al. [35] developed a model
based on auxiliary classifier generative adversarial network (ACGAN) and convolutional
neural networks (CNN), for real-time LBW defect detection. ACGAN was used to generate
fake data based on data collected by optical and thermal sensors, to increase the samples in
training data set, and CNN classified the data.

On-line beam offset detection is particularly relevant for tee joints. Indeed, as seen in
Figure 1, during welding of tee joints, it is not possible to detect the deviation (beam offset)
between the LB and the joint center-line from the top side by optical means, due to lack of
visibility. Beam offset detection during LBW has also been subject of several studies. In
a method developed in [36], a photo-detector and change point detection methods were
used for on-line and off-line LB deviation detection. In another study using photodiode
and signal processing [37], laser beam deviations were detected approximately 10 mm and
15 mm after the movement out of the joint using offline and online methods respectively.
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Figure 1. Stake welded tee joints [36].

In addition to the mentioned signal processing methods for LB offset detection, a
neural network was employed to detect the LB deviations from the join center line using
images collected by a camera and feature extraction techniques [38]. The extracted features
from the vision camera were used as inputs of a nonlinear autoregressive model. However,
error indicator results are not provided.

Despite previous and on-going research in LBW monitoring, lack of studies related
to LB deviation detection using ML, motivated the current study. This work fills this gap
and focuses on the monitoring of LBW of the tee joints for automatic LB offset detection. A
spectrometer was used for collecting the spectral emissions from the laser-metal interaction
zone and different classifiers were tested to investigate their provided classification accuracy
for the data. Before feeding the collected data to the classifiers, feature selection was applied
to select discrete wavelengths of the spectrometer, to increase the classification accuracy
and reduce the size of input vector. The equipment used in experiments is described in
Section 2, as well as data and data pre-processing steps and information about the classifiers.
The results are presented in Section 3 and are discussed in Section 4. Finally, Section 5 is
the conclusion.

2. Materials and Methods
2.1. Welding Setup and Spectrometer Measurements

The LBW equipment consists of a CNC gantry, a water-cooled high power ytterbium-
doped fiber laser and fixturing. The CNC gantry (from Isel® Germany mod. M40) was used
to maneuver the welding tool from Permanova Lasersystem AB. The LB with a Rayleigh
length of 12.5 mm was generated by a 6 kW IPG laser system (mod. YRL-6000-S) with a
1070 nm wavelength. The LB was focused on the face plate top surface with a diameter of
1.5 mm in focus and the power was in continuous wave resulting in keyhole mode welding.
The fixed power was set at 3500 W, the welding travel speed was 15 mm/s, and the flow
rate of the shielding gas Ar was 20 L/min. These parameters were experimentally derived
to produce a visibly good-looking weld seam. The welding was conducted without filler
material, and the plate material was S355MC high strength steel for both face and web
plates. As illustrated in Figure 2, the thickness of the plates was 2 mm and the width was
60 mm. The lengths of the face and the web plates were 150 mm and 170 mm, respectively.
Figure 2 shows a reference welding and different welding cases with linear deviations of
the LB from the web plate center line.
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Figure 2. The welding setup for the experiments.

The welding was monitored by a spectrometer (Ocean Optics HR2000+). During
welding, hot vapour emerging from the keyhole which is weakly ionized and a plasma
plume is formed. The generation of such plasma plume is frequently observed also in
case of 1-um wavelengths lasers, where the beam quality is high and multi-kW power is
employed producing a high laser intensity on the metal surfaces. The atomic and weakly
ionized chemical species composing such plasma plume, emit optical radiation that can be
collected by optical sensors such as spectrometers.

Compared to photo-diodes, spectrometers can resolve the incoming signal and sepa-
rate each wavelength, providing the possibility to get more information about the state of
the process, such as the plasma electron temperature [39,40]. In addition, the high dimen-
sion of discrete vector data acquired by the spectrometer enables the usage of advanced
signal analysis methods, such as ML. The spectrometer is low-cost and can be easily imple-
mented in a welding tool since it is a compact and non-contact device. The spectrometer
used in this work, is equipped with a 2048 pixel CCD array detector and 10 µm entrance
slit. It collects light in the wavelength range between 400–530 nm with a spectral resolution
of 0.07 nm. The welding setup for the experiments is presented in Figure 2.

The spectrometer was connected to the welding tool and used to collect light from
the interaction zone which was sent to the spectrometer entrance slit through a 200-µm
core optical fiber, as illustrated in Figure 3a. The exposure time during the acquisitions was
20 ms.
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Figure 3. The welding setup and controlled beam deviations. (a): Welding setup; (b): Top-view of
the joint. The red line indicates the beam path with controlled deviation.

2.2. Data Collection and Pre-Processing

In order to collect data, 14 different tests were realized where, in 4 reference test
cases, the LB spot followed the straight centre line of the joint, and in the other test cases
controlled linear deviations were applied (as seen in Figure 2). The collected raw data
related to all test cases are presented in Figure 4.

Figure 4. Time series of spectral data acquired during the tests. Each feature represents discrete
wavelengths of the spectrum while the sample number represents the time sequence acquired during
the tests.

As the next step, data of 2 tests related to controlled linear LB deviations with an offset
between −1.5 mm to 1.5 mm and −2.5 mm to 2.5 mm were separated to be the testing data
sets of the classifiers. The remaining data were used for feature selection and training of
the classifiers. The number of samples collected from each test were divided by the LB
deviation range, and the obtained numbers were set to be class 1 (without deviation) or
class 2 (with deviation), according to the pre-determined LB deviation limit. Afterwards
the labeled samples were shuffled and in order to balance the data in class 1 and class 2,
the same sample number of each class were selected.
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Random forest algorithm was used for selecting important wavelengths and in addi-
tion, a non-dominated sorting genetic algorithm II (NSGA II) was employed for feature
(wavelengths) selection and its cost function was set to be the mean accuracy for the testing
data set of an multi-layer perceptron neural network (MLPNN) in 10 runs, for each individ-
ual in each iteration. Data division for testing and training data sets of the cost function,
was set to be random (80% for training and 20% for validating and testing). The testing
data set for each individual in each iteration was unknown for the MLPNN, employed as
the cost function.

The selected wavelengths were fed to the classifiers namely MLPNN, support vector
machine (SVM), learning vector quantization (LVQ), logistic regression (LR), decision tree
(DT) and random forest (RT) and the obtained results from classifiers in each step of the
process were reported in Section 3.

Non-Dominated Sorting Genetic Algorithm II (NSGA II)

Non-dominated Sorting Genetic Algorithm II is a multi-objective optimization al-
gorithm, and it starts with a temporary solution in each iteration (Rt) containing the
population (Pt) and the offspring population of the same size (Qt) [41]. The offspring
population is generated by using genetic operations of mutation and crossover. It merges
the parents and offspring population and as a result, the next generation contains the best
individuals from both parents and offspring space. As a result, the best individuals will be
kept during the evolution process (elitism) [42]. After combining the parents and offspring
population, the population is ranked. Individuals in the first front, are not dominated by
the other individuals, and the individuals and consequent fronts are only dominated by the
individuals in previous fronts. The selection of parents for generating the next population
(Pt+1) is based on the number of the front and calculating the distance of each population in-
dividual with the neighboring individuals in the same front by using crowded-comparison
operator [43]. The crowding distance indicates the density of solutions surrounding an
individual. In order to maintain the diversity, individuals in less crowded regions are
preferred [44].

2.3. Classifiers
2.3.1. Multi-Layer Perceptron Neural Network (MLPNN)

Multi-layer perceptron neural networks consist of input layer, at least one hidden layer
and output layer. The MLPNN employed in this work, is a three layers feed-forward network,
in which all neurons of the previous layer are connected to the all neurons of the next layer.
The weights of these connections are updated during the training process. The output of each
neuron is multiplied by the connection weight and passes through an activation function
and summation with the outputs of the other connected neurons [45]. The output of each
layer is calculated by following equation:

a = φ(∑
j

wjxj + b) (1)

where, wj, xj, b and φ are weights, inputs, bias and activation function respectively.

2.3.2. Support Vector Machine (SVM)

Support vector machine is a supervised learning method introduced by Boser, Guyon,
and Vapnik [46]. It is one of the most used classification methods because of its robustness
and generalization ability [47]. SVM separates the data by matching them to feature space and
using a hyper-plane and if data are not linearly separable, nonlinear kernels are used [48]. The
common mathematical description of this optimization problem is given below:

minω,b,ξi
1
2 ωTω + C ∑i ξi

s.t.yi(ω
Tφ(xi) + b) ≥ 1 − ξi, ξi ≥ 0

(2)



Sensors 2022, 22, 3881 7 of 15

where, w, ϕ, xi, yi, b are normal vector, transformation function, point on the hyper-plane
described by the normal vector, labels and offset of the normal vector from the beginning
respectively. C is the penalty coefficient and the radial basis function (RBF) kernel is
defined as:

φ(xi)
Tφ(xj) = exp(−γ

∥∥xi − xj
∥∥2

2) (3)

where, γ is a positive hyperparameter.

2.3.3. Learning Vector Quantization (LVQ)

Vector quantization theory is a controlled version of Kohonen network also known as
self organizing maps (SOM). SOM is an unsupervised learning algorithm based on mapping a
high dimensional input to a feature space (grid) [49]. LVQ is a supervised classification neural
network algorithm based on SOM which finds a set of prototype vectors (codebook vectors)
that represent the input space and the input data are processed based on their similarity to the
prototype vectors [50]. If the processed data is from the same class as the prototype vector, the
vector is moved towards the training sample (winner takes all) [51], and if it is not from the
same class, the prototype vector moves apart. After evaluating all prototype vectors against all
training samples in the feature space, the updated prototype vectors are used to assign classes
for the unseen data. The process is similar to the Lloyd’s algorithm, but the codebook vectors
are used for making the prediction.

2.3.4. Random Forest (RF)

Random forest is an ensemble learning model and consists of multiple decision trees.
When a new input sample is fed to the algorithm, all decision trees classify independently, and
the final classification result is obtained by the majority voting as illustrated in Figure 5. RF
uses sampled training set to train each DT and the randomized training set is extracted by
using Bootstrap method. Using a set of decision trees makes the RF resistant to overfitting and
no pruning for the DT is needed because of random relation between sub-samples [52,53].

Training dataset

Bagging

Subset 1 Subset 2

Tree-1 Tree-2 Tree-k

Class-A Class-B Class-B

Majority-voting

Final classification

Subset k...

Figure 5. Flowchart of RF as a classifier [54].

3. Classification Results

Different linear deviations from the joint center were used to test the accuracy of the
employed classifiers. The accuracy in each case are presented in Table 1. The reported
values are the median accuracy of 10 runs of each classifier and all wavelength has been
used as the inputs. A definition of the error indicators can be found in Appendix A.
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Table 1. Classification accuracy at different LB deviations from the joint center line.

Classifier Deviation (mm)
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

MLPNN 0.7717 0.8243 0.8686 0.9117 0.9475 0.9410 0.8984 0.8488 0.8084
SVM (RBF) 0.7653 0.8213 0.8742 0.9121 0.9483 0.9422 0.8984 0.8497 0.8144

LVQ 0.7661 0.8165 0.8656 0.9397 0.9436 0.9380 0.8975 0.8463 0.8079
LR 0.8105 0.8337 0.8587 0.8828 0.9138 0.9035 0.8725 0.8260 0.8111
DT 0.7614 0.8173 0.8509 0.8888 0.9267 0.9310 0.8845 0.8527 0.8070
RF 0.7665 0.8204 0.8742 0.9117 0.9483 0.9401 0.8975 0.8570 0.8182

The MLPNNs employed in this research have only one hidden layer. Networks with
more than one hidden layer have been tested and did not provided higher accuracy. Two
data sets with linear offset between −2.5 mm to +2.5 mm and −1.5 mm to +1.5 mm were
used as testing data set in all reported results in Table 1. Minus and plus stand for beam
offset deviation from the left side and to the right side of the joint center line respectively.
As seen, using a LB deviation of 0.9 mm for classification, provides higher classification
accuracy, compared to other tested LB deviations. Outputs and targets for detecting LB
deviations larger than 0.8 mm, 0.9 mm, 1 mm and 1.1 mm is presented in Figure 6.

Figure 6. Outputs and targets for detecting LB deviations larger than 0.8 mm, 0.9 mm, 1 mm and
1.1 mm.

The results reported in Table 1 are generated using all wavelengths of the spectrometer.
However, it is possible to obtain the importances of the input features, which sum to one,
by using random forest algorithm. The importance value for each feature is the average of
its importances over all trees and are shown in Figure 7.
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Figure 7. Spectrometer feature (wavelength) importances obtained by RF.

Among the importances obtained for the features using RF, 127 of them have impor-
tance greater than 0.4% and they were used as the inputs for the classifiers. The results are
given in Table 2 and are related to the median accuracy of 10 runs for each classifier.

Table 2. Classification results for RF selected set of wavelengths.

Classifier Class Accuracy Sensitivity Specificity Precision F-Score

MLPNN 1 0.9475 0.9675 0.9293 0.9256 0.9461
2 0.9293 0.9675 0.9691 0.9488

SVM (RBF) 1 0.9475 0.9656 0.9309 0.9271 0.9460
2 0.9309 0.9656 0.9675 0.9489

LVQ 1 0.9440 0.9675 0.9227 0.9192 0.9427
2 0.9227 0.9675 0.9689 0.9452

LR 1 0.9406 0.9458 0.9359 0.9306 0.9381
2 0.9359 0.9458 0.9499 0.9428

DT 1 0.9354 0.9194 0.9530 0.9556 0.9371
2 0.9530 0.9194 0.9149 0.9336

RF 1 0.9475 0.9309 0.9656 0.9675 0.9489
2 0.9656 0.9309 0.9271 0.9460

As the next step, the NSGA II was used to define the input set of the classifiers. The
output of this algorithm is not only one set of inputs. NSGA II provides non-dominated
results in its Pareto-front which, all of them can be used based on the computational power
and the desired accuracy. The Pareto-front of the NSGA II in current work, is shown in
Figure 8, which describes the feature selection cost for the solutions provided by the NSGA
II. An MLPNN was used as the cost function of the algorithm. The deviation from the joint
center-line was set to 0.9 mm, as according to Table 1, the best accuracy is obtained using a
deviation of 0.9 mm. All data was divided randomly to training and testing data sets, in
each iteration for each individual. Cost was set to median accuracy of 10 runs for testing
the data set.
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Figure 8. Pareto-front of the NSGA II.

The classification results related to the set of wavelengths providing higher accuracy
(920 wavelengths) are presented in Table 3. Reported results for each classifier are related
to the median accuracy of 10 runs for each classifier. Testing data set used in Table 3 is the
same that was used to generate the results reported in Tables 1 and 2.

Table 3. Classification results for NSGA II selected sets of wavelengths.

Classifier Class Accuracy Sensitivity Specificity Precision F-Score

MLPNN 1 0.9492 0.9638 0.9359 0.9318 0.9476
2 0.9359 0.9638 0.9660 0.9507

SVM (RBF) 1 0.9483 0.9638 0.9342 0.9302 0.9467
2 0.9342 0.9638 0.9660 0.9498

LVQ 1 0.9457 0.9566 0.9359 0.9313 0.9438
2 0.9359 0.9566 0.9595 0.9475

LR 1 0.9156 0.8933 0.9359 0.9268 0.9098
2 0.9359 0.8933 0.9061 0.9207

DT 1 0.9320 0.9293 0.9349 0.9432 0.9362
2 0.9349 0.9293 0.9232 0.9290

RF 1 0.9492 0.9675 0.9326 0.9288 0.9477
2 0.9326 0.9675 0.9692 0.9505

According to Tables 2 and 3, not all wavelengths are needed to be used as the inputs
of the classifiers and the selected set of the wavelengths provides the same or slightly
higher accuracy for the selected testing data set. The corresponding receiver operating
characteristic curve (ROC) and confusion matrix for RF using 920 selected wavelengths for
detecting a deviation of 0.9 mm are presented in Figures 9 and 10, respectively.
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Figure 9. ROC curve of the results from the RF algorithm.

Figure 10. Confusion matrix for the RF algorithm for detecting LB deviations greater than 0.9 mm.

Photos from of the top and root view of a weld seam with controlled LB deviation
from −2.5 mm to 2.5 mm is presented in Figure 11 showing typical lack of fusion defects
caused by a LB offset. Lack of fusion caused by the LB deviation is marked with red in the
root view of the welded plates.
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Figure 11. Top and root view of a weld seam with LB deviation from −2.5 mm to 2.5 mm. Lack of
fusion between the plates is indicated by red in the root view.

4. Discussion

Different LB offset thresholds were tested and for all employed classifiers, detecting
the deviations larger than 0.9 mm provided higher classification accuracy (Table 1). This
is explained by the underlying physical phenomena and is related to the thickness of the
web plate (2 mm) and LB shape with diameter of 1.5 mm. In LB deviations larger than
0.9 mm, melt flow and keyhole are influenced due to the proximity of LB to the edge of
the web plate. This has a practical significance since a LB offset of 0.9 mm has a very high
probability to result in deteriorating lack of fusion defects.

After training the classifiers, the classifiers generate result for new data very fast and
without computational complexity and the trained classifiers can be used as a part an online
control system. Most of the misclassifications occurred while the LB offset varies between
pre-determined classes (Figure 4). Since each sample represents a very small advance of
the LB in welding direction (approximately 0.25 mm), and considering the possibility of
misclassification, an online go/no-go system can be programmed to pause the process in
case of a few consecutive offset detections.

5. Conclusions

In this work, ML techniques were applied for detecting LB deviations from 0.5 mm to
1.3 mm from the joint center-line. The most accurate classification result was obtained in
detecting a LB deviation of 0.9 mm. Feature selection using RF and NSGA II was applied
to reduce the number of features (wavelengths) in the input vector, without reduction in
the classification accuracy.

Not all features of the original data are necessary for detecting the LB deviation, and
using selected wavelengths results in a slightly better classification performance, while
reducing the number of input features. After applying the proposed methodology, the
classification accuracy reached 94% for the testing data. The suggested method has a
promising potential to be used in-process as a go/no-go system, to prevent discontinuities
such as lack of fusion.

The method can probably also be applied to other types of welding joints especially
when the non-visibility condition of the joint center-line exists and it can be expanded to
detect other discontinuities during welding.
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ACGAN Auxiliary Classifier Generative Adversarial Network
ANN Artificial Neural Network
CCD Charge-Coupled Device
CMOS Complementary Metal Oxide Semiconductor
CNC Computer Numerical Control
CNN Convolutional Neural Network
DNN Deep Neural Network
DT Decision Tree
GA Genetic Algorithm
LB Laser Beam
LBW Laser Beam Welding
LVQ Learning Vector Quantization
LR Logistic Regression
ML Machine Learning
MLPNN Multi-Layer Perceptron Neural Network
NSGA II Non-dominated Sorting Genetic Algorithm II
PCA Principal Component Analysis
RBF Radial Basis Function
RF Random Forest
ROC Receiver Operating Characteristic Curve
SOM Self-Organizing Maps
SVM Support Vector Machine

Appendix A

The following equations defines the common indicators that were used to evaluate the
performance of the employed models. TP, TN, FP and FN are true positive, true negative,
false positive and false negative respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(A1)

Sensitivity =
TP

TP + FN
(A2)

Speci f icity =
TN

TN + FP
(A3)

Precision =
TP

TP + FP
(A4)
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F = 2 × precision × sensitivity
precision + sensitivity

(A5)
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