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Abstract: Distributed Energy Resources (DERs) are growing in importance Power Systems. Battery
Electrical Storage Systems (BESS) represent fundamental tools in order to balance the unpredictable
power production of some Renewable Energy Sources (RES). Nevertheless, BESS are usually remotely
controlled by SCADA systems, so they are prone to cyberattacks. This paper analyzes the vulnerabili-
ties of BESS and proposes an anomaly detection algorithm that, by observing the physical behavior of
the system, aims to promptly detect dangerous working conditions by exploiting the capabilities of a
particular neural network architecture called the autoencoder. The results show the performance of
the proposed approach with respect to the traditional One Class Support Vector Machine algorithm.

Keywords: cybersecurity; distributed energy resources; electrical battery storage systems; neural
network; autoencoder; anomaly detection

1. Introduction

The uncertainty of Renewable Energy Sources production and the high scalability of
solutions such as solar panels enable the shift from a centralized production of energy to a
distributed one. Consequently, electrical grids are moving toward a large use of Distributed
Energy Resources that are usually referred to as small or medium-scale unit of power
generation typically connected to a low or medium voltage grid. In order to achieve high
energy efficiency and improve the resilience of the overall electrical system, DERs may be
deployed within microgrids or energy communities. A fundamental element of microgrids
is represented by Battery Energy Storage Systems (BESSs). Storage is used to balance the
production of uncontrollable sources like photovoltaic systems, both for economic purposes
and to allow the microgrid to operate in islanded mode. In this context it is necessary to
use a control system exploiting either Supervisory Control and Data Acquisition (SCADA)
or Distributed Control Systems (DCS). SCADA solutions present different vulnerabilities
that may depend on the used communication protocol such as IEC 61850 or Modbus.
The geographic location of devices may further pose a problem when implementing basic
physical security countermeasures. For these reasons, if an attacker gains access to the
control network, consequences can be very serious. Following the paradigm of defense in
depth, solutions to monitor security are fundamental tools to improve the resilience of the
grid towards cyberattacks.

The main contribution of this work is the development of an anomaly detection
algorithm based on a neural network autoencoder. The anomaly detection algorithm
aims to substitute the action of a human operator, rapidly detecting possible dangerous
working conditions and promptly implementing countermeasures. Moreover, we analyze
the architecture of a storage system within a microgrid, in order to evaluate the whole
attack surface and the associated risk. In the remainder of the paper, anomaly is defined as
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an improper working condition of the system. From the point of view of data receivers,
anomaly can be associated both with an abnormal working condition and with data
manipulation by attackers.

The paper is structured as follows. Section 2 analyzes the state of the art of DERs and
BESS vulnerabilities, as well as related security monitoring systems. Section 3 presents the
structure of a BESS within a microgrid environment, also evidencing common vulnerabili-
ties and associated risks. Section 4 describes the proposed anomaly detection algorithm
based on an autoencoder. Section 5 presents the simulation environment developed in order
to test the proposed solution. Section 6 shows the results of the performance evaluation of
the proposed approach. Section 7 discusses the results and Section 8 draws the conclusions.

2. State of the Art

Electrical SCADA systems are mostly based on industrial protocols, such as Modbus
and IEC 61850, which lend themselves to severe vulnerabilities [1]. The main issue is
that they lack encryption and authentication, so they are prone to Man In The Middle
(MIIT) attacks [2,3]. An evaluation of attack scenarios against DERs, a systematic DER
resilience analysis methodology, as well as quantifiable resilience metrics and design
principles, are proposed in [4]. Authors in the paper [5] list possible vulnerabilities of
DERs and propose basic functionalities for risk mitigation. The effects of cyber attacks on
a supercapacitor-based energy storage in a Hybrid Power System are investigated in [6].
Ref. [7] discusses potential cyber-attack schemes and defense strategies within IoT-enabled
BMS systems. An analysis of physical and cyber threats that afflict BESS is proposed
in [8]. A comprehensive overview of vulnerabilities of battery management systems and
the application of Blockchain-based solutions to address these issues are presented in [9].
Several papers propose novel control strategies for BESS to limit the impact of cyber attacks
in microgrid environments [10,11].

Anomaly detection techniques are widely used in power systems and, in particular,
in distributed generation and microgrids [12]. A review of recent detection algorithms is
reported in [13]. A compilation of intrusion detection and prevention systems, specifically
designed for smart grid environments, is included in [14]. Authors in the paper [15] pro-
pose an anomaly detection algorithm to identify the attacks on Photovoltaic (PV) systems,
such as PV disconnection from the grid, power curtailment, volt-var attack, and inversion
of the power flow in a portion of the distribution grid with a sufficient percentage of DER
penetration, by exploiting semi-supervised ML algorithms like Neural network autoen-
coder, One Class Support Vector Machine, Isolation Forest, Random Forest with synthetic
corruption, Principal Component Analysis (PCA) with convex hulls, and Inverse-PCA tech-
nique. Ref. [16] shows a contextual anomaly detection method based on an artificial neural
network and explains the use of this method to discover voltage control manipulation
in the low voltage distribution grid. Ref. [17] proposes a high-dimensional data-driven
cyber-physical attack detection and identification approach that is based on data measured
by electric waveform sensors in power distribution networks and on the use of statistical
leverage scores. Malicious actions on DERs can be pursued by different methods. While
many papers focus on network attacks, Ref. [18] shows firmware modification attacks
to solar inverters, evidencing the relative impact on a simulated microgrid architecture,
and also proposing a ML-based algorithm to detect such types of malicious actions.

A large group of scientific studies have shown that autoencoder architectures are
effective for fault and anomaly detection and can outperform linear Principal Component
Analysis (PCA) and Kernel PCA [19]. A deep learning scheme composed of Long Short
Term Memory-Stacked Autoencoders and Convolutional Neural Network (CNN-SAE)
followed by a softmax activation layer has been used for fault detection in a wind turbine in
Ref. [20]. Three different autoencoding schemes (multilayer perceptron, convolutional, and
long-short term memory) for fault detection are used in Ref. [21]: features extracted from
measured signals feed the neural network; the classification is based on a threshold on the
reconstruction error. An approach based on a fully-connected neural network autoencoder
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to detect cyberattacks within a photovoltaic system, similarly to the scheme proposed in
this paper for storage systems, has been suggested by the same authors in Refs. [22,23].

3. Attack Surface of Storage Systems
3.1. Use Case Scenario

Storage Battery systems are composed of different electric, electronic, and communica-
tion devices. We consider a typical scenario of a storage system connected to a microgrid
controlled by a SCADA system. From the electrical point of view, it is composed of:

• The modules of cells (one or more), equipped with their own Battery Management
System (BMS) which ensures to maintain the correct safe range in terms of voltage,
current, temperature, and other physical parameters;

• DC/DC converter, which is an electronic converter adapting the voltage of the cells to
the voltage suitable for the Active Front End (AFE);

• Active Front End, which is an electronic converter transforming direct current into a
three phase alternating current, allowing bidirectional power flow.

The BMS is an electronic system that manages a rechargeable battery (cell or battery
pack); its main tasks are: protecting the battery from the unsafe operating area; monitoring
its state; calculating secondary data; reporting data; controlling its environment; and
authenticating and/or balancing it. BMS can communicate to a higher-level controller
through different solutions, such as different serial communication solutions, CANBus,
Modbus, and even through specific protocols and gateways in series.

The same communication protocols can be used by power electronic converters in
order to communicate between them and with a Process Control System (PCS) usually
implemented by an industrial PC, which acts as an interface between the SCADA system
and local controllers. PCSs use a local Human Machine Interface (HMI) that allows the
interaction with monitoring and control functions. The communication between PCS and
SCADA systems can be based on protocols belonging to the IEC 61850 suite. The overall
scheme is shown in Figure 1.

Figure 1. Typical architecture of a BESS within a smart microgrid.

SCADA systems communicates with PCSs for monitoring and control purposes. Mi-
crogrids are usually equipped with an Energy Management System (EMS). The role of the
EMS is to plan the energy production of dispatchable sources. Storage systems can usually
operate in three different modes:

• P/Q mode, where the generators inject the desired active and reactive power;
• Islanded mode, where the generators maintain the voltage and the frequency constant

while providing the necessary power to balance the loads;
• Droop equations mode, where the frequency and the voltage maintained by the

generators depend on the injected power.
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The SCADA system has the role of setting the operational mode and, depending on
that, of giving the power setpoints to the generator. A change of operational modes is
needed whenever the microgrid switches between islanded and grid-connected mode.

Many different architectures can connect electronic converters to the SCADA system.
Nevertheless, the proposed architecture considers a minimal scheme, with a low number of
connections and no direct connection between the control device and the SCADA network,
so as to reduce the attack surface.

3.2. Attack Model

We can categorize the possible attacks on the proposed infrastructure from different
points of views.

Aim of the attack: it is possible to target the storage system to damage its devices,
or to use the storage to cause problems to the microgrid, both from safety and economic
perspectives. The control of a generator can cause severe damage to the grid, depending on
the size of the generator, the features of the grid, and the operation mode: if the microgrid
operates in islanded mode with only one storage system that has the role of balancing the
powers, it is obvious that compromising the generator would cause a complete blackout of
the microgrid. In case the power of the storage system is not essential, e.g., the microgrid has
multiple generators for voltage and frequency control or the microgrid is grid-connected,
compromising that the generator does not cause immediate blackout even if the damage
may be relevant. For example, a voltage or frequency variation could imply the trigger of
some electrical protection, or even more protection in series;

Exploited vulnerability: if the attacker gains access to the control network, he can
first compromise the communication between the PCS and SCADA system by exploiting
IEC 61850 protocols, which are prone to different types of attacks, such as Man In the
Middle [2]; in that case, he would be able to send fake commands to the PCS or fake
measures to the SCADA system. Moreover, the PCS can expose different services such as
web applications, Virtual Network Computing software, and so on. Several works broadly
analyzed the vulnerabilities of web server and common attacks such as SQL injection [24],
cross-site scripting [25], broken authentication and session management [26], and Denial of
Services [27]. Furthermore, the patch management in ICS environment is more complicated
than in the IT sector, so those vulnerabilities persist on industrial devices. If an attacker is
able to take control of the PCS through previous mentioned vulnerabilities, he would be able
to communicate directly with electronic controllers and especially with the BMS, potentially
causing the destruction of the whole storage system. It is worth mentioning that, even if
it is a borderline case, an attacker could violate some physical security countermeasures
by directly accessing the telecommunication network, since the microgrid devices can be
geographically located over a wide area, making it difficult to guarantee the full protection
of some devices;

Sophistication of the attack: given the complexity of a microgrid, even a simple attack
can cause severe problems. Let us consider a bad data injection on the value of the State Of
Charge (SOC) that the PCS communicates to the SCADA controller: this action can cause
an erroneous programming of the EMS that would suggest wrong power setpoints. If the
storage uses automatic actions when the SOC reach dangerous levels, implications would
be economic, otherwise the safety of the entire system may be in danger.

A complete taxonomy of possible attacks on a storage system is not feasible, because of
the dependence on many factors, including the characteristics of the grid to which the
storage system is connected. Still, the proposed evaluation of the attack model suggests that
different security monitoring systems working in parallel would be useful to limit risks.

4. Proposed Approach

We propose an anomaly detection algorithm aimed at automatically analyzing the
data generated by the storage system in order to detect anomalous physical behaviors.
The algorithm takes all electrical measures generated by the devices as input and returns
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a classification of the correctness of the behavior. In this context, an anomaly can be
represented both by an abnormal behavior of the generators, and by abnormal measures
received as input, such as, for example, a set of measures that are physically incompatible
with each other.

The algorithm exploits the capabilities of a particular neural network (NN) architecture
called autoencoder, which learns to reproduce its input after a compression of the data.
The basic idea is that, after a training phase is performed by using a dataset containing only
“normal” data, the NN learns to reproduce normal data with lower error and abnormal
data with higher error as used and detailed in [22].

4.1. Procedure

The algorithm is formalized as follows.
We define the state vector x(t) = x1(t), x2(t), ..., xn(t) as a vector whose elements (also

called features) are the measures extracted from the system at a certain time t. The state
vector represents the state of the system at time t. We periodically collect the measures
representing the correct behavior of the system, so composing a training dataset x

′TR

which contains the set of measures collected at given time in each row and a single type
of measure collected over time in each column. We also compose a test dataset x

′TEST

which contains vectors representing both good and bad behaviors, labeled correspondingly.
Considering the n-th feature of x

′TR, we compute the mean value x̄TR
i as in (1) and the

standard deviation σTR
i as in (2), for the training dataset.

x̄TR
n =

∑T
k=1 x

′TR
n (tk)

tT − t1
(1)

σTR
n =

√
∑T

k=1(x′TR
n (tk)− x̄TR

i )2

tT − t1
(2)

Then we normalize each single measure of the training dataset as in (3):

xTR
i (tk) =

x
′TR
i (tk)− x̄TR

i
σTR

i
(3)

During the test phase, each test state vector at generic instant tk is normalized by using
the mean value and standard deviation of the training dataset, as shown in (4)

xTEST
i (tk) =

x
′TEST
i (tk)− x̄TR

i
σTR

i
(4)

Each vector is sent one by one to the neural network, which reconstructs the input
after compressing data. We define the reconstruction error as in

e(tk) =
1
n

n

∑
i=1

(xi(tk)− x̃i(tk))
2 (5)

During the training phase, the neural network sets its parameters to minimize the
error of the training dataset.

Once the neural network is trained, we feed the autoencoder with the training dataset
to analyze the distribution of the reconstruction errors. This operation allows to set a
threshold E for the reconstruction error, which will be used during the test phase in order
to classify new data.

eTEST(tk) > E→ anomaly
eTEST(tk) < E→ normal

(6)

The entire classification structure is shown in Figure 2.
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Figure 2. Classification scheme.

4.2. Autoencoder Architecture

The proposed neural network architecture is composed by three layers.

• Input layer, whose dimension is the same of the size of the state vector (it is fixed to
20, for this paper);

• Compressed (hidden) layer, whose dimension can vary, and, in this case, is fixed to 15;
• Output layer, which is a fully-connected layer whose dimension is the same of the

input layer (20, in this case)

We chose the dimension of the hidden layer as 75% of the one of the input and output
layer. Changing the range of the dimension in a reasonable way does not significantly affect
the results in such type of data [22]. The first two layers utilize a ReLu activation function,
while the output layer has a linear activation function. The batch size has been fixed to 256:
from one side, too large of a batch size will lead to poor generalization while, on the other
hand, using a smaller batch model does not guarantee to converge to the global optimum;
the chosen value has been considered a good trade-off. The number of epochs will be fixed
during the performance evaluation by observing the pattern of the losses over the epochs.

5. Materials and Methods

We developed a simulator of storage systems composed of 6 arrays of cells, a DC-DC
boost converter and an active front end inverter (AFE) both with their proper controller.
The AFE is connected to the main grid. We use MATLAB/Simulink software and the
related library Simscape. The model is electromagnetic. The control is composed of a
simple feedback loop that controls the DC-DC converter by maintaining the voltage at
the DC link constant and of a classic control of the inverter based on Park transformation.
The overall Simulink scheme is shown in Figure 3.

Figure 3. Simulink scheme implementing the used storage system.

We extract a series of measures from the model, which compose the state vector as
discussed in Section 4. We extract all the measures at the same time and we repeat this
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operation with a fixed sampling time of 1 second. The composition of the state vector is
shown in Table 1.

Table 1. List and description of the features.

Feature Symbol Description

X1 SOC battery state of charge estimated by the BMS
X2 Vcells voltage measured at the terminals
X3 Icells current emitted by cells array
X4 Vdc average voltage in the DC link
X5 Va voltage of phase a (AC side)
X6 Vb voltage of phase b (AC side)
X7 Vc voltage of phase c (AC side)
X8 Ia current of phase a
X9 Ib current of phase b
X10 Ic current of phase c
X11 fa frequency of phase a
X12 fb frequency of phase b
X13 fc frequency of phase c
X14 THDa total harmonic distortion of voltage on phase a
X15 THDb total harmonic distortion of voltage on phase b
X16 THDc total harmonic distortion of voltage on phase c
X17 Qset last reactive power setpoint sent by the SCADA controller
X18 Pset last active power setpoint sent by the SCADA controller
X19 Q reactive power emitted by the inverter
X20 P active power emitted by the inverter

We run the simulator so as to mimic many working hours and different working
conditions regarding injected powers, state of charge and other parameters of the main
grid, such as small variations of voltages and frequencies. Then we extract the dataset
from the Simulink software. The classification is subsequently done offline. The software is
implemented in python using the Keras library [28].

The training dataset contains data related to 6 working hours where the battery
completely charges and discharges. The samples are stored at each second, resulting in
21,600 samples. It only contains data related to the normal behavior of the system. All test
datasets contain data of a few minutes of work under different conditions and, unlike the
training dataset, contain both data related to normal and abnormal behavior.

6. Performance Evaluation

First of all, we trained the model to determine the best hyperparameters of the algo-
rithm: the batch size has been set to 256 and epochs to 20, after the evaluation of the pattern
of losses over the epochs (Figure 4).

Figure 4. Losses during training over Epochs.
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Then we evaluated the reconstruction error over the training dataset. Results are
shown in Figure 5. The error distribution can be approximated by a Gamma distribution
depicted through a blue line. Consequently we chose the value of E, which allows maintain-
ing the False Positive rate over the training dataset under 106, by using the approximated
gamma distribution. Since we chose to develop an anomaly detection algorithm, we have
to set a threshold “a priori”, before evaluating the effective False Positive rate over the
test dataset.

Figure 5. Distribution of reconstruction error over the training dataset.

We tested a series of anomalies categorized in the following subsections.The same tests
have been done by also using a traditional anomaly detection algorithm: One Class Support
Vector Machine (OCSVM). The algorithm, implemented with the SciKit-Learn Library, has
been set with a Polynomial Kernel. OCSVM has several applications, especially in the
field of fault detection [29] while other Anomaly Detection algorithms such as Isolation
Forest or Local Outlier Factory are more frequently used in other fields, such as Network
Intrusion Detection Systems [30]. A comparison between the performance achieved with
the autoecoder and the OCSVM are reported step by step for all anomaly conditions.

6.1. Violating Safe Operating Conditions

We tested the capability of the proposed solution to detect unsafe operating conditions,
such as unsafe injected power (active or reactive), state of charge, currents, and voltages.
In practice we wanted to check the ability of the algorithm to notice conditions in which
the system is theoretically able to operate, but it is not supposed to do. For example,
the power inverter may be sized to a 20% more or the nominal power, so that operating in
this condition would not trigger any electrical protection, but it represents a possible risk.

The attack is conducted as follows:

1. Time interval 0–33.3 [s]: normal operation;
2. Time interval 33.3–76 [s]: the system injects 20% more active power with respect to

the values seen in the training dataset;
3. Time interval 76–135 [s]: active power gradually increases by using steps of 10%;
4. Time interval after 135 [s]: the attack stops and the system returns to the initial condition.

Figure 6 shows the consequent reconstruction error over time in case of Active Power
values over the ones seen in the training dataset. A variation of 20% with respect to the
normal values seen in training is immediately detected. The reconstruction error is over
the threshold. Additional variations make the case even more evident.
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Figure 6. Reconstruction Error—Unsafe Power Injection.

We can also notice in Figure 6 that if the attack ceases, the reconstruction error rapidly
falls again under the threshold. Similar results have been obtained by testing data with
similar variations concerning the range of normal functioning for reactive power, voltages,
frequencies and state of charge. The results are summarized in Table 2 where the compari-
son with OCSVM is also reported. Concerning the violation of safe operating conditions
OCSVM was also able to detect all the anomalies, showing performances comparable to
the autoencoder-based anomaly detection.

Table 2. Tests—Violating Safe Operating Conditions.

Attack Description Autoencoder OCSVM

Bad Set Point Active Power ±20% of normal values, ramp yes yes
Bad Set Point Reactive Power ±20% of normal values, ramp yes yes

Bad Set Point Voltage ±5% of normal values, ramp yes yes
SOC over normal limits ±20% of normal values yes yes

6.2. Unusual Behavior

We tested the capability of the proposed solution to detect operating conditions in
which each measure is within the limits seen in the training dataset but the behavior is
unusual (i.e. not already seen). The attack is conducted as follows:

1. Time interval 0–31.25 [s]: normal operation;
2. Time interval 31.25–74 [s]: the injected reactive power falls to 0 while emitting ac-

tive power (during training reactive power is positive and related to the injected
active power);

3. Time interval after 74 [s]: the injected reactive power becomes negative.

An unusual behavior may be the consequence of a bad command sent to the power
converter by exploiting vulnerabilities of the communication protocols.

In Figure 7 we show the reconstruction error, and it is clear how the attack is immedi-
ately detected by the autoencoder-based anomaly detection: as soon as the attack is started,
the reconstruction error is above the threshold. After 74 [s], the impact of the attack is
even more evident. The detection of negative reactive power injection is easy, since during
the training the same value remains positive, but we included the analysis since such an
attack might cause severe consequences on the grid. More interesting is the ability of the
autoencoder-based algorithm to learn more complex correlations between measures and
habits, differently from OCSVM.

Similar results have been obtained by testing the algorithm on different initial working
conditions by varying the initial emitted power in all the usual range. Table 3 summarizes
the result, also reporting the performance of the OCSVM scheme, which, in this case, does
not satisfy because this type of attack is not detected.
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Figure 7. Reconstruction Error—Unusual Behavior.

Table 3. Tests—Partial Attack.

Attack Description Autoencoder OCSVM

Variation of Ratio between Active
and Reactive Power

All Range of Active Power ±30% of normal values yes no

6.3. Partial Attack

Commonly used protocols in the field of DERs, such as SV and GOOSE, periodically
send the setpoint of power. If the attacker sends a fake command over the control network
but he cannot intercept the right values, this may cause an oscillation of the injected
power. We tested the capability of the algorithm to reveal such types of occurrences.
The reconstruction error is shown in Figure 8 during an attack, started at time 0, which
periodically sends a variation of 10% of active power.

Figure 8. Reconstruction Error—Oscillating Power.

It can be noticed that, even if the algorithm performs a static analysis of data, it is able to
recognize the oscillation of the power thanks to the analysis of related physical parameters.

Similar results have been obtained for oscillation of reactive power. Results are
summarized in Table 4), which also contains the performance of an OCSVM-based scheme,
which again, fails to detect the attack.
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Table 4. Tests—Partial Attack.

Attack Description Autoencoder OCSVM

Active Power Oscillation ±10% of normal values yes no
Reactive Power Oscillation ±10% of normal values yes no

6.4. Bad Data Injection

We make the hypothesis of performing a Bad Data Injection attack by modifying a
small subset of measures (even one) in order to create a state vector that represents an
unfeasible working condition. In Figure 9 we show the reconstruction error of the test
dataset containing a bad data injection over the voltages of the three phases. The attack
is carried on by modifying the value of the voltage of a small percentage every second,
as follows:

1. Time interval 0–18 [s]: normal behavior;
2. Time interval after 18 [s]: the attack starts. The value changes of 1% with respect to

the current value of each second.

Figure 9. Reconstruction Error—Bad Data Injection Voltage.

The autoencoder-based algorithm rapidly detects the attack. Since the algorithm per-
forms a static analysis of data, the reconstruction error increases over time, independently
of the bad data injection changing rate. The same results have been obtained for Bad Data
Injection over Powers, frequencies, and other parameters as reported in Table 5 where
also the performance of OCSVM is shown. OCSVM, in this case, was able to detect some
attacks but was unable to detect attacks in which the variations of the measures are not
significant in absolute terms. In the case of bad data injection of voltages, as shown in
Figure 9, OCSVM detected the attack later than the proposed solution.

Table 5. Tests—Violating Safe Operating Conditions.

Attack Description Autoencoder OCSVM

Voltage, 1 phase ±1% variation per second yes, after 1 s yes, after 5 s
Voltage, 3 phase ±1% variation per second yes, after 1 s yes, after 5 s

Frequency, 1 phase ±1% variation per second yes, after 1 s yes, after 5 s
Frequency, 3 phase ±1% variation per second yes, after 1 s yes, after 5 s

SOC ±20%, step yes no

7. Discussion

The autoencoder-based proposed solution can detect a wide set of anomalies and also
limits false positives. Two main advantages can be identified if compared with the OCSVM
solution already at the state of the art:
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• The autoencoder-based algorithm performs a static analysis of data. This result reflects
positively in the capability to identify attacks even when a small variation over time is
measured, differently from the OCSVM-based solution;

• The autoencoder-based algorithm detects some types of anomalies better. The One
Class Support Vector Machine-based solution performed worse due to the reduced
capability to learn correlation between measures.

The capability to detect Bad Data Injection attacks even if conducted by a slow modifi-
cation of the considered measures is a very interesting feature of the proposed algorithm.
It has been shown that an attacker can exploit the configuration of a power system and
launch such attacks to successfully introduce arbitrary errors into certain state variables
while bypassing existing techniques for bad measurement detection [31]. A static analysis
of data is immune to such threat by design.

Nevertheless, the proposed solutions shows some limitations. For example, a particu-
larly dangerous attack could be a bad data injection over the State of Charge of the battery,
resulting in bad decisions taken from the higher-level controller. The present version of
the autoencoder-based algorithm is still unable to learn a highly precise estimation of the
state of charge and is inefficient for the detection of sophisticated attacks over this measure.
More complex neural network architectures should be investigated to address this issue.
Recurrent Neural Networks have been used in the literature to obtain a precise estimation
of the State of Charge of BESS, outperforming traditional methods [32]. This observation
suggests that some form of regression model can be used to build an anomaly detection
algorithm also tackling bad data injection over the State of Charge.

8. Conclusions

This paper analyzed a typical architecture of a storage system within a microgrid, dis-
cussing possible vulnerabilities and evaluating risk scenarios, and proposed an anomaly de-
tection algorithm based on a neural network architecture called autoencoder. The proposed
solution was able to detect a series of attacks in a simulated environment, outperforming a
traditional One Class Support Vector Machine-based anomaly detection algorithm, used as
the comparison. The proposed algorithm can be applied both to SCADA systems, like in a
microgrid, and to Cloud Applications, which can monitor a large number of geographically
dislocated generators by substituting the supervision of a human operator. The obtained
results are really promising, but future development should include the evaluation of
more complex neural network architectures with the aim to include the detection of more
sophisticated attacks.
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Abbreviations
The following abbreviations are used in this manuscript:

DER Distributed Energy Resources
RES Renewable Energy Sources
BESS Battery Electrical Storage System
BMS Battery Management System
PCS Process Control System
HMI Human Machine Interface
EMS Energy Management System
SOC State Of Charge
AFE Active From End
ML Machine Learning
NN Neural Network
SCADA Supervisory Control and Data Acquisition
DCS Distributed Control System
MIT Man In the Middle
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