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Abstract: Three-dimensional object detection in the point cloud can provide more accurate object
data for autonomous driving. In this paper, we propose a method named MA-MFEC that uses an
attention mechanism and a multi-scale feature fusion network with ConvNeXt module to improve the
accuracy of object detection. The multi-attention (MA) module contains point-channel attention and
voxel attention, which are used in voxelization and 3D backbone. By considering the point-wise and
channel-wise, the attention mechanism enhances the information of key points in voxels, suppresses
background point clouds in voxelization, and improves the robustness of the network. The voxel
attention module is used in the 3D backbone to obtain more robust and discriminative voxel features.
The MFFC module contains the multi-scale feature fusion network and the ConvNeXt module; the
multi-scale feature fusion network can extract rich feature information and improve the detection
accuracy, and the convolutional layer is replaced with the ConvNeXt module to enhance the feature
extraction capability of the network. The experimental results show that the average accuracy is
64.60% for pedestrians and 80.92% for cyclists on the KITTI dataset, which is 1.33% and 2.1% higher,
respectively, compared with the baseline network, enabling more accurate detection and localization
of more difficult objects.

Keywords: 3D object detection; attention module; voxelization; ConvNeXt module; multi-scale
feature fusion

1. Introduction

Three-dimensional object detection in point clouds has a large number of applications
in realistic scenarios, especially in autonomous driving, robotics, and augmented reality.
On the one hand, point clouds have reliable geometric structure information and accurate
depth, and how to use this information effectively is a key issue. On the other hand,
point clouds are usually disordered, sparse, and unevenly distributed, which poses a great
challenge for accurate object detection [1]. Currently, the development of deep learning has
led to a proliferation of 2D image object detection algorithms, which can also be applied to
3D point cloud object detection when dealing with sparse and unstructured point clouds.

In recent years, many new 3D object detection algorithms have emerged, which can be
divided into two main categories: point-based and voxel-based. PointRCNN [2] operates
on each point in the point cloud data, extracts the point cloud features through PointNet [3],
and then obtains the final detection results through a two-stage detection network. This
has the advantage of making good use of the features of the point cloud and has high
detection accuracy, but such a method also has some disadvantages: it needs to collect
sample points by farthest point sampling (FPS) [4] and then cluster the features of the
proximity points, which takes more time, so the detection speed is slow. Voxel-based
methods such as VoxelNet [5] and PointPillars [6] work by dividing the point cloud into
regular grids, which is more convenient for convolutional neural networks to operate on it,
and because voxels aggregate local features in each grid, they are more efficient for feature
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extraction and faster detection, but encoding the point cloud into voxels leads to a loss of
point cloud feature information and a decrease in detection accuracy.

As the detection technology matures, there is a question of whether the voxel detection
method can be improved so that it maintains the existing detection speed and can achieve
the point-based detection effect. After analyzing the existing voxel-based detection meth-
ods, it is found that they encode the point clouds into voxels by averaging the point cloud
features within the voxel grid as the features of the voxel grid, which will undoubtedly
fuse the features of the background point cloud. The feature information provided by the
background point cloud can interfere with the detection performance of the model, so the
background point cloud information needs to be suppressed during voxelization and the
foreground point cloud information needs to be better represented. Therefore, the attention
mechanism [7] is our first choice because the attention mechanism can make the model
focus on the important information through training, and the attention mechanism does
not impose a large computational overhead. The attention mechanism in the CBAM [8] and
SENet [9] inspired us to research and propose point attention, channel attention, and voxel
attention in point clouds. After voxelization, the perceptual field of the feature map is
increased by a 3D convolutional neural network; finally, it is transformed into a bird’s
eye view (BEV) to perform object detection. It can be found that the voxel-based methods
generate some parameters of the object, such as classification information, object position,
and size, from the 2D BEV feature map, so the information-rich feature map can help us to
obtain better detection performance. We know from [10] that the ConvINeXt module is the
best feature extractor now, so this paper adds the ConvNeXt module to the MFF module to
obtain richer feature information. It is experimentally demonstrated that the addition of this
paper’s method to voxel-based methods can improve their performance, especially in the
detection accuracy of smaller objects, such as pedestrians, which is significantly improved.

In summary, the key contributions of the proposed method lie in the following;:

¢ The point-wise attention and channel-wise attention mechanisms are integrated into
the process of encoding point clouds into voxels, enhancing the foreground point
cloud features, suppressing the background point clouds, and obtaining more robust
voxel features by combining different levels of features.

¢ The voxel attention module is added to the 3D convolutional neural network to
represent the voxel grid with more discriminative power.

¢  The ConvNeXt module is proposed for feature extraction in the multi-scale feature
fusion network of BEV, named MFFC, which can extract richer information with
greater accuracy and robustness.

2. Related Work

With the rapid development of computer vision, at first, people worked on detect-
ing 3D objects from multi-view images, and MV3D [11] fused features from radar laser
foreground maps, BEVs, and 2D images to extract regions of 3D objects, but this was
computationally expensive and this method could not locate the object very accurately due
to the loss of depth information.

In recent years, the research trend of 3D object detection has gradually shifted from
RGB images to point cloud data, and point-based methods usually use the features of
original point clouds. The use of PointNet [3] for 3D object detection on point clouds was
first proposed in FPointNet [12]. PointRCNN [2] generates 3D objects directly from the
whole point cloud, instead of projecting the point cloud into 2D images and then detecting
them. Part-A? [13] extends PointRCNN by fused point-wise part location features and
point-wise semantic features. The Hough voting strategy was proposed in the VoteNet [14]
to achieve better point cloud data grouping. LiDAR R-CNN [15] designed a two-stage
detector based on original point cloud features. These methods use the PointNet module to
aggregate the features of the sampled points.

Voxel-based approaches typically discretize point clouds into equally spaced grids and
then perform object detection using 3D convolutional neural networks. VoxelNet [5] was
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the first to encode point clouds as voxel representations and used PointNet to transform
all points within each voxel into a single feature representation. However, there are many
voxels in the space that do not contain point clouds, such that the voxels in the whole
space are sparse, and feature extraction using traditional convolutional neural networks
is inefficient. To reduce the computational cost, SECOND [16] introduces a 3D sparse
convolution operation to achieve efficient 3D convolutional processing. PointPillars [6]
divide the points into pillars, a pseudo-BEV 2D image is formed after feature extraction
of the point cloud within each pillar, and then target extraction is performed using the 2D
image target detection method. PV-RCNN [17] extends the SECOND by adding key point
cloud branches to retain the structural information of the 3D point cloud and integrates
multi-scale voxel features into the key points, generates region suggestions in the BEV
image, and further extracts feature from the key points for each 3D region through a region
of interest (ROI) pooling operation for anchor refinement. Since the interaction of point
cloud features and voxel features in PV-RCNN takes a long time, a detector using only 3D
voxel features is proposed in the Voxel R-CNN [18] using a voxel ROI pooling operation
to extract region features from 3D voxel features only for further refinement of the anchor.
Centerpoint [19] proposes an anchor-free method, which treats the detection target as a key
point and enables the network to learn the direction of the object better, compared to the
anchor-based method. SE-SSD [20] combines soft information from model prediction and
hard information from data annotation to infer the complete target shape and optimize
model performance. BtC [21] complements the obscured shapes of the target by learning
other point cloud data that match the target shape. It solves the problem of missing shapes
in point cloud data due to occlusion and truncation.

All voxel-based 3D object detection methods require the use of voxel feature encoding,
so this paper proposes the attention module in terms of point-wise and channel-wise to learn
a more discriminative and robust feature representation for each voxel grid. The importance
of each voxel is further determined by adding voxel attention to the 3D convolution
operation. The region suggestions are generated from the BEV images before feeding into
the detection head. Therefore, this paper proposes the MFF-ConvNeXt module, which
includes the ConvNeXt [10] module, the current state-of-the-art 2D image object detection
structure in the 2D backbone, to replace the feature extraction of the original multi-scale
feature fusion network by using depth-separable convolution, inverse bottleneck layer,
Gaussian error linear unit, or GELU [22], and larger convolution kernel to obtain richer
feature information to be fed into the region proposal network (RPN) to generate better
region proposals.

3. Method

Before introducing the network, a few basic definitions in 3D target detection are
introduced. A point cloud in 3D space is defined as P = {p; = [x;,y;,z;,1i] € R};_1, N,
where x;, y;, z; represent the coordinates of each point cloud (X,Y,2), r; represents the
reflection intensity, which is an additional feature of the point cloud, and some point cloud
data even carry the color of the point. The feature (R, G, B). N represents the total number
of points in a point cloud file. An object in 3D space can be represented by a 3D bounding
box (cx, cy, Cz, h,w,1, 6), where cy, ¢y, c; represent the center coordinates of the object, h, w,
represent the size of the object, i.e., the length, width, and height, and 6 represents the
deflection angle of the object around the upward coordinate system.

Next, the 3D target detection network based on attention and multi-scale feature
fusion will be introduced, and the model in this paper is improved based on Voxel R-CNN,
a baseline network with superior performance; the algorithm flow is shown in Figure 1.
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Figure 1. The structure of Voxel R-CNN network with multi-attention module and MFF-
ConvNeXt module.

3.1. Multiple Point-Channel Attention Modules
3.1.1. Point Cloud Voxelization

For the point cloud collection P distributed in the 3D space, set its range in the (X, Y, Z)
direction denoted as (Wy, Hy, D.), and then divide the point cloud into a grid of voxels
of the same size according to the location of the point cloud, each of which has a size of
(w, h,d). Therefore, the whole 3D space is equally divided into the size of (W, H, D):

W= W,/w 1)
H=Hy/h ()
D=D,/d 3)

Since the point clouds in 3D space are sparse, the number of point clouds distributed
in each voxel grid is also different. Setting N and C as the maximum number of sampled
point clouds in a voxel grid, respectively, the voxel space V consisting of K voxel grids can
be expressed as V = {Vl, v2,... vk }, where Vi € RN*C represents the i-th voxel grid of
the voxel space V.

3.1.2. Point-Wise Attention Module

For any voxel grid Vi € RN*C in the space, first perform the maximum pooling
operation and average pooling operation to aggregate point features across the channel-
wise dimensions. The maximum pooling operation obtains the maximum value of the grid
V' in each channel dimension, and the average pooling operation averages the channel
features of the grid V' in the channel dimension, resulting in two point-wise responses
Ak, Ak € RN*1 and then uses the shared fully connected layer, ReLU activation function,
and fully connected layer to process:

Mi = J(Wz(S (WlA’{) + w25(w1A’5)) @)

where W; € RN, W, € RN*" are the weight parameters of the two fully connected layers,
respectively, ¢ is the ReLU activation function, ¢ is the sigmoid function, which mainly
normalizes the weight features to the range between [0,1], and M’ € RN*! is the point
attention weight feature of the voxel grid V', as shown in Figure 2: the left side represents
the point attention of the algorithm flow. The point-wise attention module enhances the
points with a high contribution and weakens the points with a low contribution.
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Figure 2. The structure of the point-channel attention module.

3.1.3. Channel-Wise Attention Module

The method of channel attention is similar to point attention. As shown in Figure 2,
for each voxel grid V! € RN*C, the maximum pooling operation and the average pooling
operation are used to aggregate point features across the point-wise dimensions. The
maximum pooling operation obtains the maximum value of the grid V’ in each point
dimension, and the average pooling operation averages the point features of the grid V* in
the point dimension, resulting in two channel-wise responses, BX, B5 € R1*C, respectively,
still using the shared network structure to obtain the channel weight features:

L' = o (3o (WiBf) + wso (WiBf) ) ®)

where W] € Rr=C) W) e REX7 LI € RYC is the channel attention weight feature of
the voxel grid V!, which mainly indicates the importance of the feature channels in each
voxel grid.

3.1.4. Multiple Attention Module

For the i-th voxel grid Vi, the point attention weight feature and the channel atten-
tion weight feature are element-wise multiplied to obtain the attention weight matrix
T € RNXC,

T = M x L (6)

Thus, the features of the voxel grid V! can be obtained from the attention weight
matrix and the voxel element-wise dot product, which properly weights the importance of
all the points inside a voxel across the point-wise and channel-wise dimensions:

o=TQ0OV 7)

where (O means the element-wise dot product, T' € RN*C is the point-channel attention
weight of the voxel grid, Vi € RN*C represents the original point cloud features in the
voxel grid, and O' € RN*C measures the contribution of points within the voxel in the
point-wise dimension and the channel-wise dimension.
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The multiple point-channel attention mechanism uses two point-channel attention
modules that fuse multilevel features, operates directly on point cloud data in the first
module, then connects the inputs and outputs as inputs to the second module, sums the
inputs and outputs of the second module to fuse more feature information, obtains a higher
dimensional feature representation through a fully connected layer, and finally uses a
maximum pooling operation to aggregate all point cloud features within each voxel to
obtain the feature representation of the voxel F = {f1, 2,..., fK}, where f' € R'*C, as the
input to the 3D backbone.

3.2. Voxel Attention Module

In this paper, the voxel attention module is proposed to determine the importance
of each voxel. The structure of the voxel attention module is shown in Figure 3. Set the
coordinates of voxel space denoted as U = {ul, u?, ..., uK}, Ut e R1x3, Firstly, the coor-
dinates of voxels and the features of voxels are connected, the coordinates of voxels can
provide accurate position information, and then the voxel weight features Q € RK>1x1
are obtained by the fully connected layer, ReLU function, sigmoid function, and, finally,
the voxel attention weights and voxel features are multiplied by dots to obtain the more
robust and discriminative voxel features F:

Q = (&([F, U]W,)) 8)

FY¥=Q()F ©)

where [..,..] means the concat operation, which connects two matrices together in the
channel feature dimension, F € RKX1XC and U € RK*1x3 denote the voxel features and
voxel center coordinates, respectively, so [F, U] € REX1x(C+3) W, € REX(C+3)x1 ig the
weight parameter of the fully connected layer. J is the ReLU activation function, ¢ is the
sigmoid function, which mainly normalizes the weight features to the range between [0, 1].
Q € RX*11 means the voxel attention weight. FV € RKX1*C measures the contribution
of voxels.

WXHXDXC

Voxel Center

Y l
KX1x3 Reshape

Kx1x(C

Kx1x(C+3) I I I

Kx1x1

Figure 3. The structure of voxel attention module. The reshape operation permutes the dimension of
the tensor from W x Hx D x Cto K x 1 x C.
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In the 3D backbone, a voxel attention module is added in the middle of first down-

sampling of the voxel space, so that the more contributing voxel features can always
be filtered.

3.3. MFF-ConuvNeXt Module

The MFF-ConvNeXt module consists of feature extraction, downsampling, upsam-
pling, and feature fusion. The ConvNeXt module is mainly used for feature extraction,
aggregating feature information at multiple scales by 1x and 2x downsampling and the
corresponding upsampling.

3.3.1. ConvNeXt Module

As deep learning continues to emerge in various fields, the original structure of
the residual network no longer performs adequately, and ConvNeXt is a model that
starts from the original ResNet [23] and improves it by borrowing the design of the swin
transformer [24]. Instead of using the common convolutional operations, the ConvNeXt
module uses a deeply separable convolution, which consists of a channel-by-channel
convolution kernel with a point-by-point convolution. Channel-by-channel convolution
has the same number of convolution kernels as the number of channels; one convolution
kernel is responsible for one channel, one channel is convolved by only one convolution
kernel, and the number of output feature maps is the same as the number of channels in
the input layer. The operation of point-by-point convolution is similar to conventional
convolution, except that the size of the convolution kernel is 1 x 1 x C, where C is the
number of channels in the previous layer, and the point-by-point convolution combines
the input feature maps pixel by pixel to generate a new feature map. Deeply separable
convolution has the advantage of smaller number of parameters and computational effort
than conventional convolution. The inverse bottleneck layer structure, which is a structure
with a large middle and small ends, was first proposed in MobileNetv2 [25], and such
a structure can effectively avoid information loss. The structure of the ConvNeXt block
proposed in this paper is shown in Figure 4.

Input 128-d

DConv7x7,128-d

Conv1x1,512-d

Convlx1,128-d

<

A
\

Output ¢ @ Element-wise Sum

Figure 4. The structure of the ConvNeXt block.

3.3.2. MFF Module

Convolutional neural networks extract features of the target by level-by-level abstrac-
tion, and one of the important concepts is the perceptual field. The perceptual field is
the range of the region where the pixel points on each layer of the feature map in the
convolutional neural network are mapped on the input image. The high-layer network has
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a large receptive field and a strong feature representation, but the feature map has a low
resolution and a weak representation of spatial location features. The bottom layer network
has the opposite perceptual field.

To solve the problem of small object information loss during downsampling, the usual
solution is a feature pyramid network [26], but FPN generates a lot of extra convolutions and
multiple detection branches, which increases the computational cost and slower inference
speed. This paper borrows the idea of the context enhancement module [27] for increasing
the perceptual field and aggregating local and global semantic information from multiple
scales to generate more discriminative and richer features. The structure of the multi-scale
feature fusion module is shown in Figure 5.

HxWxC

.

[ ConvNeXt Module J
v

Conv HxW % —

v

c deconvilx
HXxWx— g
4

'

[ ConvNeXt Module ]
L 2 HXWXC

(o ) mxwxg Y

deconv2x
. (0 —
X — X

Figure 5. The structure of the MFF-ConvNeXt module.
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3.4. Loss Function

A two-stage object detection network loss function consists of two components, RPN
loss, and detection head loss. The RPN loss function can be represented by Equation (10):

1
L = —
RPN N

; Y Loas(pirci) +1(c; > 1) Y Lreg(bi, 8i) (10)
g |7 i

where Ny, represents the number of foreground anchor boxes, p; is the output classification
score, b; is the output wraparound box regression, ¢; is the classification label truth value,
and g; is the regression target. I(c; > 1) indicates that the regression loss is calculated only
for foreground anchor boxes. The focal loss [28] function and smooth L1 loss function are
used for classification loss and regression loss, respectively.

The detection head loss is also composed of classification loss and region regression
loss, and the target value for classification is first determined based on the IoU between the
prediction frame and the true frame:

0 IoU; < 6.
lou = 4 = 6, < ToU < 6y (11)
1 IoU > 0y
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where IoU is the intersection ratio of the predicted and real regions, 8 is the IoU threshold
for background classification, 0 is the IoU threshold for foreground classification, and the
loss function of the detection head can be represented by Equation (12).

1
L = 57 [ 22 Lats(pir o) +1(ToU > 6reg) ) Lreg (bi, 8i) (12)
s |3 i

where N; is the number of sampled predictor boxes in the model training phase, b;, g; are
the predictor box and real box, respectively, tyeg is the loU of the predictor box and real
box, ]I(I ol > Greg) represents that only the predictor box with IoU > 6reg contributes to
the regional regression loss, the binary cross-entropy loss is used for classification, and the
region regression branch also uses smooth L1 loss, as in the RPN.

4. Experiments
4.1. Datasets

The KITTI dataset [29] contains 7481 training samples and 7518 testing samples in
autonomous driving scenes. We follow existing work SECOND [16] to divide the training
data into a training set of 3712 frames and a validation set of 3769 frames. When performing
experimental studies on the validation set, we use the train set for training. The KITTI
dataset contains a total of three classifications: car, cyclist, and pedestrian. Each classifica-
tion has three difficulty levels: easy, moderate, and hard, depending on factors such as the
size of the 3D object, occlusion level, and truncation level. More details about difficulty
levels are defined in Table 1.

Table 1. The difficulty level provided by the KITTI dataset.

Level Min. Boupdmg Box Max. Occlusion Max. Truncation
Height Level
Easy 40 Px Fully visible 15%
Moderate 25 Px Partly occluded 30%
Hard 25 Px Difficult to see 50%

4.2. Implementation Details
4.2.1. Data Augmentation

We randomly sampled some ground truth boxes during the training process and
placed them in the samples to increase the number of ground truth boxes in the point
cloud and simulate the object in different environments. We rotated the points inside a real
3D bounding box along the Z-axis according to a uniform distribution of [—7t/4, 1/4] to
determine the directional variety, and similarly flipped the point cloud inside the 3D box
randomly along the X-axis or Y-axis, scaling the global point cloud randomly in the range
of [0.95,1.05].

4.2.2. Voxelization

The raw point clouds are divided into regular voxels before taken as the input of our
module. Since the KITTI dataset only provides the annotations of object in FOV , this paper
clipped the range of point clouds into [0, 70.4] m for the X-axis, [-40, 40] m for the Y-axis,
and [—3, 1] m for the Z-axis. The input voxel size was set as (0.05 m, 0.05 m, 0.1 m), so the
voxel size in 3D space was 1600 x 1408 x 40. The maximum number of non-empty voxels is
set to 40,000, each voxel samples at most 5 points, each point takes the feature (x,y,z,7) as
the original input, and for the voxels containing less than 5 points, we pad them with zeros.
In the process of voxel feature encoding, the feature size obtained in the first point-channel
attention module is 5 x 8, which is used as the input of the second point-channel attention
module. After the output of the second module, the feature of each voxel is 1 x 4 after
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passing through the fully connected layer and the maximum pooling layer, and the voxel
feature of the whole space is 40,000 x 4.

4.2.3. Network Architecture

The architecture of 3D backbone follows the design in SECOND. There are four stages
in the 3D backbone with filter numbers of 16, 32, 48, and 64, respectively. The structure
of the 3D backbone follows the design of [16]. The 3D backbone has four stages with the
number of filters as 16, 32, 48, and 64. In the first stage, the voxel attention module is
used and the attention weight parameter size is 40,000 x 1. There are two branches in
the 2D backbone, downsampling and upsampling. The first downsampling maintains the
same resolution as the input along the X-axis and Y-axis, and the second downsampling
obtains half the resolution of the first, with feature sizes of (64, 128) for both downsampling,
and each downsampling contains a ConvNeXt module consisting of three ConvNeXt blocks.
The upsampling all restores the feature map size to the same resolution as the 2D backbone
input and finally connects them to obtain an output of (200 x 176 x 256).

4.2.4. Training

The model is trained using the ADAM [30] optimizer with a weight decay parameter of
0.01, and the learning rate is adjusted using a one-cycle [31] strategy with an initial learning
rate of 0.00025 and a maximum learning rate of 0.0025. Our model is trained for about
100 epochs with the batch size of 4, and all of our experiments are evaluated on a single
GTX 3080 Ti GPU. The threshold 6y for the foreground IoU is set to 0.75, the threshold 6y,
for the background IoU is set to 0.25, and the box regression IoU threshold 6eg is set as
0.55. In the detect head, 128 ROIs are randomly sampled, half of which satisfy the condition
IoU > 0reg, contributing to the regional regression loss.

4.3. Evaluation on KITTI Dataset

The proposed method was evaluated on the KITTI dataset following the common
protocol to report the average precision (AP) of class car with the 0.7 IoU threshold, and the
AP of classes cyclist and pedestrian with the 0.5 IoU threshold. The proposed method was
tested on the validation set for comparison and analysis. The performance on the validation
set is calculated with the AP setting of recall 40 positions.

As shown in Table 2, the proposed method is compared with the state-of-the-art
LiDAR-based 3D object detectors on cars, pedestrians, and cyclists using the AP under
40 recall thresholds. We reference the R40 APs of VoxelNet, TANet [32], and PV-RCNN to
their papers, the R40 APs of SECOND, PointRCNN, Part-A2 [13], PointPillars, and Voxel
R-CNN to the results of the officially released code. It can be found that the method in this
paper has a 3D mean average precision of 1.17% higher than the current state-of-the-art
Voxel R-CNN method, although it is a little lower than the Voxel R-CNN method on the easy
and moderate car objects, but 0.17% higher on the hard car objects, outperforming Voxel
R-CNN models by 1.85%, 1.21%, and 1.52% 3D R40 AP on the easy, moderate, and hard
cyclist objects, respectively, and outperforming the Voxel R-CNN model by 2.12%, 1.86%,
and 2.30% 3D R40 AP on the easy, moderate, and hard pedestrian objects, respectively. Our
proposed model outperforms TANet by 0.53%, 0.39%, and 0.41% 3D R40 AP on the easy,
moderate, and hard pedestrian objects, respectively.

Figure 6 shows the results of the method proposed in this paper for 3D object detection.
The top of the image shows the 2D object in FOV, and the bottom shows the 3D object de-
tection results. In the point cloud, the red box represents the ground truth box of the object,
the green box represents the detection result of the car, and the blue and yellow represent
the detection result of the pedestrian and the cyclist, respectively. Overall, these evaluation
and detection results show that the proposed method can produce accurate results.
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Table 2. 3D object detection performance: average precision (AP) (in %) and mean average precision
(mAP) (in %) for 3D object boxes in the KITTI validation set.

Car3D Cyclists3D Pedestrians3D
Method 3DmAP
Easy  Moderate Hard Easy Moderate Hard Easy  Moderate Hard

VoxelNet 81.97 65.46 62.85 67.17 47.65 45.11 57.86 53.42 48.87 58.93
PointPillars 87.50 77.01 74.77 83.65 63.40 59.71 66.73 61.06 56.50 70.03
SECOND 89.05 79.94 77.09 82.96 61.43 59.15 55.94 51.14 46.17 66.99
PointRCNN 88.26 77.73 76.67 82.76 62.83 59.62 65.62 58.57 51.48 69.28
Part-A2 89.47 79.47 78.54 88.31 70.14 66.93 66.89 59.68 54.62 72.67
PV-RCNN 92.10 84.36 82.48 88.88 71.95 66.78 64.26 56.67 51.91 73.26
TANet 88.21 77.85 75.62 85.98 64.95 60.40 70.80 63.45 58.22 71.72
Voxel R-CNN 92.64 85.10 82.84 92.93 75.03 70.81 69.21 61.98 56.33 76.31
BtC 93.15 86.28 83.86 91.45 74.70 70.08 69.39 61.19 55.86 76.21
Ours 92.60 84.98 83.21 94.78 75.72 72.28 71.33 63.84 58.63 77.48

Car Cyclist Pedestrian

Figure 6. Results of 3D detection on the KITTI validation set. The method proposed in this paper can
accurately detect the object in the point cloud. The red box represents the ground truth box of the
object, the green box represents the detection result of the car, and the blue and yellow represent the
detection result of the pedestrian and the cyclist, respectively.

4.4. Analysis of the Detection Results

Figure 7 shows the visualization of 3D object detection result produced by Voxel
R-CNN and the method proposed by this paper. Each image consists of the FOV at the top,
the Voxel R-CNN detection result at the bottom left, and the detection result of this paper
at the bottom right.

In Figure 7a, it can be seen that the Voxel R-CNN method identifies the signage and
trees in the background as pedestrians, and the proposed method in this paper does not
have a false positive. There is also a noticeable lack of labels: some heavily occluded cyclists
are not labeled at all, although the network did successfully detect these cyclists.

Figure 7b shows the detection results in a simple traffic scenario. Here, there are some
false positive pedestrian detection results. These false positives are present in unreasonable
locations in the image. This difficulty can be attributed to the fact that the instance density
of pedestrians is usually higher compared to that of cars, which results in pedestrians being
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more easily confused with other points and noise. In addition, the relatively small volumes
of pedestrians lead to less voxels of them. Therefore, with the addition of the attention
module, the voxel features of pedestrians are enhanced and these false positives disappear.
Compared with the Voxel R-CNN model, the prediction box of cars fits the real box better.

(b)

Figure 7. Visualization of 3D object detection result produced by Voxel R-CNN and the method
proposed by this paper. The red box represents the ground truth box of the object, the green box
represents the detection result of the car, and the blue and yellow represent the detection result of the
pedestrian and the cyclist. (a) Detection results in obscured scenes. (b) Detection results in a simple
traffic scenario.
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4.5. Ablation Studies

Table 3 details how each proposed module influences the accuracy and efficiency of
the proposed method. The results are evaluated with mAP of all level for three classes.
The baseline is the Voxel R-CNN network. With only point-channel attention (PCA) and
only voxel attention (VA), the 3D mAP performance is boosted to 76.44% and 76.37%,
respectively. The MFF-ConvNeXt module yields a pedestrians 3D mAP of 63.53%, outper-
forming the baseline model by 1.03%. When combining PCA and VA, it yields a pedestrians
3D mAP of 63.43%, outperforming the baseline model by 0.93%. Based on the attention
module, the MFF-ConvNeXt module was able to obtain rich features, giving significant
improvements to the baseline, achieving the pedestrians 3D mAP with about 64.40%,
and outperforming the baseline model by 1.9%.

Table 3. Performance of the proposed method with different configurations on the KITTI validation
set. The results are evaluated with the mAP calculated by 40 recall positions for all classes.

Method Cars 3D Cyclists 3D Pedestrians 3D 3D mAP
Baseline 86.86 79.59 62.50 76.31
PCA 86.87 79.63 62.82 76.44
VA 86.87 79.60 62.66 76.37
MFE-ConvNeXt 86.86 79.75 63.53 76.71
PCA + VA 86.90 79.81 63.43 76.62
PCA + MFF-ConvNeXt 86.92 80.43 64.15 77.16
Ours 86.93 80.92 64.40 77.48

To demonstrate the generality of the attention module proposed in this paper on voxel-
based 3D object detection networks, as well as its effectiveness in improving the detection
performance of the networks, in this paper, the attention module is added to the two
networks, PV-RCNN and Voxel R-CNN, for training, and the evaluation results are shown
in Table 4. It can be seen that the mAP of the network is improved after adding the attention
module, and the accuracies of cyclist and pedestrian are especially improved significantly.

Table 4. A comparison of 3D object detection results (mAP) in the KITTI validation set before and
after adding the attention module.

Method Cars 3D Cyclists 3D Pedestrians 3D 3D mAP
PV-RCNN 86.31 75.87 57.61 73.26
PV-RCNN + Attention 86.53 78.14 59.32 74.66
Voxel R-CNN 86.86 79.59 62.50 76.31
Voxel R-CNN + Attention 86.90 79.81 63.43 76.62

Finally, Table 5 shows the interfence time between Voxel R-CNN and our proposed
method. It can be seen that our proposed method improves by 1.17% on 3D mAP and the
inference time increases by only 0.01 s.

Table 5. Inference time comparison between Voxel R-CNN and our proposed method in the KITTI
validation set.

Method 3D mAP Interfence Time
Voxel R-CNN 76.31 0.13s
Ours 77.48 0.14 s

5. Conclusions

The approach based on attention mechanism and multi-scale feature fusion proposed
in this paper for 3D point cloud object detection can effectively improve the detection
accuracy, especially for smaller objects such as pedestrians and cyclists. Among them,
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the method of encoding point clouds into voxels using the point-channel attention module
and the voxel attention module can be incorporated into any voxel-based point cloud object
detection method, which can effectively facilitate the research of point cloud object detection
and other point cloud tasks. The multi-scale feature fusion network introducing the
ConvNeXt module can aggregate richer feature information in the 2D backbone, allowing
the RPN to produce better box suggestions. The superiority of the network in terms of
detection accuracy can be seen through comparative tests. For the two-stage network
proposed in this paper, although the accuracy is high, the inference time can be slow.
In the future, the network structure can be optimized to improve speeding up the network
inference time without reducing the detection accuracy.
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