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Abstract: Accurate estimation of blood pressure (BP) waveforms is critical for ensuring the safety and
proper care of patients in intensive care units (ICUs) and for intraoperative hemodynamic monitoring.
Normal cuff-based BP measurements can only provide systolic blood pressure (SBP) and diastolic
blood pressure (DBP). Alternatively, the BP waveform can be used to estimate a variety of other
physiological parameters and provides additional information about the patient’s health. As a result,
various techniques are being proposed for accurately estimating the BP waveforms. The purpose
of this review is to summarize the current state of knowledge regarding the BP waveform, three
methodologies (pressure-based, ultrasound-based, and deep-learning-based) used in noninvasive BP
waveform estimation research and the feasibility of employing these strategies at home as well as
in ICUs. Additionally, this article will discuss the physical concepts underlying both invasive and
noninvasive BP waveform measurements. We will review historical BP waveform measurements,
standard clinical procedures, and more recent innovations in noninvasive BP waveform monitoring.
Although the technique has not been validated, it is expected that precise, noninvasive BP waveform
estimation will be available in the near future due to its enormous potential.
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1. Introduction

For more than 50 years, indwelling arterial catheterization has enabled the bedside
measurement of continuous arterial pressure values using waveform analysis [1]. According
to a World Health Organization (WHO) report, hypertension, more commonly referred to
as high blood pressure (BP), is a global public health problem. Globally, this disease affects
billions of people, with two-thirds of them living in middle- to low-income countries [2].
Additionally, hypertension increases the risk of developing cardiovascular disease [3],
kidney disease [4], heart attack [5], and diabetes [6,7]. High BP was responsible for nearly
45% of deaths due to heart disease, and stroke was the reason for 51% of the deaths [2,8].
Furthermore, regulating this medical condition is difficult and expensive [9].

Invasive blood pressure waveform monitoring has been used in critical patients in both
ICUs and operating rooms to aid in the rapid diagnosis of cardiovascular insufficiency and
the monitoring of response to medications used to correct irregularities prior to the onset
of hypotension or hypertension. BP waveform variation provides a wealth of information
about an individual’s dynamic cardiovascular state [10,11]. The unique architecture of the
venous BP waveform is intimately related to significant right cardiac activities, whereas
each of the peaks and valleys in the arterial blood pressure (ABP) waveform represents
a distinct left heart function [12,13]. As a result, interest in BP waveform analysis has
increased significantly. Numerous critical parameters can be determined through the
use of BP waveform analysis. Among them are the prediction of vascular resistance,
left ventricular stroke volume (SV), variation of SV, and pulse pressure during positive-
pressure respiration [14]. Real-time monitoring of BP variations is possible with an arterial
catheter equipped with a pressure transducer. Additionally, it enables earlier detection
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of intraoperative hypotension than indirect measurement techniques do. It also provides
reliable venous access for blood sampling. Invasive BP waveform monitoring enables
pressure monitoring in situations when noninvasive BP monitoring with a cuff is not
possible. One such case is during cardiopulmonary bypass when nonpulsatile blood flow
occurs continuously [15,16].

According to the history of BP measurement, Stephen Hales was the first person to
measure invasive BP in 1733. He took BP readings from a horse’s carotid and femoral
arteries. He measured BP by inserting a brass tube connected to a vertical glass tube
into the horse’s trachea [17,18]. Following that, the method was refined by additional
physicians and scientists. In 1828, Jean-Louis Poiseuille and Daniel Bernoulli [19] used
a U-shaped pipe filled with mercury to measure pressure at various locations along the
arteries [20]. In 1949, Peterson and his colleagues implanted the first therapeutically useful
artery catheter. When a small plastic catheter is inserted into an artery using a needle and
then removed, the catheter remains inside the artery. The capacitance manometer used
in this technique enables long-term recording of the BP waveform without discomfort
and allows for relatively free movement of the subject [21]. Peirce [22] and Seldinger [23]
have since explained numerous techniques. Seldinger pioneered the “catheter-over-wire”
technique which has become a widely used technique in recent years. By 1990, over
eight million invasive arterial catheterization probes had been implanted. Monitoring
of the invasive BP waveform is crucial in situations where a wide variation in BP is
observed, precise BP regulation is required for the treatment of end-organ disease, blood
gas measurements are required frequently or multiple times, SV and cardiac output must
be monitored continuously, and patients have critical needs (e.g., dysrhythmias, trauma, or
burn patients), among others [24].

Although invasive BP waveform estimation is the gold standard for BP waveform
monitoring as well as measurements of SBP, DBP, and mean arterial pressure (MAP) values
due to its excellent accuracy, it is too intrusive for routine inspections due to patient dis-
comfort, increased infection risk, prolonged cannulation, hematoma formation, catheter
embolism, thrombosis with distal ischemia, arterial drug administration, blood loss, va-
sospasm, multiple insertion attempts, nerve or adjacent body structure damage, high-dose
vasopressor administration, etc. [10,25,26].

Given the risks associated with invasive BP waveform estimation, extensive research
has been conducted on noninvasive BP estimation. The majority of noninvasive tech-
niques attempt to strike a clinical balance between the arterial catheter and cuff-based
techniques [27–31]. Currently, there are only a few studies that have attempted to establish
methodologies for noninvasive BP waveform prediction. Vascular unloading techniques
based on optical methods [32] and applanation tonometry [33] methods have the potential
to estimate the BP waveforms. However, these methods face numerous technical challenges.
A wearable ultrasonic probe has been proposed to circumvent these limitations [34–36].
However, the method has introduced some new difficulties. The volume of medical data
available in the electronic health records enables machine learning or deep learning algo-
rithms with physiological signals such as photoplethysmogram (PPG) or electrocardiogram
(ECG) or both to estimate the BP waveform in a more convenient way [37–41]. However,
none of the proposed methods has been validated.

The purpose of this article is to summarize all available methods for noninvasive BP
waveform estimation. Our main purpose is to review the studies that predicted the BP
waveforms, and then we show the results of BP values (SBP, DBP, MAP) that are obtained
from the estimated noninvasive BP waveforms. Noninvasive BP monitoring contains
a vast area of research. We specifically searched for the related papers that predicted
blood pressure waveform or arterial blood pressure waveform noninvasively. Recently,
research on noninvasive BP waveform monitoring has been gaining popularity. The
following is the structure of the paper: To begin, a summary of the existing invasive and
noninvasive approaches used in BP waveform estimation studies is provided. Following
that, all available noninvasive BP waveform estimation methods are summarized. This
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is accomplished through a discussion of the studies that have been conducted thus far,
as well as their relative merits and demerits. The review article concludes with some
recommendations for future research in this field.

2. Searching Strategy

This systematic review article was written using the Google Scholar and Web of Science
databases. As several articles reviewed different techniques to predict noninvasive BP
values (SBP, DBP, and MAP), we focused on the studies that predicted the full waveforms
and used the keywords that can provide studies specific to BP waveform prediction [42–47].
The web search was restricted to journal and conference articles published until January
2022. The search was conducted using the following keywords:

• Hypertension or high blood pressure;
• Arterial waveform;
• Blood pressure waveform;
• Machine learning in ABP waveform;
• Signal processing in ABP waveform.

Each article was classified using the data, technique, and algorithms described in
it. Additionally, this search technique considered the variables in the dataset and their
relationship to the BP waveform as well as the data processing methods used to assess
physiological data. There are several review articles available on the Web of Science and
Google Scholar that discuss the methodologies for estimating SBP, DBP, and MAP values
without using a cuff [42–47]. Some studies mentioned two techniques (applanation tonom-
etry and the volume clamp method) along with the cuffless methods [48–53]. However,
these two methods are discussed to review the old techniques, and the main purpose of the
reviews is to review the papers that can measure SBP, DBP, and MAP values rather than
focusing to estimate the complete BP waveforms. It is worth mentioning that applanation
tonometry and the volume clamp method have been studied for a long time (since 1963 [54])
to replace invasive BP waveform, and still there are studies being conducted. However,
the processes are not yet established. Moreover, the pressure-based method has several
disadvantages. To address the limitations, in recent time new methods using ultrasound
and deep learning have been developed to predict BP waveform noninvasively. No other
review paper has reviewed recent methods to particularly predict BP waveforms other
than old studies related to applanation tonometry and the volume clamp methods. To
our knowledge, this is the first paper to review all the available noninvasive methods for
estimating BP waveforms.

3. Noninvasive BP Waveform Estimation Methods

After extensive research, we discovered three distinct methods for estimating nonin-
vasive BP waveforms.

3.1. Pressure-Based Method
3.1.1. Vascular Unloading Technique

The vascular unloading technique or volume clamp method is a noninvasive blood
pressure waveform measurement technique based on a modified Peáz principle [55]. The
outside pressure from the finger cuff linearizes the pressure inside the artery, maintaining
a constant blood volume. On the index or middle finger, a cuff is placed along with an
infrared (IR) light source and a photodiode inside the cuff. It needs to be mentioned that
multiple concentrically interlocking loops were introduced [32] following the failure of the
single loop system [55–64]. In the multiple loop system, fast adjustments are performed by
controlling the inside loops. Fast adjustments mean fast pressure building and release, con-
trolling pressure, light and fast unloading, continuous change in BP, and surrounding a light
filter. The inside loops also provide almost ideal constraints for the loops controlling the
outside. The outside loops are required for providing the system with long-term stability.
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The light source (LED) and the photodiode are used to determine the volume of blood
in the arteries. Consistency of the generated PPG signal can be maintained by controlling
the variable cuff pressure. When the blood volume in the finger increases during systole,
the control system illustrated in Figure 1 increases the cuff pressure in the finger until the
excess blood volume is squashed out. During diastole, the blood volume within the finger
decreases. As a result, the cuff pressure decreases, while the finger’s total blood volume
remains unchanged. Due to the fact that both the PPG signal and the blood volume remain
constant over time, the intra-arterial pressure equals the finger cuff pressure. This pressure
is determined using a manometer, and a BP waveform is generated using the continuous
manometer reading. The advantages and disadvantages of the pressure-based vascular
unloading technique are stated in Table 1.

Figure 1. Noninvasive BP waveform estimation using the vascular unloading technique.

Table 1. Advantages and disadvantages of the vascular unloading technique to estimate BP waveforms.

Advantages Disadvantages

1. A noninvasive continuous monitoring of BP
waveform is possible.

2. No risk of infection like the invasive method.
3. Commercial devices are available.

1. Wearing a cuff for an extended period of time is uncomfortable
and causes numbness and arterial congestion in the
measurement finger.

2. Different finger-widths require different cuff sizes.
3. The finger’s thin arteries are responsible for thermoregulation.

As a result, they are susceptible to vasoconstriction and
vasodilation in response to both external temperature and the
individual’s volume status.

4. There is no guarantee that the finger arteries’ pressure will be
comparable to that of the large arteries.

5. This method necessitates the use of PPG signals, which present
unique technical difficulties.

3.1.2. Arterial Tonometry

Pressman and Newgard introduced applanation tonometry (AT) in 1963, drawing
inspiration from Vierordt and Marey’s pioneering work as well as previous ocular monitor-
ing studies [65]. Tonometry refers to the measurement of pressure, while applanation refers
to flattening. A hand-held strain gauge pressure sensor, referred to as a tonometer, is placed
on the radial artery, and light pressure is applied to slightly flatten the artery until it begins
to deform as shown in Figure 2. A piezoelectric pressure sensor is generally used to monitor
BP waveforms in the radial artery of the wrist [66]. The measurement site is chosen to allow
for the presence of a bony structure beneath the artery [67,68]. The vertical displacements
observed by the tonometer at this point are proportional to the artery pressure when the
measuring apparatus is modeled as a linear springy model [54]. Finally, by maintaining
consistent positioning of the system, a strain gauge sensor converts the measured vertical
displacements into electrical signals representing ABP waveforms [33,65].
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Figure 2. Noninvasive BP waveform estimation using the arterial tonometry method.

The advantages and disadvantages of the pressure-based arterial tonometry method
are stated in Table 2.

Table 2. Advantages and disadvantages of the arterial tonometry to estimate BP waveforms.

Advantages Disadvantages

1. Do not need finger cuff.
2. A noninvasive continuous monitoring of BP

waveform is possible.
3. No risk of infection like the invasive method.
4. Less sensitive to diseases such as

vasoconstrictions caused by using finger cuffs.
5. Commercial devices are available.

1. Used only when a bony system is available to provide firm
mechanical support [65].

2. Ineffective approach if the person is obese, as the propagation of
pulse waves to the skin is substantially slowed.

3. The accurate placement of the measurement device on the middle of
the artery is very critical.

4. A commercial BP cuff device is required for calibration.
5. There should be no movement during the measurement process [34].

3.2. Ultrasound-Based Method

The ultrasound-based approach describes the design and working process of an
ultrasonic probe that is attached to the skin and capable of recording BP waveforms in
deeply embedded veins and arteries [34]. This method addresses the limitation of the
ultrasound method that uses an imaging probe [35,36]. As mentioned in [34], the wearable
ultrasonic probe is 240µm thin and can be stretched up to 60% with strains. The process of
measuring BP waveforms using the ultrasound device is depicted in Figure 3. The probe
continuously measures the diameter of a palpitating blood vessel. Using mathematical
equations, the continuously measured diameter is converted to BP waveforms [69]. The
authors assumed that the human blood vessel is elastic and has very little viscoelasticity; so
the BP waveform can be calculated from the vessel diameter waveforms using Equation (1).

pr(t) = prd × eα( ar(t)
ard
−1) (1)

where prd is the DBP acquired by wearing a commercial BP cuff on the brachial artery,
the cross-section of the arterial diastole is denoted as ard, and the coefficient of vessel
rigidity is α. The artery is assumed to be rotationally symmetrical, and ar(t) is calculated
using Equation (2).

ar(t) =
πD2(t)

4
(2)

where D(t) is the diameter waveform of the artery, which is measured using the ultrasound
wearable device. Then, α can be calculated by Equation (3).

α =
ard × ln

(
prs
prd

)
ars − ard

(3)
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where ars is the cross-section of the arterial systole, and the SBP measured using the same
BP cuff is denoted as prs. The authors used the aforementioned equations and a calibration
process for α and prd to estimate the BP waveform pr(t).
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Figure 3. Noninvasive BP waveform estimation using a wearable ultrasound probe.

The ultrasound probe’s transducer is activated during each pulse cycle with a 7.5 MHz
frequency alternating current (AC) to obtain the ultrasound waveforms. As illustrated in
Figure 3, ultrasound wall tracking was used to determine the temporal resolution. This was
accomplished by generating ultrasound waveforms with a high pulse repetitive frequency
(PRF). This PRF determines the number of pulse cycles per second. When the generated
ultrasound waveforms come into contact with various biological interferences, some of
the waveforms are reflected, and others are transmitted through the interferences. The
reflections are detected using the same transducer that generates the ultrasound waveforms.
When the acoustic velocity of the tissue is known, the reflected waveform (i.e., time of
flight) contains information about the biological interference locations. The spatial pulse
length (SPL) is sufficiently long to distinguish between the posterior and anterior walls of
blood vessels, as is customary when measuring vascular diameter, as illustrated in Figure 3.
The advantages and disadvantages of the ultrasound-based method are listed in Table 3.

Table 3. Advantages and disadvantages of the ultrasound-based method to estimate BP waveforms.

Advantages Disadvantages

1. The wearable ultrasound probe is stretchable.
2. The method is resistive to motion artifacts.
3. No risk of infection like the invasive method.
4. Can measure BP waveforms for a long time.
5. The probe can be used on different measurement sites

(radial artery, carotid artery, brachial artery,
pedal artery).

1. Calibration is required, and the calibration coefficient is
dependent on both the DBP and the vessel rigidity coefficient.

2. Calibration is required prior to and following any
physiological change, such as that caused by exercise.

3. A BP cuff is required to obtain the DBP.
4. The device is not tested on a variety of subjects because the

coefficients will vary according to the subject.
5. No commercial device is available yet.

3.3. Deep-Learning-Based Methods

Deep learning algorithms trained on biomedical signals have gained considerable
popularity in recent years in the field of BP waveform estimation due to their ability to
automatically learn critical features. With the abundance of biomedical data available, deep-
learning-based techniques for BP waveform prediction have become a highly researched
topic in recent years.

During our review process, we discovered that the majority of papers used a variety of
deep learning algorithms to predict BP waveforms using biosignals such as photoplethys-
mogram (PPG) and electrocardiogram (ECG). Arterial BP (ABP) waveforms are used as the
gold standard and reference values in these works. These three waveforms are depicted
in Figure 4. Through the use of body patches, an ECG is obtained from the heart. ABP
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waveforms are typically acquired via arterial catheter from the radial artery. PPG signals
can be generated by a photodiode embedded in the finger. ABP signals can also be acquired
from the brachial arteries. Additionally, the PPG signal has multiple acquisition points
(e.g., wrist, toe, earlobe, etc.). The waveform shapes vary according to the measurement
locations. PPG and fingertip ABP have an almost identical shape, as illustrated in Figure 4.

Figure 4. Photoplethysmogram (PPG), electrocardiogram (ECG), and arterial blood pressure (ABP)
signals with their measuring positions and characteristics.

Due to the structural similarity, the majority of the papers discussed in Table 4 used
PPG signals to estimate BP waveforms. In general, Figure 5 illustrates the steps involved in
deep-learning-based BP waveform estimation using biosignals. Each of the works discussed
thus far as summarized in Table 4 demonstrates a process that is more or less similar.

Figure 5. Noninvasive BP waveform estimation using biosignals and deep learning algorithms.

Table 4 summarizes the methods, input signals used, and length of the input signals,
along with the publication year. Table 5 summarizes the advantages and disadvantages of
deep-learning-based methods.
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Ref. [70] proposes an optimized wavelet neural network with PPG signals as input
for noninvasively predicting BP waveforms. According to the authors, implementing
the proposed structure is significantly easier than implementing a three-layered wavelet
neural network because the structure of cache hidden layer nodes without multipliers is
significantly simpler than the structure of wavelet hidden layer nodes. Additionally, the
paper proposed an algorithm dubbed inhomogeneous resilient backpropagation to reduce
computational complexity and speed of convergence (IRBP). The algorithm determines
the hidden nodes’ weights. However, as mentioned in Table 5, this model has high
computational complexity and also suffers from data redundancy [71].

The authors of [72] employed a Long Short-Term Memory (LSTM) recurrent neural
network as the proposed model’s input. The network architecture and overall process,
on the other hand, are not described in detail. They trained the model individually for
each patient, indicating that the model is not generalizable. When multiple inputs are
used, the output is a single ABP point. The training process is lengthy and inefficient for
implementing a device.

The work in [41] proposed an ANN model and dubbed it the nonlinear autoregressive
model with exogenous input (NARX). They predicted BP waveforms using electrocardiog-
raphy (ECG) signals. They later published an expanded version of their paper in [73] as a
journal. In [73], they used the same model but demonstrated that it can be used with either
PPG or ECG signals or both. When both signals were used, the highest Pearson correlation
coefficient was obtained. However, two sets of BP data are required for model training.
The delay removal procedure is not appropriate in all circumstances. During training, the
ECG, PPG, and BP peak ranges were not unified. Cross-correlation analysis was used to
quantify any difference in predicted and measured blood pressure.

Table 4. Summary of the deep learning–based methods and input biosignals to estimate BP waveforms.

Authors Pub. Year Method Input Input Length

[70] 2015 Wavelet neural network PPG Not given

[72] 2016 Long Short-Term
Memory (LSTM) PPG Not specific

[73] 2020
Nonlinear autoregressive
models with exogenous

input (NARX) with ANN

ECG or PPG or both,
two BP data 100 samples

[37] 2020
(preprint server) U-Net and 1D MultiResUNet PPG 8 s

[40] 2020 Deep convolutional
autoencoder (DCAE) PPG 5 s

[38] 2021 1D U-Net PPG 256 samples = 2.048 s
with overlapping

[39] 2021 Regularized deep
autoencoder (RDAE) PPG 625 samples = 5 s

[74] 2021
(preprint server) U-Net PPG 32 samples

[25] 2021 1D V-Net

ECG, PPG, most recent
cuff-based SBP, DBP, and MAP

values, the time of these
values, the standard deviation

and median of the pulse
arrival time, and pulse rate

4 s

[75] 2022
(preprint server)

Cycle generative adversarial
network (CycleGAN) PPG 256 samples = 2.048 s

with overlapping
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Table 5. Advantages and disadvantages of deep learning–based methods to estimate BP waveforms.

Ref. Advantages Disadvantages

[70] • Only PPG signal is needed.
• An optimized neural network has been proposed.

• High computational complexity.
• Data redundancy.

[72] • Only PPG signal is needed.

• Length of input is not defined.
• The network architecture and overall process are

not described.
• Only one point output w.r.t multiple input point.

[73]

• A feedback loop is used to predict BP values
• BP waveform estimation is shown from ECG signal

which is less sensitive to artifacts.

• BP data is needed for model training.
• Few subjects.
• Delay removal process is not applicable for all cases.
• Different ECG, PPG, and BP peak ranges were not

unified while training.
• cCoss-correlation analysis was performed to quantify

any delay between the predicted and the measured BP.
• Two BP waveform points are needed for the input of

the ANN.

[37]
• Only PPG signal is needed.
• 10-fold cross–validation is done with the data.

• One deep learning network is needed for
approximation, and another deep learning network is
needed for estimating the accurate waveform.

[40]
• Only PPG signal is needed.
• Custom data has been used.
• The number of subjects is less.

• GDCAE method ensembles two deep learning
algorithms to get accurate SBP and DBP values.

[38]
• Only PPG signal is needed.
• Comparatively good result is obtained using only

one model.
• Same subjects are used for training and testing.

[39]

• Only PPG signal is needed.
• The proposed model requires fewer parameters than

other methods.
• Subjects of training and testing sets are different.

• The calibrated model gives better result.

[74]
• The model is implemented on a Raspberry Pi 4 device.
• Only PPG signal is needed.

• The device implementation process is not described.
• PPG signal artifact can provide wrong results.

[25]
• SBP and DBP estimation process is shown.
• Results were shown for two different datasets.
• Training and validation sets include different patients.

• Both the PPG and ECG waveforms and several
constants are needed as input.

[75]
• Only PPG signal is needed.
• 5-fold cross–validation is obtained with the data.

• PPG signal artifact can provide wrong results.
• Constant value of λ is used which is set to 10.

PPG2ABP is the name given to their work in [37], which is available on the preprint
server. They estimated the BP waveform using two deep learning models in this work.
To begin, they estimated the waveform using an approximation network, which is a one-
dimensional U-Net network fed with a PPG signal. They then corrected the estimated BP
waveforms using a refinement network. They refined the model using a 1D MultiResUNet
model. Another study [38] proposed estimating BP waveforms using only a 1D modified
U-Net network. The two papers differ primarily in their signal preprocessing techniques.
Another publication [74], which is also available on the preprint server, used U-Net to
predict the BP waveform using a different preprocessing method. Ref. [74] demonstrated
the feasibility of implementing their proposed model on a Raspberry Pi 4 device with an
inference time of 4.25 ms. However, the implementation process was not detailed. As the
U-Net model requires high computational complexity due to a large number of parameters,
device implementation is difficult with this model. They did, however, include an average
ensemble block prior to the encoder and a denoising block following the decoder. The
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average ensemble block aids in model convergence during training, while the denoising
block denoises the output signal to produce a less-distorted BP waveform.

In [40], a comparison of two deep convolution autoencoders named LeNet-5 and
U-Net to estimate the BP waveforms is shown. To investigate data generalization, the
cross–validation (CV) technique was used. The results indicate that the U-Net outperforms
other estimation methods for SBP values. Meanwhile, the LeNet-5 is marginally more
accurate at predicting DBP values. Finally, a genetic algorithm-based optimization deep
convolutional autoencoder (GDCAE) is used to optimize the ensemble of CV models.
According to the findings, the GDCAE outperforms both the LeNet-5 and the U-Net.
Thus, this review discusses the outcome of the best-performing model GDCAE. However,
combining two deep learning algorithms to obtain two distinct values requires a large
number of parameters, which is inefficient computationally. Additionally, two values can
be obtained by combining two different models, but no optimized model for predicting BP
waveforms is shown.

Additionally, the authors of [39] also used the PPG signal to predict the BP waveforms.
They proposed a deep autoencoder based on regularized convolution, abbreviated as
RDAE, for this purpose. They provided two versions of the model: one that is RDAE-based
and another that is RDAE-based with calibration. They estimated the BP waveform and
then used the waveforms to predict the SBP, DBP, and MAP. They demonstrated that the
proposed model requires fewer parameters than alternative methods.

A 1D V-Net deep learning algorithm is proposed for BP waveform prediction in [25].
Two signals (ECG and PPG), with a 4 s window each, were used as input to the model,
along with several constant values. Constants were encoded and treated as additional
channels at each timestep. The following constants were used: the most recent noninvasive
SBP, DBP, and MAP values obtained prior to the window, the time interval between these
measurements, the standard deviation (STD) and median of the pulse arrival time, and the
pulse rate. There is a residual difference between the PPG and BP waveforms at the input.
The model was constructed in such a way that it is capable of learning the residual error.
The primary issue is that the model requires a large number of input variables and also
requires noninvasive blood pressure measurements.

Another recent work [75] published on the preprint server, proposed the use of a cycle
generative adversarial network (CycleGAN) to predict BP waveforms using PPG data as
input. Despite the fact that the majority of the papers used an encoder–decoder method,
they used a generator and a discriminator network to estimate the waveforms, which is a
novel technique. They conducted training and testing using data from the same subject as
described in Table 5.

3.3.1. Data Preprocessing

Preprocessing data is critical for deep learning methods to provide an accurate model
estimation. Even when similar algorithms and data are used, subtle differences in pre-
processing techniques result in noticeable differences in the results as shown in Figure 5.
Typically, data preprocessing entails one or more of the following:

• Segmenting the data to train the model;
• Removing erroneous biosignals that are inaccurate for measurement;
• Filtering the biosignals to remove the baseline wandering and high–frequency noises;
• Normalizing inputs and outputs for accurate training of the model.

Biosignals contain a variety of artifacts. If those artifacts are used to train deep learning
algorithms, the algorithm may produce incorrect results. As a result, the erroneous data
containing artifacts must be deleted. As all of the papers listed in Table 4 used either
PPG or ECG signals or a combination of the two, signal filtering is necessary to remove
high-frequency noise and extract the necessary portion of the signal for the algorithm.
Normalization of the data is an additional step in data preprocessing. To eliminate the
range difference between different biosignals, the signals must be normalized. This is
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accomplished through the use of a variety of different normalization techniques. Table 6
illustrates the differences in the data preprocessing methods used by various works.

Table 6. Different data preprocessing techniques of deep learning methods. In the normalization
equations, x′ is the normalized signal window, x denotes the signal window before normalization, µ

is the mean, and σ is the standard deviation.

Ref. Preprocessing Steps Normalization Equation

[70,72,74]
• Filtering the biosignals
• Removing erroneous biosignals -

[40,73] • Removing erroneous biosignals -

[37]
• Filtering the biosignals
• Removing erroneous biosignals
• Normalization

x′ = x−µ
max(x)−min(x)

[25,38]

• Filtering the biosignals
• Segmentation
• Removing erroneous biosignals
• Normalization

• For [38], x′ = x−min(x)
max(x)−min(x)

• For [25], x′ = (x−min(x))× SBP−DBP
max(x)−min(x) + DBP

[39]

• Filtering the biosignals
• Removing the erroneous portion of biosignals
• Segmentation
• Normalization

x′ =
(

x−µ
σ

)

[75]
• Removing the erroneous portion of biosignals
• Filtering the biosignals
• Segmentation

-

Ref. [70] uses the PPG signal as an input and the ABP signal as an output. The input’s
length is not specified. Due to the fact that the energy in PPG signals is primarily in the low–
frequency range, below 20 Hz, this work makes use of the low-pass filter for the Daubechies
wavelet. Scales 21 and 22 were chosen to represent the frequency range over which the PPG
signal will be processed. This article makes no use of any other preprocessing technique.
Ref. [72] eliminated baseline drift from both PPG and ABP signals by removing the output
of the linear square fit. The input size is equal to the proposed network’s node count.

Another work [73] used double derivation to determine the signal’s erroneous portion.
They established a cutoff point of ±5. The signal segments with the highest standard
derivations of the threshold value were excluded from the dataset. To locate noisy data for
some signals, up to six standard derivations were used. The input sample size was 100 to
obtain one BP point.

In [37], signal filtering was accomplished using a simple averaging filter. Signals
with DBP values less than 50 mmHg and SBP values greater than 200 mmHg were con-
sidered to have irregular BP values and were excluded from the dataset. Then signals
with unacceptably fast heartbeats and long discontinuities were eliminated as well. A PPG
signal with a duration of 8.192 s (1024 samples) was used as the input, and a signal with
a similar size was obtained as the output. By setting the coefficients for decomposition
to zero, Daubechies wavelet denoising, as described in [70], was used to neglect too low
and too high-frequency components by setting the coefficients for decomposition to zero
value. Finally, the authors used mean normalization for the PPG signal. In [40], each input
PPG and output ABP were 5 s in length. No other filtering process was used to identify
erroneous segments; they were identified manually through visual inspection.
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The method of preprocessing is described in detail in [38]. To begin, they used a
bandpass Equiripple FIR filter with a frequency range of 0.5–8 Hz to filter PPG data. The
PPG and ABP signals were then segmented into 350 samples with a 100-sample overlap.
Following that, a machine learning model was used to identify and remove erroneous
signals from the dataset. Signals were measured at distinct locations. Thus, a phase
difference exists between the two signals. By using cross-correlation, the ABP signals were
phase-matched to the PPG signals. Following that, 256 samples of phase-matched signals
were chosen to train, validate, and test the proposed 1D U-Net model. The duration of the
input and output signals was 2.048 s.

The work [39] clarified their preprocessing technique. They sequentially performed
signal filtering, excluding erroneous segments, segmentation, and normalization. They
used distinct procedures to filter both PPG and ABP signals. PPG signals were filtered
with a fourth order bandpass filter and out-of-range peaks and valleys were clipped.
They used the Savitzky–Golay filter to filter the ABP signals. They then ensured that the
model had an independent identity distribution for training, validation, and testing. They
classified the ABP signals into three categories based on the SBP and DBP values: normal,
prehypertensive, and hypertensive. Then, in a 6:2:2 ratio, they divided the signals into
three classes and created the final dataset. Next, they excluded erroneous ABP signals from
the final dataset when any abnormal condition was found. After that, the signals were
segmented into 625 samples to use for the input and output. Both the input and output
segments are Z-score normalized.

Ref. [74] defines ABP signals with 60 mmHg≥DBP≥ 130 mmHg and 80 mmHg≥ SBP
≥ 180 mmHg as irregular signals and excludes them from the dataset. Then, similar to [70],
a preprocessing technique is used. One additional step is that the work downsampled the
data to satisfy the computational requirement.

The article [25] employed a thorough preprocessing technique. Along with the PPG
and ECG signals, this paper required several input parameters. All signals were down-
sampled to a 100 Hz frequency. The signals were then subjected to low-pass filtering
with a cutoff frequency of 16 Hz. The signals were normalized and segmented into 32-s
windows. SBP, DBP, and MAP values were calculated using the MIMIC III database’s every
4 s ABP signal window. Intermittent noninvasive blood pressure (NIBP) measurements
were used to describe these values. Although the NIBP values were extracted every five
minutes, the signals were sampled at 100 Hz. As a result, the missing values were substi-
tuted with the most recent NIBP values. Additionally, the time of this measurement was
used as an input parameter. To compensate for the phase difference between the signals,
cross-correlation was calculated between the ABP and PPG signals in the same manner
as described previously [38]. Following that, the 32-s windows for identifying artifacts
were chosen. Artifact-containing signals were removed from the final dataset. Numerous
criteria were established to aid in the identification of the artifacts. Using a CNN network,
the erroneous PPG signals were identified despite these criteria. Human identified signals
were used to train the network. To obtain an accurate ABP signal, the pulse arrival time
(PAT) was calculated using the ECG signal and the heart rate was calculated using the
PPG signal.

In [75], the Fourier Transform (FFT) was used to remove unwanted information
from both PPG and ABP signals. Then, for the PPG signal, a bandpass filter with cutoff
frequencies of 0.1 Hz and 8 Hz was used, and for the ABP signal, a low-pass filter with a
cutoff frequency of 5 Hz was used. Both signals have been normalized. Following that,
each signal was divided into 256 samples with a 25% overlap.

3.3.2. Data Availability

Deep learning algorithms need a huge amount of data for training, validation, and
testing. Therefore, the availability of data is very important. Table 7 summarizes the
use of data for different methods. The majority of papers make use of data from the
MIMIC, MIMIC II, and MIMIC III waveform databases [76–79]. However, different papers



Sensors 2022, 22, 3953 13 of 22

used varying numbers of subjects, and the total amount of data collected varies as well.
According to the total data, some papers divided the data into train, validation, and test
sets, while others divided the data at the subject level. Several papers used the dataset
for K-fold CV. For K-fold CV, each fold’s training data was partitioned into training and
validation data. The number of patients, the total amount of data used in the algorithm,
and the way the data is split all have a significant impact on the obtained results. The more
diverse the data set, the more generalizable the proposed algorithm.

Table 7. Summary of the datasets used to train, validate, and test the deep learning models.

Ref Dataset # of Subject Total Data (in hours) K-Fold Cross-Validation Train:Val:Test

[70] MIMIC >90 - No Not given

[72] MIMIC 42 - No 80:10:10 (in total data)

[73] MIMIC II 15 - No 70:15:15 (in total data)

[37] MIMIC II 942 ≈353.5 Yes (10 Folds) 78.58:-:21.42 (in total data)

[40] Custom 18 ≈50.72 Yes (10 Folds) 85:-:15 (in total data)

[38] MIMIC, MIMIC III Waveform 100 ≈195 No 70:15:15 (in total data)

[39] MIMIC II 1227 ≈54.53 No 60:20:20 (in subjects)

[74] MIMIC II Waveform database 948 ≈353.5 Yes (10 Folds) 78.58:-:21.42

[25] MIMIC III, UCLA MIMIC-264,
UCLA-110 ≈2516.48 No 66:-:33 (in subjects of MIMIC)

[75] MIMIC II Waveform database 92 ≈7.67 Yes (5 Folds) 80:-:20

4. Result Comparison

All papers included figures to illustrate their estimated BP waveforms. The discussed
works illustrated the obtained result by plotting the reference and estimated waveforms.
Several papers used performance metrics to assess the obtained results, which are listed in
Table 8. The majority of studies obtained SBP and DBP values from estimated waveforms.
Additionally, some calculated the MAP values. Mean absolute error (MAE), mean error
(ME), standard deviation (SD), root mean square error (RMSE), Pearson’s correlation
coefficient (r), and average mean squared error (AMSE) are used as performance metrics.
The majority of the papers also compared the obtained results to two standards: the British
Hypertension Society (BHS) [80] and the Association for the Advancement of Medical
Instrumentation (AAMI) [81,82]. The ME must be within ±5 mmHg, and SD must be less
than or equal to 8 mmHg for data involving more than 85 subjects, according to the AAMI
standard. Most of the papers defined the AAMI standard using the ME and some papers
using the MAE [38,70,83]. In study [83], it is stated that calculating the mean error yields
incorrect results because a lower ME may result in a higher MAE. We also found in the
studies that some papers that showed lower ME [39,74] resulted in higher MAE. Therefore,
in Table 8, the AAMI standard results on the basis of both ME and MAE are shown. Table 8
summarizes the performance metrics for estimation of BP waveforms, SBP, DBP, and MAP.
Additionally, it illustrates the outcomes of the proposed works in terms of standards.

Ref. [34] illustrates the shapes of the BP waveforms at various body locations (neck,
arm, radial artery, and dorsalis pedis of the foot). They compared the BP waveform
obtained by their ultrasound probe to that obtained by the commercially available FDA-
approved SphygmoCor EM3®® device. As shown in Table 8, the work demonstrated ME
for SBP and DBP. Using signal diagrams, the pressure-based methods [32,33] demonstrated
the comparison of BP waveforms. No measurement metrics were used to compare the
estimated waveforms’ accuracy.
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Table 8. Performance summary of all the discussed BP waveform estimation methods. “–” is used
where metric is not used.

Method Ref. Year

Performance Metrics
(no Unit for r, mmHg for Others) BHS

Grade AAMI
Waveform SBP DBP MAP

Ultrasound-
Based [34] 2018 - ME: 0.05 ME: 0.28 - - -

Pressure-Based
[32] 2006 - - - - - -

[33] 2015 - - - - - -

Deep
Learning-Based

[70] 2015 Mean: 3.4094
AMSE: 4.4797

MAE± SD:
2.32 ± 2.91

MAE± SD:
1.92 ± 2.47 - - Passed (MAE)

[72] 2016

RMSE: 6.042 ± 3.26
r: 0.95

MAE: 5.98
ME: −0.214

RMSE: 2.575 RMSE: 1.977 - - -

[73] 2020 - - - - - Failed

[37]
2020

(preprint
server)

MAE± SD:
4.604 ± 5.043

MAE± SD:
5.727 ± 9.162

MAE± SD:
3.449 ± 6.147

MAE± SD:
2.310 ± 4.437 A Failed

[40] 2020
RMSE: 3.46
MAE: 2.33

r: 0.984

RMSE: 3.41
MAE: 2.54

r: 0.981

RMSE: 2.14
MAE: 1.48

r: 0.979
- - Failed

(subjects < 85)

[38] 2021 r: 0.993

MAE± SD :
3.68 ± 4.42
RMSE: 5.75

r: 0.976

MAE± SD :
1.97 ± 2.92
RMSE: 3.52

r: 0.970

MAE± SD :
2.17 ± 3.06
RMSE: 3.75

r: 0.976

A Passed (MAE)

[39] 2021 -
ME± SD :

1.648 ± 6.640
MAE: 5.424

ME± SD :
1.280 ± 3.740
MAE: 3.144

ME± SD :
−0.304 ± 3.412

MAE: 2.885
SBP:B Passed (ME)

Failed (MAE)

[74]
2021

(preprint
server)

-
ME± SD :

−0.225 ± 8.504
MAE: 5.16

ME± SD :
0.594 ± 4.778

MAE: 2.89

ME± SD :
0.425 ± 4.784 SBP:B Passed (ME)

Failed (MAE)

[25] 2021

MIMIC RMSE: 5.823
MIMIC r: 0.957

UCLA RMSE: 6.961
UCLA r: 0.947

MIMIC
ME± SD :

4.297 ± 6.527
UCLA

ME± SD :
2.398 ± 5.623

MIMIC
ME± SD :

−3.114 ± 4.570 mmHg
UCLA

ME± SD :
−2.497 ± 3.785

- - Passed (ME)

[75]
2022

(preprint
server)

-

MAE± SD :
2.89 ± 4.52
RMSE: 5.18

ME: 0.67
r: 0.97

MAE± SD :
3.22 ± 4.67
RMSE: 4.82

ME: 1.78
r: 0.94

- A Passed (MAE,
ME)

Ref. [70] demonstrated the mean and average mean squared error for the estimated wave-
forms when compared to the waveforms in the MIMIC database, which are 3.4094 mmHg
and 4.4797 mmHg, respectively. MAE and SD are within the range specified by the AAMI
standard. Ref. [72] displays the RMSE, MAE, and mean square error for the estimated
waveforms. For SBP and DBP, only the RMSE is displayed. In [73], BP waveforms can
be estimated solely through the ECG, solely through the PPG, or both. The results are
compared to pulse arrival time (PAT) models. However, no precise values for performance
metrics are provided. The MAE of this BP waveform is 4.604 ± 5.043 mmHg in [37]. The
AAMI criteria are met in the case of MAP and DBP but not in the case of SBP. The paper
earned an A on the BHS standard. The GDCAE method of [40] was used to generate the
results in Table 8 because it produces the best results among the three proposed methods of
the paper. Despite having high performance metrics, this work does not meet the AAMI
standard due to the small number of subjects. Ref. [38] compared the estimated waveform
figures to the average Person’s correlation coefficient (r) value for BP waveforms. This work
met both standards. In [39], the predicted ABP waveform (on the test set) was compared to
the ground-truth ABP waveform based on the model—RDAE: with and without calibration.
Five distinct cases were presented to illustrate the BP waveform results. The cases are avail-
able with a clear dicrotic notch, without a clear dicrotic notch, or without a clear dicrotic
notch. Hypotension, with a clearly abnormal cycle and a high degree of BP fluctuation,
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was also included. The calibrated result is superior to the uncalibrated result. Thus, Table 8
displays the best result that satisfies the AAMI error range for ME values and not for MAE
values. It received a grade B for estimating SBP for the BHS standard. Ref. [74] illustrates
the result of BP waveforms with an example of an estimated BP waveform. The obtained
BP values do not conform to either of the standards. Ref. [25] presented findings from
two distinct datasets. For waveforms, the RMSE and r values are displayed. SBP and DBP
values are given as mean and SD and the work conforms to the AAMI standard according
to ME [25]. Ref. [75] displayed no result for waveform; even the estimated waveforms
are not displayed. The results for SBP and DBP are presented, and the results satisfy the
standards when the given value is used.

The results give a clear indication that no paper has given a well-established method
for evaluating the waveforms’ obtained results. Different works employed a variety of
performance metrics; in some cases, no metrics were used to demonstrate the accuracy of
their conclusions. The majority of papers did not explain how to obtain the performance
metrics for BP waveforms. As a result, it is exceedingly difficult to compare works solely
on the basis of their outcomes.

5. Commercialization

Studies are being conducted to find some reliable and flexible BP sensors to measure
BP noninvasively and to develop commercial devices [66,84–86]. Although several methods
have been proposed to replace the invasive BP waveform measurement process, no reliable
commercial device is yet available. In spite of the limitations, some pressure-based devices
are proposed for commercial use as they can provide noninvasive BP waveform that
is similar to the invasive one. The AtCor Sphygmocor Xcel device [87] and NIBP100A
(Vasotrac) [88] are arterial tonometry-based devices. Under expert supervision, the AtCor
Sphygmocor Xcel device can perform applanation tonometry on the radial artery and
derive BP waveforms [34,68]. While the NIBP100A (Vasotrac) is capable of measuring BP
waveforms without supervision, it is unable to measure beat-to-beat BP values [89]. The
Vasotrac device proposes an alternate way to cuff calibration which provides the SBP, DBP,
and MAP values every 12 to 15 pulses [90,91]. Finapres® NOVA [92–94] and CNAPTM

Monitor 500 [32,95–97] are additional devices that operate on the principle of vascular
unloading. Another device, CNAP2GO finger-ring [98], is currently conducting research to
commercialize it. Ref. [85] proposed a flexible PDMS-DI water dielectric sensor and applied
the sensor in OMRON and Fluke NIBP analyzer to obtain BP values. The NIBP analyzer
was used to obtain the oscillometric waveform of the SBP and DBP values. However, the
flexible sensor is not applied in devices that can measure complete BP waveforms. All
devices are based on pressure, which has a number of drawbacks as listed in Tables 1 and 2.
There is currently no commercially available ultrasound or deep-learning-based device.

6. Discussion and Future Prospects

The purpose of this review article is to summarize the research on BP waveform
estimation and to provide an overview of BP waveform measurement approaches. Three
noninvasive BP waveform monitoring techniques have been introduced thus far. However,
each of these methods has some limitations, and their use in hospitals and on a routine
basis is not yet confirmed. From a pathophysiological standpoint, the BP waveform is a
significant and direct predictor of the majority of ischemic heart diseases [99]. Continuous
and long-term monitoring of such occurrences can lead to significant breakthroughs in
cardiac disease prevention and detection, which are presently unachievable with current
medical instruments [5,100,101].

Development of the methods in a chronological order over the years to predict the BP
waveform is shown in Figure 6. Figure 6 displays that ultrasound and deep learning are
the latest methods in this sector. However, research is still going on in every noninvasive
method. PPG signals are used in one of the pressure-based techniques (vascular unloading)
and in the majority of machine-learning-based techniques. Due to the fact that these
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methods require biosignals, distinct disadvantages associated with biosignals persist for
these methods. The penetration depth of PPG signals, in particular, is insufficient for
assessing the central vasculature [102]. Other technical issues with PPG signals include
signal aliasing due to arterial and venous palpitations [103], vulnerability to body moisture
and high temperature [104], and a strong reliance on the composition of blood staying
consistent [105]. Additionally, the PPG signal is susceptible to a variety of artifacts. Skin
tone also plays a role in the measurement of PPG signals [106]. Several studies used
additional biological signals, such as the electrocardiogram, to obtain accurate measurement
waveforms. However, it cannot compete with the use of PPG signals. Thus, in some cases,
ECG signals have been used to improve the predicted BP waveforms based on PPG signals.
Another pressure-based technique known as tonometry, as well as an ultrasound-based
technique, do not require biosignals. However, only two studies utilizing ultrasound were
discovered, and they also have some significant limitations. Although tonometry has
been extensively studied for a long period of time, it cannot yet fully replace invasive
measurement methods due to inherent limitations.

Figure 6. Development of different methods over the years. Invasive blood pressure waveform
study [17–23]; Arterial tonometry study [33,65,67,68,86,89–91]; Volume clamp method study [32,55–64,92–97];
Ultrasound-based method study [34–36]; Deep learning with biosignals related study [25,37–40,70,72–75].

Our work was also to survey the performance metrics used to evaluate the proposed
methods. As illustrated in Table 8, not all studies use the same performance metrics. There
are no definitive metrics for the waveform estimation result. The majority of papers did not
employ any metrics to evaluate the estimated waveforms [32–34,39,73–75]. The accuracy of
waveforms is demonstrated by plotting several waveforms against their reference wave-
forms. One or two graphs are used to illustrate this. However, in the absence of specific
performance metrics, it is difficult to rely on the examples, as the majority of papers demon-
strated the best–estimated waveforms. Numerous papers demonstrated the accuracy by
estimating the commonly used SBP and DBP values from the predicted waveforms. Addi-
tionally, some papers estimated MAP values. Table 8 summarizes the most frequently used
performance metrics. Although some work reports excellent performance, it is difficult to
compare it to other studies due to the disparity in reported metrics and the data used to
replicate the proposed method.

Due to the dataset’s lack of similarity, it is difficult to compare the results obtained
using various methods. The pressure-based and ultrasound-based methods estimated the
BP waveforms using mathematical equations. They did not make a point of emphasizing
the results obtained from various subjects. As a result, the studies either used a customized
dataset or evaluated the process with a small sample size. On the other hand, methods
based on machine learning require a large amount of data to build their model. While there
is a wealth of data on the use of arterial SBP and DBP and their medical and diagnostic
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utility, there are relatively few datasets of BP waveforms. Nonetheless, different versions of
the MIMIC dataset are used for machine learning methods because this is the only publicly
available dataset that contains invasive BP waveforms, also known as ABP waveforms,
with respect to the PPG signal, ECG signal, and cuff-based noninvasive measurement
values (SBP and DBP). However, these datasets contain information on over 40,000 subjects.
The number of subjects, the duration of the data, and the type of data vary according to the
research work, as indicated in Table 7. Even when using similar datasets, it is impossible to
compare the results obtained by different authors due to this variability. As a result, the
data must be collected and preprocessed according to a documented protocol. Following
that, you can select from a variety of deep learning models. Because the studies on machine
learning included a variety of deep learning algorithms, there is no clear preference for
one technique over another. However, recent work has concentrated on encoder–decoder
models with the primary objective of estimating the BP waveforms as stated in Table 4.
The selected deep learning algorithm largely depends on the type of data used to build
the algorithm.

However, one disadvantage of deep learning is the training time, which is dependent
on the network architecture and the hardware used to train the model, both of which
are costly. Training time can be halved by utilizing appropriate hardware to train the
networks [107]. Typically, the use of a GPU resolves this issue [108]. However, it is
critical to make the best use of GPU resources when training deep learning networks and
performing a large number of floating-point calculations and matrix computations with
greater efficiency than CPUs [109]. Some software or development environments, such as
Python and MATLAB, are utilized for this reason. The key benefit of these programming
languages is that they are written in such a way that the creation of deep learning algorithms
becomes easier without requiring a thorough understanding of GPU hardware structure.
Nonetheless, if computational materials are required to be purchased or acquired, these
algorithms could be costly to implement. This issue was discussed in [39], and a deep
learning model with a comparatively small number of parameters was proposed.

Future research in this field has enormous potential. The datasets and records that
were analyzed can be made publicly accessible. Due to the fact that PPG contains a variety
of artifacts and that reliable accusation is dependent on a variety of factors, additional
biological parameters such as the subject’s gender, age, BMI, and habits can be used to
obtain more accurate results. A universal performance metric or graph must be established
to allow for proper comparisons between methodologies. The deployment of deep learning
models for BP waveform prediction in hardware could be investigated further. The method
for predicting BP waveforms in any situation must be studied for generalizability. None
of the methods examined can provide generalizable results for both normal and intensive
care unit patients. After obtaining the result, calibration with noninvasive cuff-based
values or a reference invasive waveform is required. The reliance on cuff-based or invasive
measurements should be eliminated. In general, a long-term study is necessary to establish
a promising result for predicting BP waveforms and implementing the system in hospitals
and homes.

7. Conclusions

This work provided an overview of the method for estimating BP waveforms as well as
the significance of the waveforms. Our findings indicate that three distinct types of studies
are currently being conducted to estimate BP waveforms. They are based on methods such
as pressure, ultrasound, and machine learning. Numerous biosignals, particularly the use
of PPG signals, are observed to be the most useful in predicting these useful waveforms.
Due to the fact that these biosignals may contain a variety of artifacts, it is critical to conduct
research on them to ensure that biosignals are obtained without error and that accurate
results are obtained. BP waveforms contain a wealth of information that can be used to
aid in the treatment of cardiovascular diseases. As a result, it is crucial that the obtained
results are accurate. Our review concluded that each study conducted to date has some
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flaws. However, there are numerous research opportunities in this field that could result in
the noninvasive and accurate acquisition of BP waveforms.

The field of noninvasive BP waveform estimation is a promising yet challenging one.
In future work, a better understanding of ultrasound, different biosignal information,
and machine learning should enable researchers to address the aforementioned issues and
ensure the successful development of technologies for noninvasive BP waveform estimation.
The incorporation of these methods for noninvasively estimating BP waveforms, which
may indicate probable cardiac failure in the event of operational blood loss, represents the
evolution of invasive BP measurement.
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