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Abstract: Micro-expressions are rapid and subtle facial movements. Different from ordinary facial
expressions in our daily life, micro-expressions are very difficult to detect and recognize. In recent
years, due to a wide range of potential applications in many domains, micro-expression recognition
has aroused extensive attention from computer vision. Because available micro-expression datasets
are very small, deep neural network models with a huge number of parameters are prone to over-
fitting. In this article, we propose an OF-PCANet+ method for micro-expression recognition, in
which we design a spatiotemporal feature learning strategy based on shallow PCANet+ model, and
we incorporate optical flow sequence stacking with the PCANet+ network to learn discriminative
spatiotemporal features. We conduct comprehensive experiments on publicly available SMIC and
CASME2 datasets. The results show that our lightweight model obviously outperforms popular hand-
crafted methods and also achieves comparable performances with deep learning based methods,
such as 3D-FCNN and ELRCN.

Keywords: micro-expression recognition; optical flow; PCANet+; deep learning

1. Introduction

Micro-expressions (MEs) are involuntary facial movements with the characteristics
of short duration, low intensity, and occurrence in sparse facial action units [1,2]. It
is generally believed that the duration of ME is between 1/25 s and 1/2 s [3]. Micro-
expression (ME) recognition is a challenging task; even the recognition accuracy by people
with specialized training is below 50% [4,5]. Because MEs can reveal genuine emotions
people try to hide [1,6], ME recognition has many potential applications in different fields,
such as criminal investigation, commercial negotiation, clinical diagnosis, and so on [7,8].
Due to the characteristics of short duration and subtlety, how to extract discriminatory
features from ME video clips is a key problem in the task of ME recognition [9]. In recent
years, automatic detection and recognition of MEs has become an active research topic in
computer vision [10–12].

In 2011, Pfister et al. [13] applied LBP-TOP (local binary pattern with three orthogonal
planes) [14] to extract dynamic features of MEs on SMIC [12] dataset, and they proposed a
benchmark framework for automatic ME recognition. In 2014, Yan et al. [15] established a
new ME dataset called CASME2 and used LBP-TOP for ME recognition. Huang et al. [16]
proposed a completed local quantization patterns (CLQP) method, which extends LQP by
using the sign-based difference, the magnitude-based difference, and the orientation-based
difference, and then converts them into binary codes. Wang et al. [17] proposed LBP with six
intersection points (LBP-SIP) to obtain a more compact feature representation. The STLBP-
IP [18] method proposed by Huang et al. uses integral projection based on difference
image and LBP to extract the spatiotemporal features of MEs. In addition, Zong et al. [19]
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expanded the effectiveness of the LBP Operator by layered STLBP-IP features and reduced
the dimension of features by using the sparse learning method.

Lu et al. [20] proposed a Delaunay-based temporal coding model (DTCM) to represent
spatiotemporally important features for MEs. Xu et al. [21] proposed a method called
Facial Dynamic Map (FDM) to represent the movement patterns of MEs based on dense
optical flow. Liu et al. [22] proposed a ME recognition method called Main Directional
Mean Optical flow (MDMO), in which a face image is divided into 36 subregions, and the
principal direction optical flow of all regions is connected to obtain a low dimensional
feature vector. Liong et al. [23] proposed a method of ME detection and recognition by
using optical strain information, which can better represent fine, subtle facial movements.

Considering deep learning methods have achieved good performances in facial ex-
pression recognition, recently, researchers have attempted to apply deep learning to the
task of ME recognition. In [24], Kim et al. proposed to use convolutional neural network
(CNN) to encode the spatial features of MEs at different expression-states, and then transfer
the spatial features into a Long Short-Term Memory (LSTM) network to learn spatiotem-
poral features. Peng et al. [25] proposed a dual time-scale convolutional neural network,
in which the different stream structures of the network can be used to adapt to ME clips
of different frame rates. Li et al. [26] proposed spotting ME apex frames in the frequency
domain and fine-tuning a VGG-Face model with magnified apex frames. In the work of [27],
Khor et al. introduced an Enriched Long-term Recurrent Convolutional Network (ELRCN)
model for micro-expression recognition, which encodes ME features by combining a deep
spatial feature learning module and a temporal learning module. Li et al. [28] presented
a 3D flow-based CNN (3D-FCNN) model for micro-expression recognition, which uses
optical flow together with raw grayscale frames as input to a 12-layer deep network.

Due to the difficulties of ME elicitation and sample annotation, available datasets for
training are very small, which limits the performances of deep neural networks for ME
recognition. This article investigates the application of a shallow PCANet+ [29] model for
the task of ME recognition. PCANet [30] combines principal component analysis (PCA)
with CNN architecture. Despite its simplicity, PCANet has achieved promising results
in image classification tasks, such as face recognition. As an extension model, PCANet+
eliminates the problem of complete linearity of PCANet and also alleviates the problem
of feature dimension explosion by adding a pooling unit between adjacent layers. In
this article, we propose a novel ME recognition method (OF-PCANet+) by incorporating
the PCANet+ network and dense optical flow calculation. Considering the subtlety of
MEs, we first calculate the optical flow from input ME video clips to enhance the motion
information; then, we construct multi-channel images by stacking the optical flow fields
of consecutive frames and feed them into a two-layer PCANet+ network to learn more
powerful spatiotemporal features. A linear SVM is adopted in the classification of ME video
clips. Experimental results on publicly available SMIC [12] and CASME2 [15] datasets
demonstrate the effectiveness of the proposed method. The main contributions of this
article are summarized as follows:

• We propose a lightweight OF-PCANet+ method for ME recognition, which is computa-
tionally simple and which can meanwhile produce promising recognition performance.

• We present a spatiotemporal feature learning strategy for ME recognition. Discrimina-
tive spatiotemporal features can be learned automatically by feeding stacked optical
flow sequences into the PCANet+ network.

The rest of this article is organized as follows. Section 2 gives a brief introduction to
optical flow calculation and the PCANet+ model. Section 3 describes our proposed method
in detail. Section 4 presents experimental results and discussions, and the conclusions are
given in Section 5.

2. Preliminaries

Table 1 shows the convention of variable representation adopted in this article. We
express the sequential image data of MEs in two forms: (1) an intensity function I : R3 → R,
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which takes three inputs corresponding to the spatial x, y components and the temporal
t component, respectively; (2) a three-dimensional matrix I ∈ RN×M×L, where N, M, L
denote the height, width, and length of image data, respectively.

Table 1. Convention of variable representation.

Variable Symbol Description

a ∈ RD A D-dimensional real vector.
a(i) ∈ R i-th element of vector a.
A ∈ RN×M A 2-dimensional real matrix with N rows and M columns.
A ∈ RN×M×L A 3-dimensional real matrix with size of N ×M× L.
A(i : j, k : l, n : m) ∈
R(j−i+1)×(l−k+1)×(m−n+1)

A clipped matrix of A ∈ RN×M×L, where
i, j, k, l, n, m ≥ 1, i ≤ j ≤ N, k ≤ l ≤ M, n ≤ m ≤ L.

A A set.
|A| ∈ N Size of the set A.

2.1. Optical Flow

Optical flow estimation methods take advantage of two assumptions: the constraint
of brightness constancy and small motion. The brightness constancy assumes that the
gray level of the moving object remains unchanged, and the small motion assumes that
the velocity vector field changes very slowly in a short time interval. We suppose that a
pixel I(x, y, t) in a video clip will move by ∆x, ∆y, ∆t to the next frame. According to the
constraint of brightness constancy mentioned above, the pixel intensity before and after
movement is constant, and we can obtain

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t). (1)

Based on the constraint of small motion. The right part of Equation (1) can be expanded
by Taylor series, as below:

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t)

+
∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t + ε,
(2)

where ε represents the high-order term, which can be ignored. Substitute it into Equation (1),
we obtain:

∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t = 0. (3)

Let u and v represent the horizontal and vertical components of optical flow, respec-
tively, as u = ∆x

∆t , v = ∆y
∆t . Substitute them into Equation (3), and we have

Ixu + Iyv + It = 0, (4)

where Ix = ∂I
∂x , Iy = ∂I

∂y , It =
∂I
∂t represent the partial derivatives of pixel intensity to x, y,

and t, respectively, and (u, v) is called the optical flow field.

2.2. PCANet

For a gray-scale image input I ∈ RN×M, the PCANet extracts a k1 × k2 patch around
each pixel. Subtract each patch with its patch mean and then reshape it into a vector with
length of k1k2; we can obtain NM normalized patch vectors. By concatenating them to
construct a matrix, we can obtain a normalized patch matrix of I as P ∈ Rk1k2×NM, where
each column denotes a single patch vector. Assume that we have a batch of B images;
concatenating all patches generated from all of the images in the batch similarly gives the
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patch matrix as P ∈ Rk1k2×BNM. The PCANet aims to minimize a reconstruction error with
respect to each patch, as follows.

min
V∈Rk1k2×L1

‖P−VVTP‖2
2, s.t.VTV = IL1 , (5)

where L1 denotes the number of PCA filters and IL1 denotes an identity matrix with size of
L1 × L1. This equation is actually a classic principal component analysis, whose solution is
known as the L1 principal eigenvectors of PPT . Based on this, the l-th PCA filter is derived
by reshaping the l-th principal eigenvectors of PPT into a k1 × k2 matrix Wl . For one
PCANet layer with L1 PCA filters, the output of the i-th image Ii ∈ RN×M in the batch
will be Oi =

{
Ii ∗W1, Ii ∗W2, . . . , Ii ∗WL1

}
, where ∗ denotes the convolution operation.

Similarly, extracting patches from Oi and concatenating them like before, we obtain the
input for the next layer P′ ∈ Rk1k2×L1BNM.

The PCANet could be constructed into a multi-layer architecture, but due to the
problem of feature dimension explosion, it usually has many fewer layers than the normal
deep neural networks. Here, we only consider a two-layer PCANet, which is widely used.
It should be noted that before the final output, there will be a feature encoding layer with
the application of hashing and histogram. Let O1

k = Ii ∗W1
k ∈ RN×M be the output of the

convolution operation in the 1st layer, where W1
k denotes the k-th PCA filter in the 1st layer.

Then, a hash map will be generated by the following equation to combine the output of
each filter.

Tl =
L2

∑
k=1

2k−1H(O1
l ∗W2

k), (6)

where L2 denotes the number of PCA filters in the 2nd layer, H(·) is a Heaviside step
function, whose value is one for positive entries and zero otherwise. W2

k denotes the k-th
PCA filter in the 2nd layer. Let Hist(·) be the function that outputs the histogram vector of
the 2L2 hash labels in a hash map. The final feature vector is expressed as

f i =
[
Hist(T1), Hist(T2), . . . , Hist(TL1)

]
. (7)

2.3. PCANet+

Because the PCANet layers are completely linearly connected, the lack of nonlinearity
could decrease the feature learning effect. The PCANet+ overcomes this problem by adding
a mean pooling layer between two consecutive layers, which also helps reduce the feature
dimensions. The PCANet+ also extends the original network to support the input of
multi-channel images.

Given a multi-channel image I ∈ RN×M×Fl−1 , where N, M denotes the height and
the width, respectively. Fl−1 denotes the number of channels of the input image, which
could also denote the number of the filters of the previous layer. Similar to the PCANet,
several three-dimensional patches with size of kl × kl × Fl−1 will be generated, where kl
denotes the filter size of the l-th layer. Thereafter, all of the patches will be reshaped as
P ∈ Rk2

l Fl−1×BNM, which is used for filter learning. Let Fl be the number of PCA filters of
the current layer and let Wl

k ∈ Rkl×kl×Fl−1 be the k-th learned filter; the output of this layer
is expressed as

I′ =
[

β(I ∗Wl
1), β(I ∗Wl

2), . . . , β(I ∗Wl
Fl
)
]
∈ RN×M×Fl , (8)

where β(·) denotes the mean pooling.
It should be noted that, for the feature encoding layer, based on the one in the PCANet,

the PCANet+ also apply the chunking strategy on both the filter level and the image level.
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For the computation of the hash map, the Fl outputs of the filters are divided into Fλ subsets;
then, the hash map for each subset is computed as

Tl
t =

Fλ

∑
f=1

2 f−1H(β(I ∗Wl
(t−1)×Fλ+ f )), (9)

where t = {1, 2, . . . , Fl
Fλ
} is the index of the subset. PCANet+ partitions each Tl

t into Bl

nonoverlapping blocks, which is histogrammed into 2Fl bins. Finally, the output of the
feature encoding has a size of Fl

Fλ
Bl2Fλ .

3. Method

In this section, we will describe the proposed method for micro-expression recognition
in detail. Our method consists of three steps: (1) dense optical flow calculation and multi-
channel stacking; (2) feature extraction with PCANet+; (3) classification with support vector
machine. Figure 1 shows the overview of our proposed method.

Figure 1. The framework of the proposed ME recognition method.

3.1. Dense Optical Flow Calculation and Multi-Channel Stacking

The optical flow is a two-dimensional vector field on image plane, which reflects the
motion of pixels of two consecutive frames in a video sequence. In order to improve the
effect of PCANet+ feature learning, we first perform a dense optical flow calculation on the
original cropped ME video clips to enhance the facial motion information.

There are many methods for dense optical flow motion estimation. In this article, we
apply the method presented in [31] to dense optical flow calculation, which introduces a
subspace trajectory model to keep temporally consistent optical flow. For a single pixel
of ME image data I(x, y, t0), to compute the sequential optical flow field u, v ∈ RL−1 (L
denotes the length of ME image sequence), they propose a loss function for optical flow
estimation as follows.

E(x, y, t0, u, v) = α
∫∫

Ω ∑L
t=1 |I(x + u(t), y + v(t), t)− I(x, y, t0)|dxdy

+β
∫∫

Ω ∑L
t=1 ‖[u(t), v(t)]−∑R

i=1 qi(t)lin(u(t), v(t))‖2
2dxdy

+
∫∫

Ω ‖∇lin(u(t), v(t))‖2dxdy,

(10)

where q1(t), q2(t), . . . , qR(t) : {1, 2, . . . , L} → R2 denote R basis trajectories used to con-
struct the trajectory space. Ω ∈ R2 denotes the image domain. lin : R2 → RR denotes a
map function that maps the optical flow field u(t), v(t) to a new space constructed by the R
basis trajectories. The first term is the penalty term of the brightness constancy constraint.
The second term makes the derived optical flow lie on the basis trajectories. The third term
is a total variation-based spatial regularization of the trajectory model coefficients.

Given an ME image sequence I ∈ RN×M×L, we first set its first frame as the reference
frame. Based on the optical flow motion estimation method above, we compute the optical
flow field sequence of u and v components as U, V ∈ RN×M×(L−1). Figure 2 shows the
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results of dense optical flow calculation for a ME video clip (happy class) of CASME2
dataset, in which Frame 1 is the reference frame, and we compute the optical flow field
(UV1 to UV4) between the reference frame and the rest of the frames (Frame 2 to Frame 5)
by a subspace trajectory model presented in [31]. It should be noted that we use color
coding to illustrate the results of optical flow calculation. Different colors indicate different
directions, and color saturation indicates the intensity of optical flow. It can be seen that
optical flow field can better reflect the movement areas on the face, and it also has a certain
effect on filtering the identity information of the face.

Figure 2. Example of optical flow motion estimation, where we set the first frame of ME image
sequence as the reference frame and then compute the optical flow field between the reference frame
and the rest of the frames with a subspace trajectory model.

To learn spatiotemporal features by PCANet+ based on optical flow, we conduct a
multi-channel stacking operation on the optical flow sequences before they are fed to the
PCANet+. Given the computed optical flow sequences U, V ∈ RN×M×(L−1), we use a
sliding window with size of T and step size of s to sample them into several sequence
subsets as

U =
{

Ui ∈ RN×M×T : Ui = U(1 : N, 1 : M, (i− 1)s + 1 : T + (i− 1)s), i ∈ [1, b L−T
s c]

}
V =

{
Vi ∈ RN×M×T : Vi = V(1 : N, 1 : M, (i− 1)s + 1 : T + (i− 1)s), i ∈ [1, b L−T

s c]
}

,
(11)

where |U | = |V| = b L−T
s c. Then, each element in U and V will be concatenated to form a

stacked input sequence as

I =

{
Ii ∈ RN×M×(2T) : Ii = Ui‖Vi, i ∈ [1, b L− T

s
c], Ui ∈ U , Vi ∈ V

}
, (12)

where ‖ denotes the matrix concatenating operation through the third dimension. Through
the multi-channel stacking operation, the optical flow sequence for each video clip is
converted into multi-channel images by stacking adjacent T frames in a sliding window,
as shown in Figure 3. These multi-channel images will be fed to PCANet+ network to learn
more discriminatory features.
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Figure 3. Illustration of stacking optical flow sequences into multi-channel images.

3.2. Feature Extraction with PCANet+

PCANet+ can take multi-channel images as input, which therefore makes the capacity
of learned filter bank much larger than PCANet [29]. In this article, multi-channel images
based on stacking of optical flow sequences are used as input to PCANet+ network for
further feature extraction.

For K cropped video clips in dataset, after optical flow calculation and stacking process il-
lustrated in Figure 3, we obtain a combined multi-channel image set Iall = I1 ∪ I2 ∪ . . . ∪ IK,
where Ii denotes the multi-channel images of the i-th video clip. |Iall| = L1 + L2 + . . .+ LK,
where Li represents the number of multi-channel images generated from the ith video clip
after stacking. Here, we set the step size of sliding window as s = (T− 1)/2. Then, Iall will
be fed to a 2-layer PCANet+ with D1 filters (size: k1× k1) in the 1st layer and D2 filters (size:
k2 × k2) in the 2nd layer. To facilitate the succeeding binary hash coding stage in PCANet+,
the number of filters D1, D2 need to be configured to a multiple of Dλ. According to [29],
we prefix Dλ = 8 in our experiments. Slightly different from the original PCANet+, we
apply feature encoding to each PCANet+ layer and concatenate their outputs as the final
feature representation, which has ∑2

l=1 Bl
Fl
Fλ

2Fλ dimensions in total. Finally, a linear SVM is
adopted in the classification of ME video clips.

4. Experimental Results and Analysis

To evaluate the proposed method for micro-expression recognition, we conduct com-
prehensive experiments on two widely used ME datasets, SMIC and CASME2. We first
introduce the datasets and evaluation metrics used in experiments, and then we present
the experimental results and discussions.

4.1. Settings

The SMIC [12] provides three data subsets with different types of recording cam-
eras: SMIC-HS, SMIC-VIS, and SMIC-NIR. SMIC-VIS and SMIC-NIR were recorded by
normal speed cameras with 25 fps of visual (VIS) and near infrared (NIR) light range,
respectively. Because MEs are rapid facial movements, high speed cameras help to capture
more temporal information. In our experiments, the SMIC-HS subset recorded by 100 fps
high-speed cameras is used, which contains 164 spontaneous facial ME video clips from
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16 subjects. These samples are divided into three ME classes: positive (51 samples), negative
(70 samples), and surprise (43 samples).

The CASME2 [15] dataset consists of 247 spontaneous facial ME video clips with spatial
resolution 640 × 480. This dataset was collected by a high-speed camera at 200 fps. As well,
MEs of participants were elicited in a well-controlled laboratory environment with four
lamps providing steady and high-intensity illumination. The CASME2 dataset includes five
ME classes: happiness (32 samples), surprise (25 samples), disgust (64 samples), repression
(27 samples), and others (99 samples). The frames of a sample video clip (happiness) in the
CASME2 dataset are shown in Figure 4.

Figure 4. The frames of a sample video clip (happiness) in CASME2 dataset.

The characteristics of two public datasets used in our experiments are summarized in
Table 2. To set up a person-independent configuration, leave-one-subject-out (LOSO) cross
validation protocol is adopted, where the samples from one subject are used as the testing
set, and the samples from the remaining subjects are used as the training set. A linear SVM
based on features extracted from PCANet+ is adopted in the classification stage.

Table 2. Detailed information of SMIC and CASME2 dataset.

Dataset SMIC-HS CASME2

Subjects 16 26
Sample 164 247

Year 2013 2014
Frame Rate 100 200

Image Resolution 640 × 480 640 × 480

Emotion classes

5 categories:
3 categories: happiness (32)
positive (51) surprise (25)
negative (70) disgust (64)
surprise (43) repression (27)

others (99)
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Performance metrics such as accuracy, Macro-F1, and Macro-recall, are used in evalua-
tion. Macro-F1 and Macro-recall represent the average F1-score and recall of all classes.

Accuracy =
∑C

i=1 TPi

∑C
i=1 TPi + ∑C

i=1 FPi
(13)

Pi =
TPi

TPi + FPi
(14)

Ri =
TPi

TPi + FNi
(15)

Macro-F1 =
1
C

C

∑
i=1

2× Pi × Ri
Pi + Ri

(16)

Macro-recall =
1
C

C

∑
i=1

TPi
TPi + FPi

(17)

where C is the class number and TPi, FPi, and FNi represent true positive, false positive,
and false negative of class i, respectively.

4.2. Effects of Parameters in PCANet+

We need to investigate the hyper-parameters in the OF-PCANet+ method, including
the number of frames in stacking (T) and the size and number of filters ([k1, D1][k2, D2]).
In this article, we build a two-layer PCANet+ model in our method, based on the ob-
servation that deeper architectures will not necessarily lead to further performance im-
provements. In this section, we conduct experiments to examine the influence of these
parameters on recognition performance.

4.2.1. The Number of Frames in Stacking

We first examine the number of frames (T) in the process of stacking optical flow
sequences. In this experiment, the filter size and number of the network are set to
[k1, D1] = [7, 32], [k2, D2] = [9, 16]. Table 3 reports the effect of frame stacking number T on
recognition accuracy.

Table 3. ME recognition results of OF-PCANet+ with respect to different frame stacking number, T.

Frame Stacking Number T
SMIC CASME2

Accuracy Macro-F1 Macro-Recall Accuracy Macro-F1 Macro-Recall

1 0.4268 0.3924 0.3890 0.2301 0.2437 0.2316
3 0.6159 0.6184 0.6214 0.4959 0.4960 0.4786
5 0.6280 0.6309 0.6369 0.5203 0.5266 0.5148
7 0.6098 0.6109 0.6131 0.4512 0.4412 0.4270

As shown in Table 3, the performances can be improved by using the operation of
frame stacking compared with non-stacking (T = 1). The results indicate that multi-frame
stacking of optical flow sequences can help the PCANet+ network learn spatiotemporal
information, which is very important in ME recognition. When stacking number T increases
from 1 (i.e., no stacking) to 5, the performances become better, and when T increases to 7,
the recognition accuracies start to decrease. In the following experiments, we set the best
frame stacking number as T = 5.

4.2.2. The Size and Number of Filters in Each Layer

We next do experiments to examine the number and size of filters [k, D] used in the
OF-PCANet+. The performances in terms of accuracy, macro-F1, and macro-recall with
different combinations of [k, D] are reported in Table 4, where k ∈ {5, 7, 9, 11, 13, 15} and
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D ∈ {8, 16, 32}. We can see that the proposed method achieves the best recognition perfor-
mances (in bold) under settings of [k1, D1] = [7, 32], [k2, D2] = [9, 16] on the SMIC dataset
and [k1, D1] = [7, 16], [k2, D2] = [7, 32] on the CASME2 dataset. In Table 5, we summarize
the best configuration of the PCANet+ network in our method. Figure 5 presents the
visualization of feature maps with the parameter of [k1, D1] = [7, 16], [k2, D2] = [9, 16] pro-
duced in layer 1 and layer 2, respectively, for an input video clip from the CASME2 dataset.
The bright areas have higher motion energy, which means that the facial movements are
relatively strong around these areas.

Figure 5. The visualization of feature maps produced in each layer for an input video clip from
CASME2 dataset.

Table 4. ME recognition results of OF-PCANet+ with respect to different number and size of
filters [k, D].

[k1, D1][k2, D2]
SMIC CASME2

Accuracy Macro-F1 Macro-Recall Accuracy Macro-F1 Macro-Recall

[5, 16][7, 16] 0.5854 0.5893 0.5941 0.5000 0.5122 0.4962
[5, 32][5, 8] 0.5854 0.5880 0.5941 0.5041 0.5047 0.4950
[5, 32][5, 16] 0.5915 0.5954 0.6036 0.5081 0.5114 0.5020
[5, 32][5, 32] 0.5793 0.5834 0.5905 0.5163 0.5198 0.5055
[7, 16][9, 32] 0.6098 0.6127 0.6173 0.5285 0.5272 0.5031
[7, 32][5, 16] 0.5976 0.6010 0.6084 0.5122 0.5128 0.4950
[7, 32][7, 16] 0.6098 0.6137 0.6209 0.5041 0.5081 0.4867
[7, 32][9, 16] 0.6280 0.6309 0.6369 0.5203 0.5266 0.5148
[7, 16][7, 32] 0.6037 0.6046 0.6096 0.5325 0.5493 0.5241
[7, 32][11, 16] 0.6037 0.6053 0.6126 0.5285 0.5280 0.5067
[7, 32][13, 16] 0.5976 0.6007 0.6048 0.4919 0.4931 0.4724
[7, 32][15, 16] 0.6220 0.6247 0.6310 0.5081 0.5152 0.4931
[9, 16][11, 16] 0.5915 0.5943 0.6001 0.4268 0.4096 0.4096
[13, 16][15, 16] 0.6098 0.6131 0.6167 0.4350 0.4250 0.4250
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Table 5. Summary of the configuration of PCANet+ network.

Best Configuration for SMIC Best Configuration For CASME2

Ii 170× 139× 10 170× 139× 10

W1 (7× 7× 10)× 32 (7× 7× 10)× 16
(k1 × k1 × 2T)× D1 Str. 1, Pad. 3 Str. 1, Pad. 3

Pool-1 3× 3 Mean Pooling, Str. 1 3× 3 Mean Pooling, Str. 1

W2 (9× 9× 32)× 16 (7× 7× 16)× 32
(k2 × k2 × 2T)× D2 Str. 1, Pad. 4 Str. 1, Pad. 3

4.3. Comparison with Other Methods

To demonstrate the effectiveness of OF-PCANet+, we compare the method with
some existing handcrafted methods as well as deep learning methods. The size and
number of filters in layer 1 and layer 2 are set to [k1, D1] = [7, 32], [k2, D2] = [9, 16] for
SMIC and [k1, D1] = [7, 16], [k2, D2] = [7, 32] for CASME2. Following the experiment
settings of [12,15], we re-implement LBP-TOP with 8× 8 and 5× 5 facial blocks, radius
[RXY, RXT , RYT ] = [4, 1, 1]. For STLBP-IP, the block size of 4 × 7 is used for the SMIC
dataset, and 8× 9 for the CASME2 dataset, as suggested in [18].

Table 6 reports the results of performance comparison of different methods in terms
of accuracy, macro-F1, and macro-recall on the SMIC and CASME2 datasets, where N/A
indicates that the corresponding performance was not given in the article. We can see that
the proposed OF-PCANet+ model outperforms popular hand-crafted methods, i.e., LBP-
TOP, STLBP-IP, and KGSL, both on SMIC and CASME2. Furthermore, our method also
shows comparable performances with deep learning methods, such as ELRCN [27] and
3D-FCNN [28]. The results indicate that the shallow model of PCANet+ can learn effective
spatiotemporal features of micro-expressions based on multi-frame stacking of optical
flow sequences.

Table 6. Comparisons of different methods.

Method
SMIC CASME2

Accuracy Macro-F1 Macro-Recall Accuracy Macro-F1 Macro-Recall

LBP-TOP [15] 0.4207 0.4266 0.4429 0.4390 0.4297 0.4259
STLBP-IP [18] 0.4329 0.4270 0.4241 0.4173 0.4026 0.4282

KGSL [19] 0.5244 0.4937 0.5162 0.4575 0.4325 0.4437
ELRCN [27] N/A N/A N/A 0.5244 0.5000 0.4396

3D-FCNN [28] 0.5549 N/A N/A 0.5911 N/A N/A

OF-PCANet+ 0.6280 0.6309 0.6369 0.5325 0.5493 0.5241

5. Conclusions

In this article, we propose a simple yet effective method OF-PCANet+ for micro-
expression recognition by incorporating the dense optical flow calculation with a shallow
PCANet+ network. By multi-frame stacking of optical flow sequences as input, discrimi-
native spatiotemporal features can be learned by a two-layer PCANet+ model. Moreover,
because the filters can be learned analytically only with the PCA algorithm in each layer,
the training process of our method is much simpler than deep learning methods based
on back propagation algorithm. The experimental results on SMIC and CASME2 datasets
demonstrate the promising performance of the proposed method. In future work, we
will try to apply this method to other related tasks, such as behavior recognition and
video classification.
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