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Abstract: The old fibers that make up heritage textiles displayed in museums are degraded by the
aging process, environmental conditions (microclimates, particulate matter, pollutants, sunlight) and
the action of microorganisms. In order to counteract these processes and keep the textile exhibits
in good condition for as long as possible, both reactive and preventive interventions on them are
necessary. Based on these ideas, the present study aims to test a natural and non-invasive method
of cleaning historic textiles, which includes the use of a natural substance with a known antifungal
effect (being traditionally used in various rural communities)—lye. The design of the study was
aimed at examining a traditional women’s shirt that is aged between 80–100 years, using artificial
intelligence techniques for Scanning Electron Microscopy (SEM) imagery analysis and X-ray powder
diffraction technique in order to achieve a complex and accurate investigation and monitoring of
the object’s realities. The determinations were performed both before and after washing the material
with lye. SEM microscopy investigations of the ecologically washed textile specimens showed that
the number of microorganism colonies, as well as the amount of dust, decreased. It was also observed
that the surface cellulose fibers lost their integrity, eventually being loosened on cellulose fibers of
cotton threads. This could better visualize the presence of microfibrils that connect the cellulose
fibers in cotton textiles. The results obtained could be of real value both for the restorers, the textile
collections of the different museums, and for the researchers in the field of cultural heritage. By
applying such a methodology, cotton tests can be effectively cleaned without compromising the
integrity of the material.
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1. Introduction

Fiber’s constituent of heritage textiles weathering can be caused by the environmental
conditions (microclimate, particulate matters, pollutants, sunlight) and the aging process of
the cotton fibers, resulting in a decline in their strength, elasticity and cohesion level [1–3].
Cotton fibers composed of natural organic material (90% cellulose) are also subjected to the
degrading effects of microorganisms in storage or exhibition places [4,5]. The undesirable
consequences can consist of discoloration, loss of fibers luster, modification of tensile
properties and weight modifications. Textural features can determine changes in textile
fabrics after various treatments. They can be linked to the technical measurements of the
characteristics of textile fabrics to obtain detailed information about the changes in these
characteristics [6,7]. Digitization can be a significant apparatus in the present endeavors
toward the promotion, preservation and renovation of cultural heritage [8–11]. By digitizing
the heritage textiles and making the information accessible to all interested parties, they help
to protect our cultural heritage. The study of cultural heritage artifacts and the preparation
of conservation and restoration interventions are often limited to surface characterization
of the constituent material of which the object is made. The value of the physico-chemical
investigations at the surface level of the artifacts brings out important information. This
is about their physical constitution, authenticity, history, elaboration and behavior after
they have been abandoned and/or stored; its usefulness is to increase the knowledge about
civilization, history and evolution, execution techniques and for the development of an
optimal conservation policy [1,3].

In order to obtain information and imaging for the digitization of heritage objects, in
recent years, good results have been obtained through photography and video, as well as
through analysis and interpretations obtained, especially through the application of mod-
ern non-destructive techniques, such as, X-ray techniques applications, infrared radiation
(compound crystallography, ≥10 µm), optical microscopy, thermal analyses, transmis-
sion electron microscopy (TEM), reflectance FT-IR (compound and bonds, analyzed depth
µm level), (TEM), atomic force microscopy (AFM) (investigations at the level of the first
layer of surface topography), nuclear magnetic resonance (NMR) method and laser 3D
scanning [12–14]. Asmus and Katz [15], Comelli et al. [16], Filippidis et al. [17] and Au-
couturier and Darque-Ceretti [18] used digital image processing and physico-chemical
investigations to determine the degree of degradation and the measures needed to be
taken on the surfaces of works of art, especially valuable paintings. Regarding the use
of three-dimensional models (photogrammetry and 3D modeling) applied to cultural
heritage objects, Manferdini and Remondino [19], Jiménez Fernández-Palacios et al. [20]
and Herman et al. [21] use them for degradation assessment, virtual promotion and long-
term conservation applications, while Higueras et al. [22] and Albu et al. [23] use them
for the remote restoration of movable and immovable cultural heritage. Ortiz et al. [24],
Peets et al. [25], Demenchuk et al. [26] and Zhou et al. [27] seek, in their infrared spec-
troscopy studies, to evaluate and identify the composition of old textiles and paintings,
some of which are made of canvas. Other studies focus on the separate or combined use
of SEM and X-ray in the field of cultural heritage in general and in the case of historical
textiles in particular [28–31].

The main application of scanning electron microscopy (SEM) for fibers was in the
medium to large magnification range and with greater depths of focus than optical mi-
croscopy. The resolution has been much improved, and the sensitivity increased, which
leads to a considerable limitation of the exposure times of the samples and implicitly of
the least possible damages that can be caused by radiation [14,32]. In order to carry out
high-precision studies, the samples must be very thin (thickness less than 0.1 µm) and
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of certain dimensions to allow them to be fixed in the special device (from this point of
view the technique is considered micro-invasive) [14], for facilitating the transmission of
electrons, as well as for more precision, with a great depth of focus obtaining information
about the morphology of the scanned areas. The problem facing electron microscopy for
the study of textile fibers is securing a sufficiently good contrast; this can be achieved either
by the technique of coloring with heavy metal compounds or the technique by which the
effect of shadows is created by depositing the atoms of heavy metals on the specimen at
certain angles. Another possibility would be to apply the technique, which consists of
analyzing the remaining fragments as a result of the bio-chemical-mechanical degradation
of the fibers. The polymers in the fiber composition can also be investigated as very thin
films. SEM allows focusing an image, resulting in the electron diffraction pattern of the
crystal lattice, orientation and crystallinity information even from a certain area of an image
(similar to those resulting from the application of the X-ray diffraction technique), not
necessarily from the whole specimen [32], and information on the chemical composition of
inorganic compounds [14].

Most studies in the literature combine digital imaging techniques (X-ray Spectroscopy,
SEM, Fourier transform infrared spectroscopy, etc.) with non-invasive natural substances
for the treatment and preservation of heritage textiles. Table 1 presents, in detail, some of
the works that use modern digital techniques to investigate the state of conservation of
textiles and non-destructive solutions for the dual objective of cleaning–preservation.

Table 1. Presentation of the targeted textiles, methods and techniques used, purpose and findings of
some important works in connection with the present study.

Title, Year,
Study Location Targeted Samples Methods and

Techniques Used
The Purpose of

the Research Findings

In
ve

st
ig

at
in

g
th

e
st

at
e

of
co

ns
er

va
ti

on
of

te
xt

il
es

Comparative analysis of
textile metal threads

from liturgical
vestments and folk
costumes in Croatia,

2017, Croatia [33]

Textiles liturgical
vestments

X-ray Spectroscopy,
Rutherford

Backscattering
Spectroscopy

Obtaining valuable
information about old

manufacturing
techniques.

The results are
invaluable in selecting

the right treatment
for cleaning

and preservation.

Dust deposition on
textile and its evolution

in indoor cultural
heritage, 2019,

France [34]

Textiles stored
in museums SEM analysis

Investigating the
degradation of heritage
textiles due to the action

of dust and
chemical compounds.

The fibers themselves
are not affected by

gaseous pollutants, but
the latter react with the

particles of the dirty
samples, leading to

the formation
of efflorescences.

The application of FTIR
microspectroscopy in a

non-invasive and
non-destructive way to

the study and
conservation of

mineralised excavated
textiles, 2019,
Denmark [35]

Two textile samples
excavated from

old graves

Fourier Transform
Infrared (FTIR)

microspectroscopy

Investigating the degree
of conservation of

the targeted
textile materials.

FTIR microspectroscopy
applied in refectance

mode is a non-invasive
and non-destructive

technique for analyzing
fragile materials. Much
of the organic matter in

the fiber has been
preserved at the

molecular level, which
would allow the safe

application of any
preservative treatments.

Technical investigation
and conservation of a

tapestry textile from the
Egyptian Textile

Museum, Cairo, 2018,
Egypt [36]

Textile tapestry dating
from the

4–5th century AC

Scanning Electron
Microscopy (SEM),

EDAX (SEM–EDAX),
Fourier Transform

Infrared (FTIR)

Identification of textile
fibers, damage to them

and analysis of the
mordant in the
dyed samples.

SEM analyzes show that
the fibers are very

fragile and weak due to
improper preservation.

The FTIR results
identify the brown

source in the fabric as
Indian cutch.
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Table 1. Cont.

Title, Year,
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the Research Findings
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Thyme essential oil for
antimicrobial protection
of natural textiles, 2013,

Poland [37]

Various cotton fabrics

Scanning Electron
Microscopy (SEM),

EDAX (SEM–EDAX),
Fourier Transform

Infrared (FTIR),
strength tests,

antifungal and
antibacterial tests,

application of thyme
essential oil.

Increasing the resistance
of textiles to bacteria

and mould action using
natural compounds.

Thyme essential oil
applied in a

concentration of 8% in
methanol, has shown

antifungal and
antibacterial effects

among the strongest.
The applied substance

has inhibitory effects for
certain types of molds,

fungi and bacteria;
effects that lead over

time to the preservation
of the support material.

Investigations of the
Surface of Heritage
Objects and Green

Bioremediation: Case
Study of Artefacts from
Maramures, Romania,

2021, Romania [3]

Romanian traditional
sheepskin waistcoat

aged 80–100 years old

Scanning Electron
Microscopy (SEM)

combined with
application of six

essential oils
(Lavandula angustifolia,
Citrus limon, Mentha

piperita, Marjoram,
Melaleuca alternifolia,
Origanum vulgare).

Non-invasive cleaning
of textile materials of

microbiological flora in
order to preserve

the fibres.

The results show that
these essential oils are

an eco-friendly solution
for cleaning historic

textiles, being
affordable and having
very good antifungal

and antibacterial effects,
with effects that can last
more than 30 days. At
the same time, natural

extracts have the
potential to treat several

different types
of textiles.

Antifungal activity of
some plant extracts and

essential oils against
fungi-infested organic

archaeological artefacts,
2019, Egypt [38]

Ancient papyrus and
linen from Egyptian

Museum, Cairo

Scanning Electron
Microscopy (SEM) and

Fourier transform
infrared spectroscopy
(FTIR) combined with

application of nine
kinds of powdered

plant extracts and five
essential oils.

Determination the
antifungal effects of

these substances against
the most common fungi

on heritage textiles
(Aspergillus flavus,

A. versicolor,
Penicillium sp. and
P. purpurogenum).

All applied substances
have antifungal effects,

but essential oils are
shown to be very

effective for the types of
fungi identified. At the

same time, the
substances have a low

toxicity and do not
affect the support

materials, while the risk
of microorganisms

developing resistance to
them is quite low.

As noted above, this study also combines the digital techniques of analysis and
interpretation (SEM and X-rays) of the state of conservation of textile materials belonging
to the Romanian cultural heritage with the traditional methods used in the past to clean
these garments. Lye is the traditional cleaning method used as it is known as a natural
substance with antifungal properties.

The main purpose of the study is to observe to what extent these traditional methods
and substances for cleaning old materials are effective or not. SEM analyses were performed
both before washing the material with lye and after this intervention to compare the results
and establish the cleaning and antifungal properties of the natural substance. At the same
time, the data obtained were analyzed by various imaging and statistical methods to
identify the extent to which the applied treatment directly degrades the constituent cotton
fibers, thus having destructive potential on the entire garment.

The ultimate goal of the research is to identify new and non-destructive methods of
cleaning and long-term preservation of historical textiles in museums. In this context, most
textile exhibits are treated with various cleaning chemicals, most of which have strong side
effects that can eventually lead to the destruction of the constituent material.

2. Materials and Methods

The heritage textile object under investigation is from the Bihor region, Romania
(Figure 1). It is a female cotton shirt, woven in a house, aged 80–100 years old and stored in
an ethnographic museum. The fabric was investigated before and after natural, ecological
washing with “lye”.
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Figure 1. Female cotton shirt, woven in a house, aged 80–100 years old, from the Bihor region,
Romania ((a)—overview of the appearance of the shirt; (b)—cotton sample; (c)—motifs sewn with
black thread).

Lye is an ecological substance obtained from boiled ash. The process is to boil the ash
with 1 L to 10 L of clear water from a river or a well. The lye results from the burning of
trunks (saw-cut logs and axe splits) and thick-cut beech branches (Fagus sylvatica), with
the whole well-dried bark, in traditional household stone or brick stoves. For bleaching the
cloth, this solution was traditionally used in different parts of Romania, both immediately
after their sewing and during the long period of use. It is important that the thick toile is
not washed with lye and only the cloth, the shirts, the traditional men’s trousers (wide
summer trousers) and the “bed sheet”. It is usual to soak the shirt/coat for 30 min in
lukewarm water and then insert it into a “barrel” made of narrow wooden planks, slightly
rounded in width (like a circular arch) or finished obliquely at the joints to form a round
vessel. The bottom of the barrel has holes in it so that all the lye drains well.

The lye solution is poured from above, through a homemade gauze, over the shirt.
This action is usually performed in the evening. In the morning, the coat is removed
from the “barrel”. Therefore, the piece of clothing stays in the lye and in the lye steam for
about 8 or 10 h. Hot water/hot lye negatively affects the colored parts of the garment/shirt,
which is why the warm water solution is applied. Most of the washing and cleaning process
was performed in river water.

The shirt is tightened by twisting and hitting with a piece of beech wood (a rectangular
bat with carved and engraved ornaments, placed on the sides that do not touch the canvas),
very often, on a thick slab of andesite stone, eroded by the river, carefully chosen and
placed at a 45-degree inclination to the horizontal plane or hit on a long chair made of thick
beech board, specifically made for such uses. Thus, the water is released with each hit. The
operation is performed by alternately hitting, rinsing, rubbing, squeezing and soaking as
many times as needed until cold clear water flows out of it.

Each piece should be washed separately and not mixed with clothes of different colors.
The garments should never be put in a washing machine, as certain parts that adorn the
clothes have holes, lace, different decorative handmade decorative models, and sometimes
beads, which could be damaged by the mechanical action during operation and spinning
in the washing machine. Less often, if necessary, it is finally washed with homemade soap
made from animal bones by boiling it in rainwater. The shirt is dried in the sun, hung on a
hanger or on a wooden beam so that the weight of the water straightens it and minimal, if
any, ironing is needed.

The morphology and qualitative analysis of fibers were carried out using a scanning
electron microscope (SEM) Hitachi SU8230 cold field emission gun STEM (Chiyoda, Tokyo,
Japan). The samples were sputter-coated with 6 nm gold (Agar Automatic Sputter-Coater,
Stansted, Essex, UK) for better conductivity required for high-resolution SEM imaging.
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SEM analysis parameters were inter alia, high vacuum mode, 30 kV acceleration voltage,
secondary electron detectors (upper and lower) and two magnification orders, one for
general aspects of samples and a higher one for surface topography analysis.

Table 2 describes the steps used in data processing from SEM images of washed and
unwashed textiles. Data processing involves the use of global texture features from which
feature vectors are formed. The data from them were reduced by the PCA method; the
kernel variant was used. The reduced data are classified. An appropriate classification
algorithm has been selected, and recommendations for practice have been made.

Table 2. SEM images data processing steps.

Stage Description Notes

Stage 1 Obtaining raw data for SEM images Extraction of global texture features for washed and
unwashed textiles

Stage 2 Selection of informative features Through the methods of FSNCA, RelieFf and SFCPP

Stage 3 Creating three feature vectors The features selected by the three methods form
vectors of them

Stage 4 Reducing the volume of data in feature vectors The kPCA method with Simple, Polynomial and
Gaussian kernel functions were used

Stage 5 Selection of an appropriate method for reducing the
volume of data in feature vectors A reference naïve Bayesian classifier was used

Stage 6 Classification of washed and unwashed textile fabrics Discriminant analysis and support vector machines
methods were used

Stage 7 Choice of classification strategy Justification for the choice of classifier and
recommendations for practice

Kernel variant of principal component analysis (kPCA) [39]. One of the widely used
methods of training based on templates is the kernel analysis of the principal components. It
is an extension of the PCA using kernel techniques. Using a single kernel, the original PCA
transformation is performed in a new high-dimensional space, with nonlinear mapping of
the input data.

PCA starts with the calculation of the covariance matrix C of the matrix X of the input
data with dimension m × n:

C =
1
m

m

∑
i=1

xixi
T (1)

The data are then projected onto the first k eigenvectors of the matrix. kPCA starts
by calculating the covariance matrix C of the data after they have been transformed into a
high-dimensional space Φ(x):

C =
1
m

m

∑
i=1

Φ(xi)Φ(xi)
T (2)

The transformed data are then projected onto the first k eigenvectors of the matrix,
similar to PCA. The kernel trick method is used to decompose some of the calculations
so that the whole process is implemented without actually calculating Φ(x). Φ must be
selected as a known kernel. In this work, Simple, Polynomial and Gaussian kernel functions
were used.

Naïve Bayesian classifier (NB) [40]. Based on Bayes’ theorem for determining the a pos-
teriori probability of an event, this classifier has become one of the classic algorithms in ma-
chine learning. By accepting the “naive” assumption of conditional independence between



Sensors 2022, 22, 4442 7 of 20

each pair of attributes, the naive Bayesian classifier effectively handles too many attributes
to describe an example, i.e., with the so-called “Curse of dimension”. Bayes’ theorem:

P(y = c|x) = P(x|y = c)P(y = c)
P(x)

(3)

where P (y = c|x) is the probability that the object belongs to class c (a posteriori probability
of the class); P (x|y = c)—the probability that the object x will meet in the middle of the
object of class c; P (y = c)—unconditional probability to find object y in class c (a priori
probability of the class); P (x)—unconditional probability of the object x.

The purpose of the classification is to determine to which class object x belongs.
Therefore, it is necessary to find the probability class of the object x, i.e., it is necessary to
choose from all classes the one that gives the maximum probability P (y = c|x).

copt =
argmax
c ∈ C

P(x|y = c)P(y = c) (4)

Discriminant analysis (DA). The definition of discriminant functions is performed by
discriminant analysis using linear (LDA) and quadratic (QDA) separation functions [41].

QDA is a better option than LDA for large data sets. This is because the QDA tends to
have a lower deviation and higher variation. On the other hand, the LDA is more suitable
for smaller data sets that have higher grouping and lower variance. In summary, the
quadratic separating function has the form:

δk(x) = −1
2
(x− µk)

TΣk
−1(x− µk) + log(πk) (5)

where δk is a separating function; µk—averaged vector; x—observations; Σ−1—covariance matrix.
For practical purposes, including the creation of control programs for driver assistance

systems, it is convenient to present the separation function in the form of:

δ(x) = K + v·L + v′·Q·v) (6)

where K is a constant; L—linear coefficient; Q—square coefficient; v = [x;y]—vectors (matrix)
of data; x and y are the data along both axes; v’—transposed matrix of v.

Kernel SVM (KSVM) [42]. Using the core support vector machines method (KSVM),
nonlinear transformation of the original data into another higher-dimensional space is
performed, where the objects are linearly separable. In SVM, hypersurfaces separating the
classes for which the distance between the boundaries for both classes are maximal can be
calculated from reference points that represent boundary points for a given data class in
the multidimensional feature space.

According to the type of the selected kernel function Φ, several types of classifiers
are constructed (linear, radial-basis function, polynomial, neural network). A width σ is
chosen, and a kernel function with the following general form:

K(x, y) =
(

xTy + C
)d

(7)

where K is a kernel function; x and y are input vectors (vectors of features determined by
the training sample); C > 0 is a constant. At C = 0 the kernel is homogeneous.

Evaluation of classifiers [42]. Basic (ei), actual (gi) and total (e0) classification errors
were used to evaluate the performance of the classifiers. The input data for the two
classes processed by the classifier can be in groups: correctly (Positive P) and incorrectly
(Negative N) classified.
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The errors can be defined by:

ei =
FNi

TPi + FNi
× 100, % (8)

gi =
FPi

TPi + FPi
× 100, % (9)

e0 =
∑m

i=1 FNi

∑m
i=1 TPi + ∑m

i=1 FNi
× 100, % (10)

The X-ray diffraction patterns scan was achieved in reflection Bragg–Brentano ge-
ometry; the samples are fixed in the sample holder such that the surface of the analyzed
specimen is attached parallel to the support. The measurement of X-ray powder diffraction
patterns was performed with a Bruker D8 Advance diffractometer equipped with a LINX-
EYE detector, a germanium (1 1 1) monochromator and an X-ray tube operating at 40 kV
and 40 mA. The acquisition was performed with CuKα1 radiation in DIFFRAC plus XRD
Commander Program considering a scan rate of 0.01◦/s.

Methods of consistently improving assessments have been used for the selection of
informative textural features. They significantly reduce the number of resulting combina-
tions of traits used for classification. The FSNCA, RelieFf and SFCPP methods described in
detail in [43] were used. Method for selection of features by analysis of adjacent compo-
nents FSNCA. This algorithm is suitable for assessing the significance of characteristics of
distance-based models. Method for ranking significant parameters for RelieFf forecasting.
The method is a selection function using RelieFf’s classification algorithm. It is suitable for
assessing the significance of features for distance-based models. Method of the subsample
of traits with comparable predictive power SFCPP.

3. Results and Discussions

SEM provides useful tools for examining the surface and structural characteristics of
fibers of the fabrics through high resolution and depth of field of images. The scanning
electron micrograph (Figure 2a) of convolutions in mature cotton fiber, bar = 18.9 µm, shows
that cotton fibers look like collapsed and twisted tubes (blue arrow). The longitudinal view
of organic cotton fibers shows ribbon-like twists (lower part of the image-orange arrow).
The deterioration of the fibers (longitudinal)—detail of fibers—and the peeling process
(black arrow, more visible in the upper left part of this image) is evident [44]. In Figure 2b,
staple fiber ends of cotton fibers damaged in cotton fibers are damaged, shown with black
lines on the figure (black arrow) [45]. The deterioration of the fibers (longitudinal), detail
of fibers and the peeling process (orange arrow) are shown, as are dust/microorganisms
on the fibers. Some fibers (Figure 2c,d) appear like collapsed and twisted tubes. These
seem to have deteriorated and the peeling process is very intense (black arrow); note the
presence of a high quantity of dust/microorganisms (fungi upper and lower right part of
the image). Organic cotton fibers showing ribbon-like twists (left part of the image) as well
as dust and/or microorganisms present on the cotton fibers are observable. In addition, the
peeling process of the fibers is visible (Figure 2e).

Staple fiber ends–end of cotton fibers (Figure 3a) are damaged in processing; organic
cotton fibers look like collapsed and twisted tube or show ribbon-like twists. Less evidence
of dust/microorganisms on the fibers after the wash [33] (Figure 3b). Of note is the peeling
of the fibers and possible dust presence on the fibers in the upper part of the image. It
can also be seen showing cross-marking or nodes. Longitudinal cotton fibers (Figure 3c–e)
appear undeteriorated and ”more clean” than the previous images of unwashed specimens
showing peeling of the fibers and the limited existence of dust/microorganisms. The
appearance of cotton fibers (Figure 3f) under the electronic microscope show longitudinal
cotton fibers are present and in good condition. Dust/microorganisms can be identified
in the central part of the image, with the peeling process of the fibers in evidence on the
lateral margins.
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The comparison between the washed and unwashed images demonstrates that some
cellulose fibers and microfibrils have lost their integrity with the main cotton fibers, being
loosened and eventually separated from the cotton fibers. This separation of cellulose
microfibrils is apparent in the comparison made in Figure 4a,b.
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Considering the fact that cellulose fibers and microfibrils are mainly connected to each
other in a cotton fiber by hydroxyl bonds, ultimately forming the final cotton fiber, the pro-
cess of washing the cotton textile specimens in water (with abundant free hydroxyl groups
–OH) facilitated this easy loosening and the eventual separation of the surface microfibrils.
Similar breakage of primary bonds between wollastonite and wood polymers (cellulose and
hemicellulose) was previously reported as a result of abundant water molecules, though
the adsorption energy of wollastonite–cellulose was calculated to be greater than that of
water–cellulose (red arrows) [46–48]. The comparison of the SEM image of washed cotton
textile specimen (Figure 5a) with that of an unwashed specimen (Figure 5b) with 50-micron
magnification clearly illustrates that no separation of cellulose microfibrils can be observed
in the unwashed specimen. As an example, some defects on the fibers are shown with
red lines.
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Figure 5. Comparison between unwashed and washed surfaces of the analyzed traditional shirt
((a)—washed specimen at ×1.0K LM magnitude; (b)—unwashed specimen at ×1.0K LM magnitude).

It is important to note that the loosening and separation of surface cellulose microfibrils
cannot solely be attributed to the abundance of water hydroxyl groups, the breakage of
hydroxyl bonds that made cellulose fibers and microfibrils integrated to form cotton fibers.
The friction between cotton fibers during washing can be considered another cause for the
breakage and the eventual separation of microfibrils.

Analysis of SEM images of historical textiles using artificial intelligence techniques.
SEM images of washed and unwashed textile fabrics were used. The photos were in TIFF
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file format. They had resolutions of 1200 × 960 pix. They were divided into three groups
depending on the magnification ×1000, ×300 and ×100 LM. In the analysis of the SEM
images of textiles, the most commonly used way of their digital representation is textural
features [37,38]; the advantage of using textural features in the analysis of SEM images is
that they can be used to analyze, model and process the texture. In this way, human vision
is simulated by distinguishing elements in images. Texture features provide sufficient
information about objects in SEM images appropriate for their classification, identification
and prediction modeling.

Twenty-two texture features were used, described in detail [49]. These are described
in general terms with their formulas (Table 1: Equations (1)–(22)), where µx, µy, σx, σy
represent the mean values and standard deviations of px and py functions of the partial
probability density; x and y are coordinates (rows and columns) of a common matrix;
probability “p”, px + y(i) is the probability of the joint matrix; HX and HY—entropy of px
and py; N is the number of grey levels in the image.

Table 3 shows the mean and standard deviation of the two classes of textile fabrics—
unwashed (UW) and washed (W). Some of the features have similar values, while others
visibly overlap. It is necessary to make a selection of these textural features that are
sufficiently informative and can be used to classify both types of fabrics. The names of
texture features are according to Boland [49]. All names are in their original form.

Table 3. Formulas of the used textures features (after Bolad [49]).

Autocorrelation T1 = ∑
i

∑
j
(ij)p(i, j) (11) Maximum

probability maxpr = max
i,j

p(i, j) (22)

Contrast T2 = ∑N
n=0 n2

{
∑N

i=1 ∑N
j=1 p(i, j)

}
, |i− j| (12) Sum of

squares: Variance T12 = ∑
i

∑
j
(i− µ)2 p(i, j) (23)

Correlation 1 T3 = ∑
i,j

(i−µi)(j−µj)p(i,j)
σiσj

(13) Sum average T13 =
2Ng

∑
i=2

ipx+y(i)
(24)

Correlation 2 T4 =
∑i ∑j(ij)p(i,j)−µxµy

σxσy
(14) Sum variance T14 =

2Ng

∑
i=2

(i− cshad)2 px+y(i)
(25)

Cluster Prominence T5 = ∑
i

∑
j

(
i + j− µx − µy

)4 p(i, j) (15) Sum entropy T15 = −
2Ng

∑
i=2

px+y(i) log
{

px+y(i)
} (26)

Cluster Shade T6 = ∑
i

∑
j

(
i + j− µx − µy

)3 p(i, j) (16) Difference variance T16 =
Ng−1

∑
i=0

i2 px−y(i)
(27)

Dissimilarity T7 = ∑
i

∑
j
|i− j|p(i, j) (17) Difference entropy T17 = −

Ng−1

∑
i=0

px−y(i) log
{

px−y(i)
} (28)

Energy T8 = ∑
i

∑
j

p(i, j)2 (18) Information measure
of correlation 1 T18 = HXY−HXY1

max{HX,HY}
(29)

Entropy T9 = −∑
i

∑
j

p(i, j) log(p(i, j)) (19) Information measure
of correlation 2 T19 =

√
1− e−2(HXY2−HXY) (30)

Homogeneity 1 T10 = ∑
i,j

p(i,j)
1+|i−j|

(20) Inverse difference
normalized T20 =

Ng

∑
i=1

Ng

∑
j=1

p(i,j)

1+
(
|i−j|2

Ng2

) (31)

Homogeneity 2 T11 = ∑
i

∑
j

1
1+(i−j)2 p(i, j) (21) Inverse difference

moment normalized T21 = ∑
i

∑
j

p(i, j)2 (32)

It is an optimal set of features that are mutually and maximally different and can
effectively represent the compared objects through it (Table 4).
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Table 4. Mean value and standard deviation of textural features of SEM images of textile fabrics.

Magnification ×1000 LM ×500 LM ×100 LM

Feature Type UW W UW W UW W

T1 20.25 ± 3.03 20.22 ± 1.8 20.13 ± 2.84 20.28 ± 1.7 20.15 ± 2.74 20.29 ± 1.87

T2 0.39 ± 0.17 0.45 ± 0.19 0.48 ± 0.21 0.55 ± 0.24 0.7 ± 0.34 0.77 ± 0.28

T3 0.75 ± 0.1 0.75 ± 0.11 0.71 ± 0.15 0.7 ± 0.14 0.6 ± 0.19 0.58 ± 0.18

T4 0.74 ± 0.11 0.75 ± 0.12 0.7 ± 0.13 0.69 ± 0.15 0.59 ± 0.17 0.56 ± 0.18

T5 26.74 ± 3.06 37.68 ± 17.64 24.21 ± 2.76 32.46 ± 15.94 21.59 ± 2.76 30.11 ± 13.98

T6 3.74 ± 1.15 3.8 ± 1.91 3.37 ± 1.13 3.08 ± 2.26 2.95 ± 1.11 3.17 ± 1.76

T7 0.3 ± 0.1 0.34 ± 0.12 0.36 ± 0.13 0.4 ± 0.15 0.44 ± 0.19 0.5 ± 0.23

T8 0.27 ± 0.05 0.23 ± 0.05 0.26 ± 0.07 0.23 ± 0.05 0.23 ± 0.07 0.21 ± 0.07

T9 1.89 ± 0.18 2.04 ± 0.26 1.97 ± 0.24 2.1 ± 0.29 2.1 ± 0.33 2.24 ± 0.29

T10 0.88 ± 0.03 0.86 ± 0.05 0.86 ± 0.05 0.85 ± 0.08 0.81 ± 0.07 0.81 ± 0.07

T11 0.87 ± 0.04 0.86 ± 0.05 0.85 ± 0.05 0.84 ± 0.07 0.82 ± 0.07 0.8 ± 0.08

T12 0.45 ± 0.07 0.39 ± 0.07 0.43 ± 0.09 0.38 ± 0.08 0.4 ± 0.1 0.36 ± 0.08

T13 20.29 ± 2.92 20.46 ± 2.05 20.14 ± 2.82 20.64 ± 1.56 20.06 ± 2.63 20.48 ± 1.8

T14 8.87 ± 0.73 8.95 ± 0.55 8.85 ± 0.77 8.92 ± 0.37 8.84 ± 0.74 8.92 ± 0.51

T15 56.22 ± 9.7 54.93 ± 6.47 54.48 ± 8.74 54.61 ± 6.1 54.24 ± 9.2 54.88 ± 6.29

T16 1.59 ± 0.1 1.73 ± 0.11 1.62 ± 0.09 1.72 ± 0.14 1.64 ± 0.12 1.75 ± 0.16

T17 0.38 ± 0.17 0.44 ± 0.18 0.5 ± 0.25 0.55 ± 0.24 0.72 ± 0.35 0.76 ± 0.32

T18 0.68 ± 0.12 0.72 ± 0.14 0.72 ± 0.17 0.77 ± 0.16 0.85 ± 0.21 0.92 ± 0.2

T19 0.37 ± 0.11 0.34 ± 0.12 0.3 ± 0.13 0.28 ± 0.15 0.22 ± 0.13 0.22 ± 0.18

T20 0.75 ± 0.08 0.77 ± 0.1 0.72 ± 0.13 0.73 ± 0.17 0.62 ± 0.17 0.65 ± 0.23

T21 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.96 ± 0.02 0.95 ± 0.02

T22 0.99 ± 0 0.99 ± 0 0.99 ± 0 0.99 ± 0 0.99 ± 0.01 0.99 ± 0

Tables 5–7 show the results of a selection of informative textural features, depending
on the resolution of the SEM images and the magnification at which they were obtained.
The smallest number of features (five) were obtained by the FSNCA method. It is followed
by the RelieFf method, with seven features in all cases. The most features were selected by
the SFCPP method, a total of 13 features, regardless of image resolution.

Table 5. Selected texture features on images with magnification ×1000 LM.

Method for Selection Selected Features

FSNCA T5, T6, T9, T13, T15

RelieFf T5, T6, T8, T9, T15, T16, T22

SFCPP T2, T3, T4, T5, T8, T9, T10, T12, T13, T15, T17, T18, T21

Table 6. Selected texture features on images with magnification ×500 LM.

Method for Selection Selected Features

FSNCA T5, T6, T9, T16, T19

RelieFf T5, T6, T8, T12, T15, T16, T22

SFCPP T3, T4, T5, T8, T10, T11, T12, T15, T16, T18, T19, T20, T21
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Table 7. Selected texture features on images with magnification ×100 LM.

Method for Selection Selected Features

FSNCA T5, T6, T13, T15, T19

RelieFf T5, T6, T12, T13, T16, T19, T22

SFCPP T2, T3, T9, T10, T11, T13, T14, T15, T16, T17, T19, T21, T22

The kernel variant of the principal component (kPC) method was used to reduce the
data volume of the resulting feature vectors [40]. When reducing data from vectors with
textural features, the use of the method is appropriate because the data have relatively
complex structures that cannot be represented with sufficient accuracy in a linear subspace.
The kernel functions used are three linear (Simple) and two nonlinear: Polynomial (Poly)
and Gaussian. These functions correspond to the way of design (transformation) in the
space of the principal components.

Figure 6 shows the reduced data from a vector with textural features selected by
the FSNCA method for three principal components with a linear (Simple) kernel. The
visualization depends on the magnification of the images. There is a visible separation
between the two types of textile fabrics observed. Classification methods will highlight this
distinctiveness. The scattered data in Figure 6 obtained from the washed and unwashed
specimens reveal distinct separation between the data grouping of the unwashed specimens
for all three principal components with a linear kernel (×100, ×500 and ×1000 LM). For
the washed data, though, the data grouping revealed a less degree of distinction; that is,
data are scattered more widely in comparison to the data of the unwashed specimens.
The widely scattered data for the washed specimens clearly indicate that the breakage
of hydroxyl bonds has happened on a random basis along cellulose microfibrils along
cotton threads, which is common in natural materials [46–48]. Still, it can be observed
that no overlap can be found between the two main data groupings of the washed and
the unwashed observations. From a statistical point of view, the data in each group of the
washed and unwashed can be considered sufficient to come to a conclusion that there is a
statistically significant difference between them from all three principal components with
a linear kernel. It is to be noted that the physical breakage of microfibrils by friction has
intensified the wide scattering of data for principal components with a linear kernel in the
washed specimens.
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Figure 6. Presentation of reduced vector data with textural features on three principal components.

The methods of naïve Bayesian classifier, discriminant analysis and support vector
machines method (SVM) were used for classification [40]. Two types of separating functions
were used in the discriminant analyses—linear and quadratic. The SVM method uses three
separating functions—linear, quadratic and one based on radial basis functions.

Figure 7 shows an example of data classification for washed and unwashed textile
fabrics obtained from textural features of their SEM images. They have a magnification
of ×1000 LM. The vector of features was selected by the RelieFf method. It is reduced



Sensors 2022, 22, 4442 14 of 20

to principal components with a linear (Simple) kernel. Linear separation functions were
used in the discriminant analysis and the support vector machines method. The Bayesian
classifier shows the restriction of the areas of the two classes of textile fabrics with spherical
borders. With regard to the covariance nature of the principal component, the absolute
values for PC1 and PC2 may range from 0 to 1. In the case of unwashed specimens, the
values were very near to 0, indicating that there was little or no covariance between PC1
and PC2. However, the scattered dots for the PC1 and PC2 values for the washed specimens
meant a quite different trend. This clearly illustrated a significant difference between the
washed and the unwashed specimens (Figure 7b).
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An assessment of classification errors has been made [42]. These errors are basic (ei),
actual (gi) and general (e0). When calculating these errors, the false-negative (FN) data,
which are the number of Class i data incorrectly assigned to other classes, as well as the true-
positive (TP) data, which are the number of correctly classified Class i data, are determined.

The results of a naive Bayesian classification are shown in Table 8. Using a linear kernel
of the main components between the two groups of tissues results in zero classification
errors. The same trend is observed when using reduced data from the vector of features
with principal components using a Polynomial kernel. The highest values of classification
errors are obtained when using data reduced by main components with Gaussian kernel.
The actual error of over 40% obtained between all the surveyed areas shows that a large
part of the data from the second class fell into the first. Hence, the total classification error
reaches values of 27–52%, which is an indication that the reduction of data with this method
is inappropriate.

Table 8. Results of classification with a naïve Bayesian classifier.

Kernel Function

Magnification ×1000 LM ×500 LM ×100 LM

Selection Method

Error ei, % gi, % e0, % ei, % gi, % e0, % ei, % gi, % e0, %

Simple

FSNCA 0% 0% 0% 0% 0% 0% 0% 0% 0%

RelieFf 0% 0% 0% 0% 0% 0% 0% 0% 0%

SFCPP 0% 0% 0% 0% 0% 0% 0% 0% 0%

Poly

FSNCA 0% 0% 0% 0% 0% 0% 0% 0% 0%

RelieFf 0% 0% 0% 0% 0% 0% 0% 0% 0%

SFCPP 0% 0% 0% 0% 0% 0% 0% 0% 0%

Gaussian

FSNCA 13% 41% 38% 20% 41% 37% 23% 44% 42%

RelieFf 20% 41% 40% 17% 19% 27% 30% 32% 37%

SFCPP 20% 43% 42% 53% 33% 38% 33% 49% 52%
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The results of the discriminant analysis classification are shown in Table 9. The total
classification error is 18–24%. Using a feature vector selected by the RelieFf method and
reduced with principal components using a Polynomial kernel, maximum values of the
total classification error of 24% are obtained. The basic error, in this case, reaches 8%. This
shows that 8% of the first class of textile fabrics data falls into the second. Classification
errors above 10% indicate that using this classifier to separate the two studied classes of
textile fabrics is not appropriate.

Table 9. Results of classification with discriminant analysis.

Selection
Method

Separation
Function

Kernel Function Simple Poly

Error
Magnification

×1000 LM ×500 LM ×100 LM ×1000 LM ×500 LM ×100 LM

FSNCA

Linear

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 18% 18% 18% 18% 18% 18%

Quadratic

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 18% 18% 18% 18% 18% 18%

RelieFf

Linear

ei, % 0% 0% 0% 0% 8% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 18% 18% 18% 18% 24% 18%

Quadratic

ei, % 0% 0% 0% 0% 8% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 18% 18% 18% 18% 24% 18%

SFCPP

Linear

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 8% 0% 0% 0%

e0, % 18% 18% 19% 18% 18% 18%

Quadratic

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 8% 0% 0% 0%

e0, % 18% 18% 19% 18% 18% 18%

The classification results with the support vector machines method are presented in
Table 10. In the general case, zero classification errors occur. Error values above 10% are
obtained using a linear separator function of the classifier. In this case, the actual error
is 12–29%, which indicates that when using the linear separation function of the SVM
classifier, some of the data is incorrectly classified and falls into the class to which they do
not belong.

The obtained results found that the separation of the two classes of textile fabrics—
washed and unwashed, does not depend on the method of selecting informative textural
features. It also does not depend directly on the classifier used. Suitable methods for
reducing the data volume of feature vectors are principal components with linear and
Polynomial kernels. It is not appropriate to use linear separation functions of classifiers
because high values (above 10%) of classification errors are obtained.

The X-ray powder diffraction technique was used for the structural characterization of
heritage cotton textiles. In the case of textiles, they contain both crystalline and amorphous
phases. The crystalline phase is highlighted by diffraction peaks corresponding to the
crystallographic planes involved and the amorphous phase produces diffraction halos.
X-ray diffraction is specific for each class of textile materials, thus characterizing these
materials in terms of crystalline peaks and amorphous halos; a structural fingerprint of these
materials is obtained. This paper characterizes the crystalline phase and the amorphous
phase of materials, evaluating the degree of crystallinity and the dimensions of crystallites
corresponding to the crystalline phase at the same time.
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Table 10. Results of classification with support vector machines method.

Selection
Method

Separation
Function

Kernel Function Simple Poly

Error
Magnification ×1000 LM ×500 LM ×100 LM ×1000 LM ×500 LM ×100 LM

FSNCA

Linear

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 6% 0% 0%

e0, % 0% 0% 0% 25% 0% 0%

Quadratic

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 0% 0% 0% 0% 0% 0%

RBF

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 0% 0% 0% 0% 0% 0%

RelieFf

Linear

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 29% 0% 12% 0% 0%

e0, % 0% 49% 0% 34% 0% 0%

Quadratic

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 0% 0% 0% 0% 0% 0%

RBF

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 6% 0% 0%

e0, % 0% 0% 0% 0% 0% 0%

SFCPP

Linear

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 0% 0% 0% 0% 0% 0%

Quadratic

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 0% 0% 0% 0% 0% 0%

RBF

ei, % 0% 0% 0% 0% 0% 0%

gi, % 0% 0% 0% 0% 0% 0%

e0, % 0% 0% 0% 0% 0% 0%

The X-ray diffraction patterns for specimens 1 and 2, both before and after washing,
are shown in Figure 8a,b. In both cases, the existence of broad diffraction peaks specific to
cellulose is observed [50]. According to the literature, cellulose is found in the monoclinic
system, space group P21 with the following lattice parameters a = 7.784 Å, b = 8.201 Å,
c = 10.380 Å, γ = 96.5◦ [51]. In this sense, the observed intense diffraction lines possess
the following 2θ angular positions and have been assigned the following Miller indices:
15.1◦ (1 −1 0), 16.8◦ (1 1 0), 20.85◦ (1 0 2), 22.98◦ (2 0 0), 34.8◦ (0 0 4). The additional
diffraction line at 2θ = 12.35◦ for the black sample may be due to the black pigment in
the seam.

The crystallite sizes were evaluated using the Scherrer relation [52] (Equation (1)) for
the (2 0 0) diffraction peak occurring at 2θ = 22.80◦ (where λ is defined as the wavelength of
X-ray radiation, β is the full width at half maximum of the selected peak and θ represents
the diffraction angle). The following results were obtained: D = 73 Å for the white sample
and D = 45 Å for the black one, both before and after washing.

d =
0.9λ

βcosθ
(33)

The crystallinity was evaluated based on Equation (2), where Icryst is the sum of the
intensities due to the crystalline phases and Itotal is the sum of the intensities due to the
crystalline phases plus the diffraction intensity due to the amorphous halos. A value of
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34% was obtained for the white specimen and 29% for the black one, both before and after
washing. The figure represents the X-ray diffraction patterns of investigated samples. The
presented results are according to the color of the samples.

Index =
Icryst

Itotal
× 100% (34)Sensors 2022, 22, x FOR PEER REVIEW 19 of 22 
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4. Conclusions

Following the proposed experiment, the following conclusions can be drawn:

• From SEM images, the cotton fibers are in the form of collapsed, ribbon-like twists and
twisted tubes and no significant surface modifications were noticed after fiber washing.

• In the unwashed specimen, a fairly large number of microorganism (fungi) colonies,
as well as a large amount of dust, were highlighted.

• After washing, the SEM microscopy showed that the number of microorganism
colonies, as well as the amount of dust, decreased, the cellulose fibers lost their integrity
and the presence of microfibrils that connect the cellulose fibers is better observed.

• X-ray diffraction showed that the basic material of the textile samples is cellulose,
which possesses both a crystalline and an amorphous phase.

• The calculation of the degrees of crystallinity in the washed and the unwashed
specimens revealed that the washing process did not significantly alter the degree
of crystallinity.

• The crystallite dimensions were evaluated as being 73 Å for the white specimen and
45 Å for the black one, both before and after washing.
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• Comparing the transverse dimensions of the cellulose fibers in the SEM images, which
are of the order of 100–200 µm, it is found such a fiber consists of a very large number
of crystallites.

Overall, the separation of the two classes of textile fabrics, washed and unwashed, does
not depend on the method of selecting informative textural features, which are proposed
by artificial intelligence methods. It also does not depend directly on the classifier used.
Appropriate methods for reducing the data volume of selected texture feature vectors
have been shown to be principal components with linear and Polynomial kernel functions.
Reducing the data in the selected feature vectors by Gaussian kernel principal components
is impractical. When using this method, classification errors of more than 10% occur. The
use of the LDA classification method leads to classification errors above 10%, which makes
its use inappropriate for the task solved in the present work. The reason for this could be
that LDA is sensitive to overlapping data, missing values and deviations. The overlap of
data is observed in the texture characteristics of the studied washed and unwashed textile
fabrics. The lowest values of classification errors were obtained using the SVM method,
compared to the other two methods, LDA and QDA.
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