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Abstract: Forecasting road flow has strong importance for both allowing authorities to guarantee
safety conditions and traffic efficiency, as well as for road users to be able to plan their trips according
to space and road occupation. In a summer resort, such as beaches near cities, traffic depends directly
on weather conditions, variables that should be of great impact on the quality of forecasts. Will the use
of a dataset with information on transit flows enhanced with meteorological information allow the
construction of a precise traffic flow forecasting model, allowing predictions to be made in advance
of the traffic flow in suitable time? The present work evaluates different machine learning methods,
namely long short-term memory, autoregressive LSTM, and a convolutional neural network, and data
attributes to predict traffic flows based on radar and meteorological sensor information. The models
trained to predict the traffic flow have shown that weather conditions were essential for this forecast,
and thus, these variables were employed in the evaluated deep-learning models. The results pointed
out that it is possible to forecast the traffic flow at a reasonable error level for one-hour periods, and
the CNN model presented the lowest prediction error values and consumed the least time to build
its predictions.

Keywords: weather-based traffic prediction; highway traffic; deep learning; method comparison

1. Introduction
1.1. Motivation

Intelligent transportation system (ITS) technologies are becoming more pervasive in
the context of smart cities and smart roads, not only due to the development of connected
and automated vehicles (CAVs) but also through the deployment of connected roadside
infrastructures. The latter are equipped with traffic sensors and communication platforms
capable of extracting useful information from the road and transmitting it to vehicles in the
vicinity and to traffic management centers.

Connected and sensor-equipped roadside infrastructures can assist in both real-time
applications, such as joint maneuvers or route planning, traffic analysis and statistics
collection for city management or other third parties’ purposes. For instance, a traffic radar
on the highway can support a lane merging use case by helping autonomous vehicles join
the main lanes. However, it can also count the number of vehicles entering the highway
and therefore be used to assist traffic control prediction and congestion control decisions.

The growth of traffic congestion is one of the main challenges faced today by drivers,
motorway operators, and city managers. It makes daily travel more complex, with negative
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impacts on the environment, time, and monetary costs for the users, degrading the traveler
experience. This problem can be mitigated by providing traffic flow predictions to the road
users, such as the probability of traffic congestion, which can help them to avoid annoying
events by rerouting their travels, choosing another means of transport, or changing their
trip times. Additionally, traffic flow predictions can be beneficial for road and city operators
to implement traffic planning and management strategies.

Traffic flow prediction is a subject addressed by the literature within the traffic state
estimation (TSE) problem scope. TSE refers to the process of inference of traffic state
variables, namely flow, density, speed, and other equivalent variables, on road segments,
using partially observed and noisy traffic data [1]. There is significant research interest for
the TSE topic in the ITS area, given its utility for public authorities, road operators and the
general public.

In this work, the main motivation lies in the need to estimate the traffic flow on a
coastal area in Portugal—a summer resort composed by the beaches of Barra and Costa
Nova—that are close to a mid-size city (Aveiro) with the goal of predicting congestion
periods, especially during the peak season. This information is extremely helpful for
the decision-making process of beach users and city planners. If provided in real-time,
it can help alleviate traffic congestion in the area at crowded moments that typically occur
during summer, weekends or specific bank holidays. In this scenario, the traffic is directly
impacted by weather conditions, variables that should be of great impact on the quality of
forecasts. As a result, some research questions can therefore be posed, for instance: Is it
possible to create a real-time traffic prediction model that uses weather information? What
would be the most suitable prediction model, both in terms of accuracy and in terms of
computational performance?

1.2. Contribution

The present work evaluated the use of different machine learning (ML) methods and
data attributes to predict traffic flows based on traffic radar and meteorological sensor
information. For this purpose, real-world datasets from an ITS ecosystem developed in
the urban region of Aveiro in Portugal [2] were employed, taking advantage of roadside
infrastructure sensors installed in the field.

Therefore, ML methods, namely long short-term memory (LSTM), autoregressive
LSTM (AR-LSTM), and a convolutional neural network (CNN), were used to train TSE
models to forecast the traffic flow on the two different coastal beaches of Portugal. To
construct more precise models, weather conditions are essential to predict traffic flow in
the beach regions, because the affluence of the beaches depends on the temperature, wind,
solar radiation, and so forth. Therefore, these weather variables are also used as features in
the induction of the models.

Approaches that extract dependence between data from historical data by using ML
methods and then estimate the traffic state based on real-time data are called data-driven
approaches for TSE [1]. Therefore, based on such framing, this work can be considered a
case of a data-driven approach for TSE.

1.3. Organization

The rest of the paper is organized as follows: Section 2 reviews neural network
methods and performance metrics of machine learning models. Then, Section 2.3 details
the state-of-the-art on traffic flow and road speed forecasting published in the most recent
years. Section 3 presents the proposed method for traffic flow prediction, namely the
datasets used for the training, validation, and test of the induced models, including both
the road sensor and the meteorological data. This section also explains the methodology of
the work by describing the data selection, pre-processing and concatenation processes, and
the model training for each of the four different ML methods. After that, Section 4 depicts
the outcomes of the experiments, while Section 5 provides a discussion of the obtained
results. Finally, Section 6 summarizes the conclusions and future work.
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For a better understanding of the manuscript, we defined the following Table 1 with
all the acronyms used.

Table 1. Abbreviation table.

Acronym Full Form

AE-LSTM Autoencoder long short-term memory
ARIMA Autoregressive integrated moving average

AR-LSTM Autoregressive long short-term memory
CAVs Connected and automated vehicles
CNN Convolutional neural network
EAM Early stopping rounds adjustment mechanism

ERNM Elman recurrent neural network
GCN Graph convolution network
ITS Intelligent transportation systems

KNN K-nearest neighbor
LSTM Long short-term memory
MAE Mean absolute error

MAPE Mean absolute percentage error
MASE Mean absolute scaled error

ML Machine learning
MRE Mean relative error
RF Random forest

RMSE Root-mean-square error
RNN Recurrent neural network

SMAPE Symmetric mean absolute percentage error
TCN Temporal convolution network
TSE Traffic state estimation

2. Background
2.1. Neural Networks

In the past decade, deep learning approaches have dominated the bulk of articles/
implementations for the previously mentioned application areas [3], becoming the go-to
when dealing with novel forecasting challenges. At its core, deep learning is a subclass
of machine learning and is influenced by the structure of the human brain. The primary
building blocks of deep learning architectures are neural units. By hierarchically assembling
these units (which in turn creates a neural network), in theory, every kind of nonlinear
function can be approximated. There are various famous deep learning architectures, such
as CNN, graph convolution networks (GCN) and recurrent neural networks (RNN) and
their variants, like LSTM. Using these and other similar architectures, it is possible to model
spatial dependencies, temporal dependencies or even joint space-time dependencies.

RNNs as well as its variants are neural networks that analyse a sequential input, and
they are proficient at modelling the non-linear temporal dependency of traffic data. Because
these models rely on the order of data to process data, in turn, one downside is that when
modelling extended sequences, their capacity to retain what they learnt before many time
steps may deteriorate (vanishing and/or exploding gradient problem). In addition to this,
it cannot perform parallel calculations. Awan et al. [4] used LSTM to project traffic flow
using time-series traffic flow, atmospheric data, and air pollution acquired from open data
sets of Madrid, concluding from their experimental results that the addition of atmospheric
and air pollutant information with timestamp improved the overall performance.

CNNs can be used to model both spatial and temporal dependencies. Unlike recurrent
models, CNNs generate models for fixed-size contexts, although the actual context size of
the network may be readily increased by adding numerous layers on top of one another,
which enables exact control over the maximum length of dependencies to be simulated.
CNN also permits parallelization for each element in the sequence (optimising GPU usage),
since it does not rely on the computation of the preceding time step. Having said this,
CNNs also have some disadvantages: they do not encode the position and orientation of
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objects, they are not able to be spatially invariant to the input data and they require a large
training data to be accurate. An example of the usage of this method is present in [5], where
Gehring et al. propose the very first fully convolutional model for sequence-to-sequence
learning that surpasses robust recurrent models on extremely large benchmark data sets by
an order of magnitude in time complexity.

2.2. Performance Metrics

Before presenting the most commonly used metrics to assess prediction models, it is
important to distinguish the two different types of predictions performed by ML methods.
They are regression and classification. Roughly, it can be said that regression is related to the
prediction of continuous values, in contrast to classification, which is devoted to predicting
discrete labels. Therefore, as the prediction of traffic flow is concerning the forecasting
values that vary in a continuous matter, this work addresses a regression problem.

To test the performance of the regression model proposed in [6], Hou et al. used five
performance metrics: mean absolute percentage error (MAPE), symmetric mean absolute
percentage error (SMAPE), mean absolute error (MAE), mean square error and root-mean-
square error (RMSE). The authors considered that these metrics reflect the difference
between actual and predicted values, fulfilling their purpose. In [7], Deb et al. only used
RMSE, while Yin et al. [8] used MAE, RMSE and MAPE. Shahriar et al. [9] used the
metrics of RMSE, MAE, SMAPE and the coefficient of determination (R2) to evaluate the
performance of the regression models. Generally, small values of RMSE, MAE, and SMAPE
demonstrate accurate predictions. The coefficient of determination is a measure of the
goodness of fit of the data and is usually between zero and one. If the value of the coefficient
of determination is equal to one, we have a perfect prediction. Generally, a higher value
of the coefficient of determination demonstrates a better performance [9]. Badii et al. [10]
only used the performance metric mean absolute scaled error (MASE). However, according
to these authors, the lack of data can make it difficult to produce results, affecting the value
of MASE. According to the authors, the data collected by sensors are the most sensitive to
failures in data collection, admitting that this failure may result from the sensors themselves
or from connection problems. To combat this problem, a Kalman filter was used, a method
that produces estimations of unknown data, given the measurements observed in the
temporal space.

Given the abundance of traffic forecasting methods, performance metrics for each
method also emerge. Although RMSE and MAPE are metrics widely used to evaluate
the performance of a model, they do not provide comparable measures when the models
are divergent, for example, a neural network and an autoregressive integrated moving
average (ARIMA), or when the input datasets of the models are completely different [11].
In the case of network-wide models, errors can propagate through time and space of the
network, and therefore, a space-time correlation between successive predictions can help
to assess performance. Despite contemporary studies using RMSE and MAPE to evaluate
performance, the necessity of evaluating datasets, environments and performance metrics
remains present, as identified by Lana et al. [11].

Novakovic et al. studied the problem of evaluating the different classification models
that are used in ML [12]. It is necessary to evaluate these models in order to find the optimal
solution for the classification models generated in the construction process. According to
Novakovic et al., there are different measures to evaluate the performance of a model, and
the most used criterion is the calculation of accuracy.

Classification is one of the most common tasks in ML. It is based on the search for
similarities between objects, and the similarities between both are determined by analyzing
their characteristics. In a classification problem, the number of classes is previously known
and limited. In the evaluation of classification methods, if it predicts a class that is different
from the current class, then we are facing a classification failure. This notion of failure results
in the accuracy formula, which can be defined as the number of correctly classified cases
out of the total number of cases. However, the accuracy does not reflect the differences
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between error types, which is a disadvantage in using this formula. Furthermore, the
accuracy is dependent on the class distribution in the dataset [12].

It is necessary to distinguish different types of error because the consequences resulting
from this error may be different. For example, in medicine, if a system is in charge of
classifying a cancer case as positive or negative, the result of this classification leads to two
types of consequences. In case the system identifies a positive patient as negative, the error
is more important than in the reverse situation, since doctors will not consider the patient
to be sick and, consequently, will not apply any treatment [12].

2.3. Related Work

A lot of work has been done on traffic and road speed forecasting in recent years.
Yi et al. [13] developed and automated a framework for tunning traffic dataset hyperpa-
rameters in order to reduce time-consuming learning tasks. The proposal describes a
framework named HyperNet that uses Bayesian optimization and meta-learning for the
automated hyperparameter search process. Furthermore, they implement a deep learning
model with a long short-term memory network based on the HyperNet framework and
present a learning temporal variation of traffic datasets at main regions of highway traffic
systems. Their platform evaluation is performed with data they collected from the Korean
highway system, but it does not include any weather information.

Sadeghi-Niaraki et al. presented a short-term traffic flow prediction model [14] based
on the modified Elman recurrent neural network (ERNM) model to improve traffic predic-
tion model precision. They used a modified ERNM method optimized through a genetic
method, and they considered weather conditions, weekday, hour and day’s classification
to forecast the vehicle velocity in Tehran streets and highways, but they did not forecast
traffic fluxes. The traffic dataset was collected from online Google Map API service for
139 routes in 7 Tehran districts. The reported results confirmed the superior performance
of the proposed traffic condition prediction model over several alternative methods.

Hu et al. proposed a traffic speed prediction model [15] based on a temporal convo-
lution network (TCN) and a graph convolution network (GCN). Their approach uses the
TCN to complete the extraction of time dimension and local spatial dimension features
and the GCN to extract the topological relationship between road nodes in order to attain
global spatial dimension feature extraction. They combine spatial and temporal features
with road parameters to improve short-term traffic speed predictions. The reported ex-
perimental results used an open dataset with 157 sensor stations from the United States
highway dataset PeMS [16] and showed that their model obtained the best performance
under various road conditions compared with eight baseline methods. Moreover, results
showed that their prediction error was reduced by at least 8%, keeping high effectiveness
and stability. The study dis-considers traffic volume, and it could not be applied to our
reduced highway topology.

Wei et al. proposed a traffic flow prediction method [17] called autoencoder long short-
term memory (AE-LSTM) to improve the accuracy of traffic flow prediction. The method
presented was used to obtain the internal relationship of traffic flow by extracting the
characteristics of upstream and downstream traffic flow data. The LSTM network utilizes
the acquired characteristic and historical data to predict complex linear traffic flow data.
The experimental results obtained using an unspecified PeMS dataset [16] showed that
the AE-LSTM method had higher prediction accuracy, since the mean relative error (MRE)
of the AE-LSTM was reduced by 0.01 compared with the previous prediction methods.
Moreover, the AE-LSTM method also offered good stability as it showed a prediction
error and fluctuation of the AE-LSTM method that was small for different stations and
different dates. Reports show an average MRE for AE-LSTM prediction results of 0.06 for
six different days.

Simunek et al. proposed a long-term traffic speed prediction ensemble model [18]
using country-scale historic traffic data from Czech Republic roads. Their model combined
parametric and nonparametric approaches in order to acquire a good-quality prediction
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that can enrich available real-time traffic information. The model was conceived to be
used in the improvement of navigation through waypoints (e.g., delivery services, goods
distribution, police patrol) and in the estimation of arrival time. Model validation was
carried out using 66% of all roads in the Czech Republic and predicted traffic speed in
the period of 1 week. The validation tests showed that the average speed prediction at a
given hour could make predictions with a mean absolute error of 4.67 km/h, which looks
promising in terms of long-term speed information prediction using large-scale spatial and
temporal data.

Sun et al. proposed an XGBoost-based approach to predict highway traffic flow [19].
Their method started by dividing highway segments and using cameras to directly cover
road sections. Then, a section-flow calculation method was used to predict the traffic state.
Moreover, they improved that information with toll station entrance and exit information
and with plate number recognition information. Then, they applied an improved XGBoost-
based spatio-temporal method with the early stopping rounds adjustment mechanism
(EAM) optimization mode to predict the traffic flow of the segmented highway, which
considers multiple-step short-term and long-term prediction, the influence of nonrecurrent
incidents, and the spatial interaction of sophisticated staggered sections. The dataset was
created from 1 September to 19 November 2019 in a Shaoxing, China road network and
it consists of 23,040 intervals over 80 days in total. The paper additionally compared
traffic forecasts for 5, 10, 15, 20, 25 and 30 min intervals with alternative traffic forecasting
methods such as CNN, CNN-lag, LSTM, LSTM-lag, random forest (RF), RF-lag, seasonal
autoregressive integrated moving average (SARIMA), SARIMA-lag, XGBoost-I, XGBoost-I-
lag, XGBoost-S, and XGBoost-S-lag. XGBoost-I-lag achieves the best performance compared
with XGBoost-S series models and other baseline models. The test results confirmed that the
missing data greatly affects the traffic flow prediction results in the XGBoost-I-lag, and that,
except for SARIMA, the spatial lag input of all methods is better than the ordinary input.
The authors also observed that the identified spatio-temporal lag strategy is extremely
necessary in highway traffic prediction.

Guo et al. proposed an optimized graph convolution recurrent neural network for
traffic prediction with the aim of better exploiting the representation of spatial and temporal
information [20]. They learned spatial-temporal features of the traffic data by a graph
convolution gated recurrent unit. In their experiments, they used several datasets: a
travel time/speed dataset that covers the northwestern part of the Washington, DC, USA
metropolitan area, collected in the summer of 2016; a travel time/speed dataset that covers
the center city of Philadelphia, collected in the summer of 2016; and a traffic flow dataset
in PeMSD4 that covers the San Francisco Bay Area, collected from January to February in
2018. They reported that their method was validated and proven effective and accurately
predicted traffic data in the future 15 and 30 min.

Chiabaut et al. presented a method for real-time traffic and travel time estimation for
highways [21]. The proposal included a previous analysis consisting of a historical dataset
observation day using two methods: a Gaussian mixture model and a k-means method. The
produced clustering results revealed that congestion maps of days of the same group have
substantial similarity in their traffic conditions and dynamic. Then, consensus days were
identified in each cluster as the most representative day of the community according to the
congestion maps. Finally, the traffic congestion propagation and travel times prediction
was carried out based on the historical data information. The dataset used was created in a
M6 highway used to access Lyon’s city center through a tunnel, created by 9 detectors of a
7 km long section. The work reported 40% to 79% arrival prediction precision below 2 min,
and 68% to 87% below the 3 min window.

Zhang et al. proposed a graph convolutional method based on deep learning for
highway traffic toll flow prediction [22]. They considered spatio-temporal and external
factors such as weather conditions and date type and used a GCN to extract spatial features
from their model. In their work, they used a dataset created using traffic flow of all
269 highway toll stations in Henan Province, China and compared their accuracy with



Sensors 2022, 22, 4485 7 of 19

other models. They explained their higher prediction accuracy as due to the use of a GCN
to obtain the spatial factors of the highway network and reported that their model behaves
better than other models such as K-nearest neighbors (KNN) and LSTM in the metrics
RMSE, MAE, and MAPE.

Table 2 summarizes the information about the related work documented in terms
of the dataset used, the processing techniques that were used and the learning process
objective. This analysis allows to perceive different forecasting objective [13,15,21,22],
works that did not sufficiently detail the dataset used or the conditions of use [17,19] or
were developed for very different road models [14,18], so our option was to test several
deep learning methods in order to evaluate them in terms of accuracy and efficiency.

Table 2. Related work summary.

Ref. Data Source(s) Processing
Techniques Application Year Limitations

[13] Datasets from Korean
highway system

Bayesian
optimization and

meta-learning

Hyperparameter
tunning for traffic

prediction
2020 Different purpose

[14] 139 routes in
7 districts in Tehran

Modified Elman
recurrent neural
network model

Traffic forecast 2020 Very different route
topology

[15]
157 sensor stations
from USA highway

dataset

Temporal
convolution network
(TCN) and a graph

convolution network

Traffic speed
prediction 2021 Different purpose

[17] PeMS unspecified
dataset

AutoEncoder and
LSTM

Traffic flow
prediction 2019 No information

about dataset

[18] 37,002 km of roads
Czech Republic.

Composed model:
case-based model,

linear regression and
fallback

Traffic flow
prediction 2020 Very different route

topology

[19]

Shaoxing, Zhejiang
Province, China road
network traffic from

1 September to 19
November 2019

XGBoost-based
spatio-temporal
method with the

EAM

Traffic flow 2021 No information
about dataset

[20]

Travel time/speed
dataset from

northwestern part of
the D.C. travel

time/speed dataset,
from Philadelphia
center traffic flow

dataset in PeMSD4,
and from San

Francisco Bay Area

Graph convolution
recurrent neural

network
spatial-temporal

features of the traffic
data by a graph

convolution gated
recurrent unit

Traffic prediction 2020 Very different dataset

[21]

9 detectors of a 7 km
long section in M6

highway accessed by
Lyon’s city center

tunnel

Gaussian mixture
model and a k-means

method

Real-time traffic and
travel time
estimation

2021 Different aims

[22]
269 highway toll
stations in Henan

Province

Convolutional
method based on

deep learning

Highway traffic toll
flow prediction 2021 Different aims and

dataset

3. Proposed Traffic Flow Prediction Method

In order to tailor the method to predict traffic flow for the coastal beaches of Portugal,
firstly, we performed the activity of selecting the available data in the surrounding area
of the two selected beaches. Then, we assessed whether the available data were relevant
enough to handle the prediction models’ induction.
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The selected datasets are composed of two different sources: radars and meteorological
data. Figure 1a,b present the location of the radars and meteorological stations, respectively.

(a) (b)

Figure 1. PASMO radar and meteorological station locations: (a) Radars; (b) Radars and meteorologi-
cal stations.

Figure 2 presents the complete method designed to handle the induction of the models
for traffic flow prediction on Portugal beaches. It starts with the data selection (Figure 2a)
applied to telemetry and meteorological data.

Figure 2. Methodology for data preparation and model training.

The Telemetry dataset contains records produced by parking sensors and radars, and
these records are separated into two different datasets: Parking and Radars. After that, the
data preprocessing step starts (Figure 2b) to prepare the meteorological and radars data
before the mining process.

In the sequence, the preprocessed datasets are concatenated into a single one (Figure 2c),
which will be the data source for the mining tasks.
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Finally, during the model training phase (Figure 2d), the data were processed by the
data mining techniques, producing the models throughout LSTM and CNN.

The following subsections describe in detail each one of the steps presented in the
methodology.

3.1. Data Selecting

The original Telemetry dataset contains more than 170 million records (170,158,409)
considering the years of 2019, 2020, and 2021 and is composed of parking sensors and
radars data. For the goal of this work, just radar data were selected, resulting in 155,432,185
records.

Table 3 presents the attributes of the original data. Each record is produced at a
frequency of 100 ms and contains the identification of the moving object, ID and coordinates
of the radar, timestamp, and the x-y axis speed component.

Table 3. Original data attributes.

Attribute Content

id Object ID
timestamp Record timestamp
radar_id Identification of the radar
radar_lat Latitude radar coordinate
radar_lon Longitude radar coordinate

xSpeed X-axis speed component
ySpeed Y-axis speed component

The meteorological dataset used in this work was provided by the Portuguese Institute
of Sea and Atmosphere (IPMA) [23]. IPMA maintains an up-to-date climate dataset with
information such as air temperature, wind speed, and direction, light radiation and so forth.
Figure 1b presents the two meteorological stations near to the radars used in this work.
One is placed at the University in Aveiro, and the other is at Dunas de Mira.

Table 4 presents the attributes of the meteorological data. Each record is produced at a
frequency of ten minutes.

Table 4. Meteorological data.

Attribute Contents

Estação Station ID
ano Year
mês Month
dia Day

hora Hour
minuto Minute
t_med Mean temperature
t_max Maximum temperature
t_min Minimum temperature

dd_med Mean wind direction
dd_ffx Maximum wind direction
ff_med Mean wind speed
ff_max Maximum wind speed
pr_qtd Rainfall
rg_tot Solar radiation

3.2. Data Preprocessing

The radar data are produced at a frequency of 100 ms; however, the meteorological
data are generated at a frequency of 10 min. The adjustment of the difference in the
granularity (100 ms × 10 min) among the two datasets is one of the tasks executed in the
preprocessing phase.
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Before adjusting the granularity, other derived radas data were produced; year, month,
day, hour, weekday, and minute attributes were calculated from the timestamp. Addutionally,
the xSpeed and ySpeed attributes result in the Speed measure. Negative values for Speed
represent the measure of the speed of an object approximating the radar, and positive
values represent the object moving away; the in_out logical attribute stores this situation.

Using the identification, speed, and direction of the moving object, for each radar, it is
possible to compute the quantity and speed (maximal, mean, and minimal) at the level of the
radar, year, month, day, hour and minutes (ten minute intervals). Table 5 presents the resulting
format of the processing radar data, and each record represents measures aggregated for
ten minutes at the hour.

Table 5. Processed radar data.

Attribute Contents

timestamp Record timestamp
ano Year
mês Month
dia Day

hora Hour
minuto Minute (ten minute intervals)
radar_id Identification of the radar

Speed_med Speed mean
Speed_max Speed maximal
Speed_min Speed minimal
obj_count Quantity of objects

in_out Movement

Figure 1a presents the localization of the radars named “pasmoradar03pontepraias”,
“pasmoradar02poste12” and “pasmoradar01riativa”. The first one occurs before entering the
bridge; the second one is in the interconnection segment between Barra and Costa Nova,
and the third one is at the urban limit to the south of Costa Nova.

This work aims to develop a model to forecast the traffic flow in Barra and Costa Nova,
considering the meteorological environment and level of speed vehicles approximating
and leaving the radars. Then, two new measures were computed to represent the traffic
flow in the regions TF_Barra and TF_Costa.

TF_Barra = (QAR1 + QDR2)− (QDR1 + QAR2) (1)

TF_Costa = (QAR2 + QAR3)− (QAR2 + QDR3) (2)

where QARi = the quantity of objects approximating the radar i, and QDRi = the quantity
of objects detaching from the radar i, computed by

QARi =
3

∑
i=1

50

∑
j=0

obj_count_Ai,j (3)

QDRi =
3

∑
i=1

50

∑
j=0

obj_count_Di,j (4)

with i as the identification of the radar, j as the interval minute (0, 10, . . . , 50), obj_count_A
as the value of the count_obj attribute where in_out = 1, and obj_count_D as value of the
count_obj attribute where in_out = 0.

Therefore, TF_Barra and TF_Costa can be positive or negative values. A positive TF
value represents an increase in the traffic flow for that region, and negative values can
express a reduction. Additionally, new speed measures were computed considering the
movement of approximation and detaching for each radar.
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Speed_med_ARi,j =
1
n ∑ Speed_medi,j (5)

with n as the quantity of records representing the Speed_med attribute with in_out = 1.

Speed_med_DRi,j =
1
n ∑ Speed_medi,j (6)

with i as the identification of the radar, j as the interval minute, and n as the quantity of
records representing the Speed_med attribute with in_out = 0.

Speed_max_ARi,j = max(Speed_maxi,j) (7)

Speed_max_DRi,j = max(Speed_maxi,j) (8)

Speed_min_ARi,j = min(Speed_mini,j) (9)

Speed_min_DRi,j = max(Speed_mini,j) (10)

In Equations (5)–(10), i represents the identification of the radar, and j represents
the interval minute. Equations (7) and (9) consider the records with in_out = 1, while for
Equations (8) and (10), in_out = 0. Table 6 presents the final processed radar data.

Table 6. Final Processed Radar Data.

Attribute Contents

ano Year
mês Month
dia Day

hora Hour
minuto Minute (ten-minute intervals)

Speed_med_ARi Speed mean approximating radar i
Speed_max_ARi Speed maximal approximating radar i
Speed_min_ARi Speed minimal approximating radar i
Speed_med_DRi Speed mean detaching radar i
Speed_max_DRi Speed maximal detaching radar i
Speed_min_DRi Speed minimal detaching radar i

TF_Barra Traffic flow at Barra
TF_Costa Traffic flow at Costa

Figure 1b presents the two meteorological stations collecting environment measures.
Each record represents one observation every ten minutes for each hour of the day. The
processing of the meteorological data was focused on two goals: (1) correcting the lack of
measures of the stations, and (2) transforming the wind direction values from degree to
cardinal values.

In situation (1), some records are incomplete in one station but complete in another.
In this case, considering that the meteorological stations are close and the variation of the
measures is not significant, the procedure was to complete the fault value by using the
value of the other station.

Wind direction values recorded in degree are a potential problem at the moment to
execute the data mining tasks (situation 2). For instance, the direction North (cardinal) rep-
resents the degree interval between 348.75 and 11.25. Therefore, considering the direction,
a value of 5 degrees represents the same direction as a value of 359 degrees. However, the
two values could represent two different environments in the execution of mining tasks.
The solution was to transform the values into eight cardinal points (N, NE, E, SE, S, SW, W,
NW) defined by a 45 degree interval.

Table 7 presents the processed meteorological data. The next step is to concatenate the
two datasets: radars and meteorological.
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Table 7. Processed Meteorological data.

Attribute Contents

ano Year
mês Month
dia Day

hora Hour
minuto Minute
t_med Mean temperature
t_max Maximum temperature
t_min Minimum temperature
ff_max Maximum wind speed
pr_qtd Rainfall
rg_tot Solar radiation
ff_med Mean wind speed

dd_card Wind direction—cardinal points

3.3. Concatenating

According to Figure 2, the final step of preparing data is to combine the two datasets to
produce a single set to be mined. The concatenation was executed considering the following
attributes as indexes: year, month, day, hour, and minute (intervals). Therefore, each record
of the final dataset is composed of index columns and the attributes representing the radar
and meteorological measures. The final dataset has 74,305 records ordered and summarized
by index columns and is considered a multivariate timeseries. Table 8 presents the final
dataset.

Table 8. Final Dataset.

Attribute Contents

ano Year
mês Month
dia Day

hora Hour
minuto Minute (ten-minute intervals)
t_med Mean temperature
t_max Maximum temperature
t_min Minimum temperature
ff_max Maximum wind speed
pr_qtd Rainfall
rg_tot Solar radiation
ff_med Mean wind speed

dd_card Wind direction—cardinal points
Speed_med_ARi Speed mean approximating radar i
Speed_max_ARi Speed maximal approximating radar i
Speed_min_ARi Speed minimal approximating radar i
Speed_med_DRi Speed mean detaching radar i
Speed_max_DRi Speed maximal detaching radar i
Speed_min_DRi Speed minimal detaching radar i

TF_Barra Traffic flow at Barra
TF_Costa Traffic flow at Costa

3.4. Model Training

The dataset was not randomly shuffled before splitting. The final dataset that was
preprocessed in the previous steps was divided into training, validation, and testing sets,
composed of 70, 20, and 10% of time-ordered records. The time ordering is necessary to
build windows of consecutive records, and it is a way to execute training, evaluation, and
testing steps more realistically due to the time series form of the data. In addition to the
radar information, the dataset contains contextual data [3]: weekday, temperature, solar
radiation, speed and wind direction, and precipitation. These attributes can improve the
performance of the predictive models; however, they are related to the year’s seasons.
Therefore, to ensure that the model considers records of all seasons, the training set was
defined with 70% of the dataset; it is equivalent to the interval between January and
December of 2020.
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Figure 3 presents the complete dataset divided into subsets; the x-axis represents the
time and the y-axis the traffic flow values. Figure 4 presents similar data distributions of
the subsets.

Figure 3. Time-ordered subsets.

Figure 4. Traffic flow: (left) training; (middle) validation; (right) testing.

This work aims to develop regression models for forecasting the traffic flow in the
Barra and Costa Nova regions. Regression models consider predictor and target variables;
in this case, TF_Barra and TF_Costa dataset attributes were the target variables, and others,
e.g., month, day, weekday, hour, minute, temperature, speed, and wind, were used as predictors.
Each record presents the values (predicted and targeted) aggregated by ten-minute intervals;
therefore, a sequence of six records represents the behavior of that environment during
one hour.

We conducted experiments using three deep-learning regression methods (LSTM, AR-
LSTM, CNN) to forecast the traffic flow; mean absolute error (MAE) was used as a performance
metric. Each model was constructed considering the best configuration, defined as the
result of an optimization phase by using the hyperparameter options (neurons, activation
function, optimizer function, dropout, batch size, filter map, and kernel size). Each model was
trained to find the best number of epochs, considering the limit of 200 epochs. For each
method, six different time intervals were considered: (1,1), (2,2), (3,3), (4,4), (5,5), and (6,6),
where (1,1) means one previous record (ten minutes) and one (ten minute) traffic flow
predicted. Therefore, this work presents results to forecast the traffic flow between ten
and sixty minutes (one hour) considering a multi-step model. In a multi-step model, the
proposal is to build a model where it is possible to consider the changing of the input
features along the time to forecast the sequence values. Figure 5 presents the single and
multi-step models.

The CNN model was defined with a convolutional layer with 64 filter maps, a Relu
activation function, and a kernel size of the same length as the time interval value, e.g.,
kernel size = 6, where the time interval was 6 (one hour). A dense layer was used with the
number of nodes defined by the product between the time interval value and the number
of features, e.g., considering the dataset with 43 features and one hour as the period to
forecast, the number of nodes was 258 (43 × 6). Finally, the last layer converted the format
to present the predicted traffic flow values.



Sensors 2022, 22, 4485 14 of 19

Figure 5. (a) Single step; (b) multi step.

The LSTM method has been used to analyze time-series datasets; the proposal is to
accumulate the internal state during the time interval and then compute the forecast for
the next time interval. In this work, the LSTM model had a first layer with 32 neurons and
was configured to return the output at the final time step. There was a dense layer with the
same configuration as the CNN in the sequence. The number of nodes was defined by the
product between the time interval value and the number of features, e.g., considering the
dataset with 43 features and one hour as the period to forecast, the number of nodes was
258 (43 × 6). Finally, the last layer converts the format to present the predicted traffic flow
values.

Finally, the AR-LSTM model decomposed the prediction into individual time steps.
The approach was to use each model output to feed back into itself. Therefore, the forecast-
ing could be done considering the previous result. In the same way, as in the LSTM model,
the LSTM layer contains 32 neurons.

4. Results

Tests were carried out for the data relating to Barra and Costa Nova beaches on an
Intel(R) Xeon(R) CPU E5-2620 v4, with 8 cores, with a CPU frequency equal to 2100 MHz
and RAM memory equal to 16 GB running an Ubuntu 20.04.4 (LTS). The tests were carried
out as remotely scheduled via ssh in a server distribution of the operating system. In
addition, equivalent intervals were used (input size equal to output size), starting with one
ten-minute block to six ten-minute blocks (sixty minutes); that is, for a ten-minute break,
we prediced the next ten minutes, while for a twenty-minute break, we predicted the next
twenty minutes, until we reached sixty minutes. The methods used were CNN, LSTM and
AR-LSTM. For each interval, the tests were repeated ten times, evaluating the MAE and the
execution time. Subsequently, the mean and standard deviation of each of these metrics
were calculated.

Analyzing the results of the tests performed with the CNN method on Barra and Costa
Nova beaches, presented in Table 9, we can conclude that:

• Barra beach: the test with the best result for the MAE average corresponds to the test
with input and output equal to ten minutes; the test with the best result in the average
execution time corresponds to the interval with input and output equal to ten minutes;

• Costa Nova beach: the test with the best result for the MAE average corresponds to
the test with input and output equal to ten minutes; the test with the best result in the
average execution time corresponds to the interval with input and output equal to
sixty minutes.
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Since the tests for input and output equivalent to ten minutes are the ones with the
best performance (smallest MAE and shortest execution time) in the case of Barra beach
and the ones with the lowest MAE in the case of Costa Nova beach, we could consider that
this would be the best option. By analyzing the Table 9, it is possible to conclude that the
error and the execution time increase as the size of the input and output increases.

Table 9. CNN.

Beach Input Output MAE/Mean Std Time/Mean Std

Barra

1 1 6.79 0.41 56.42 16.38
2 2 6.81 0.41 63.42 14.86
3 3 7.28 0.58 55.81 26.43
4 4 7.31 0.55 60.14 17.59
5 5 8.05 0.59 63.27 18.97
6 6 8.47 0.53 66.22 29.52

Costa

1 1 6.74 0.23 59.40 16.87
2 2 6.88 0.47 66.62 22.93
3 3 6.96 0.45 70.03 18.63
4 4 7.53 0.53 55.54 19.20
5 5 7.73 0.32 62.59 18.89
6 6 8.79 0.36 54.19 12.88

By analyzing the results of the tests performed with the LSTM method to Barra and
Costa Nova beaches, presented in Table 10, we can conclude that:

• Barra beach: the test with the best result for the MAE average corresponds to the
test with input and output equal to thirty minutes; the test with the best result in the
average execution time corresponds to the interval with input and output equal to ten
minutes. However, despite the best MAE average being present in the tests for equal
input and output at thirty minutes, tests with equivalent input and output equal to
sixty minutes have a smaller standard deviation;

• Costa Nova beach: the test with the best result for the MAE average corresponds to
the test with input and output equal to ten minutes; the test with the best result in the
average execution time corresponds to the interval with input and output equal to ten
minutes.

Since the tests for input and output equivalent to ten minutes are the ones with the
best performance (smallest MAE and shortest execution time) in the case of Costa Nova
beach and the fastest in the case of Barra beach, we could consider that this would be the
best option. Ignoring the execution time, we could consider other options, for example, the
option where the input and output are equal to thirty minutes. Analyzing the data from
Barra beach, it is possible to observe that this option has a lower MAE. Finally, it is possible
to state that the MAE is between 13% and 15% and that the execution time is between 15
and 32 min, which encourages us to think that as the input and output intervals increase,
the execution time increases, and the MAE remains within the usual values (13–15%).

Table 10. LSTM.

Beach Input Output MAE/Mean Std Time/Mean Std

Barra

1 1 14.91 1.41 920.80 108.14
2 2 13.84 2.39 1038.09 125.18
3 3 13.71 1.94 1190.37 142.13
4 4 13.83 1.61 1370.07 180.46
5 5 13.94 3.35 1661.48 267.81
6 6 14.73 1.17 1872.14 264.06

Costa

1 1 13.49 1.88 991.62 101.98
2 2 14.29 1.73 1080.23 132.31
3 3 14.29 1.92 1188.94 203.84
4 4 14.47 2.07 1399.33 143.40
5 5 14.92 1.16 1744.69 168.46
6 6 14.97 1.23 1641.91 268.67
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Analyzing the results of the tests performed with the AR-LSTM method on Barra and
Costa Nova beaches, presented in Table 11, we can conclude that:

• Barra beach: the tests with the best results for the MAE average are very similar to
the results obtained for the LSTM method, with the tests with input and output equal
to thirty and forty minutes containing the lowest MAE (with the forty minutes tests
having the lowest overall); the test with the best result in the average execution time
corresponds to the interval with input and output equal to twenty minutes. Similarly,
the tests with input and output equal to forty minutes have the smallest standard
deviation;

• Costa Nova beach: the test with the best result for the MAE average corresponds to
the test with input and output equal to thirty minutes; the test with the best result in
the average execution time corresponds to the interval with input and output equal
to twenty minutes. It is notable that for both the Barra and Costa Nova beaches, the
intervals with the best results, for both MAE average and average execution time, are
the same.

Table 11. AR LSTM.

Beach Input Output MAE/Mean Std Time/Mean Std

Barra

1 1 16.97 4.67 902.99 48.63
2 2 9.21 1.42 649.23 146.02
3 3 8.52 0.57 811.02 121.65
4 4 8.34 0.35 1006.01 96.47
5 5 8.80 0.90 1320.48 218.51
6 6 9.51 1.60 1413.75 370.97

Costa

1 1 17.89 6.14 898.62 65.68
2 2 8.76 0.63 730.98 154.28
3 3 8.74 1.20 891.32 129.97
4 4 8.66 0.95 1014.53 105.89
5 5 9.29 1.02 1254.10 265.74
6 6 11.92 2.67 1386.19 298.42

5. Discussion

TSEs are a very important forecasting tool insofar as they allow local authorities
to measure the demand and preparation of public transport and population support
infrastructure, and on the other hand to adapt people’s behavior, such as changing routes,
the use of public transport or even changing travel times according to forecasts. In the
present work, a TSE was developed to predict the access traffic to the beaches of Barra
and Costa Nova based on meteorology that uses the datasets created within the scope
of the PASMO project and by the IPMA. In the learning process, several methods were
tested in order to choose the best results, both in terms of error and in terms of complexity.
Different learning and forecasting periods were also used in order to optimize the periods
that maximized the overall learning results.

CNN tests for Barra traffic allowed us to verify that the MAE average corresponds
to the test with input and output equal to ten minutes and the test with the best average
execution time of intervals with input and output equal to ten minutes as well. Costa Nova
traffic tests confirmed 10 min intervals allow the best MAE results, but obtained a better
execution times for sixty minutes intervals.

LSTM method tests for Barra traffic allowed us to obtain the lowest MAE for thirty
minutes intervals; however, tests with equivalent input and output equal to sixty minutes
have a smaller standard deviation. The lowest average execution time was obtained for ten
minute intervals. Costa Nova tests showed the best results for MAE and execution time for
10 minut intervals. LSTM tests allowed us to obtain MAE values between 13% and 15%
under execution times between 15 and 32 min, which leaves us to think the interval increase
keeps MAE values within the same interval (13–15%) despite increasing the execution time,
and thus, to consider the increase as useless.
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Tests with AR-LSTM for Barra traffic allowed us to obtain MAE values similar to those
obtained for the LSTM method for thirty and forty minute intervals and lower average
execution times for twenty minute intervals. Costa Nova tests had the best MAE for thirty
minute intervals and better execution times for twenty minute intervals.

Figure 6b plots the test results for Barra traffic. By analyzing it, we can conclude that,
for Barra beach, if the input and output intervals increase, the MAE of the LSTM method
remains constant, the MAE of the AR-LSTM method decreases between twenty and forty
minutes (increases between forty minutes and sixty minutes) and the MAE of the CNN
method increases. Furthermore, it is also possible to conclude that if the input and output
intervals increase, the execution time of the LSTM and AR-LSTM methods increases, and
the execution time of the CNN method remains constant.

(a) (b)

Figure 6. Barra prevision: (a) MAE evolution; (b) Execution time evolution.

These results are equivalent to the results of Costa Nova beach, as illustrated in Figure 7b.

(a) (b)

Figure 7. Costa Nova prevision: (a) MAE evolution; (b) Execution time evolution.

A global analysis of the results presented in the graphs of Figures 6b and 7b allow
us to foresee the advantage of using the CNN method for the implementation of a traffic
forecasting mechanism under these conditions.

Additionally, and considering the values of the methods’ execution times, the results
allow us to foresee promising results regarding the creation of a real-time traffic forecasting
system.

6. Conclusions

In the present study, a TSE was developed for the prediction of motorway traffic
based on weather data, and several prediction methods were tested in terms of MAE and
execution time. The method with the best performance was CNN, both in terms of error
and in terms of execution time, having obtained the best results for learning and forecasting
intervals of 10 min. The results seem very favorable both in terms of forecast error and in
terms of calculation complexity and allow us to envisage its use by the community through
real-time information.

As next steps in terms of work, a real-time TSE should be built in order to allow the
continuous updating of the learning model with traffic and meteorology data and to provide
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an updated traffic forecast to the project dashboard. In terms of the performance evaluation
of machine learning methods, we plan to test the performance of current methods used with
larger learning/forecasting intervals and compare the results with XGBoost approaches.

Author Contributions: Conceptualization, F.J.B., F.B., J.A. and P.G.; Data curation, F.J.B., J.F., F.G.
and K.W.; Formal analysis, F.J.B., F.B., J.F., F.G., K.W. and P.G.; Investigation, F.J.B., F.B. and P.G.;
Methodology, F.J.B., F.B., J.A. and P.G., Project administration, F.J.B., J.A. and P.G.; Resources, J.A., F.B.
and P.G.; Software, J.F., F.G. and K.W.; Validation, F.J.B. and P.G.; Visualization, F.J.B., J.A., F.B., J.F.,
F.G. and P.G.; Writing—original draft, F.J.B., J.A., F.B., J.F., F.G. and P.G.; Writing—review & editing,
F.J.B., J.A., F.B., J.F., F.G. and P.G. All authors have read and agreed to the published version of the
manuscript.

Funding: This work is supported by the European Regional Development Fund (FEDER), through
the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the
Portugal 2020 framework (Project STEROID with No. 069989 (POCI-01-0247-FEDER-069989)), by
European Structural Investment Funds (ESIF), through the Regional Operational Programme of
Centre (CENTRO 2020) (Project No. CENTRO-01-0246-FEDER-000008), and by the Fundação de
Amparo à Pesquisa e Inovação do Estado de Santa Catarina (Project No. FAPESC 1378/2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is available at https://figshare.com/s/d324f5be912e7f7a0
d21 (accessed on 4 April 2022).

Acknowledgments: We are thankful to Joaquim Ferreira for providing us access to the traffic dataset
and to Instituto Português do Mar e da Atmosfera for providing us the weather datasets from
Universidade de Aveiro and Dunas de Mira.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Seo, T.; Bayen, A.M.; Kusakabe, T.; Asakura, Y. Traffic state estimation on highway: A comprehensive survey. Annu. Rev. Control

2017, 43, 128–151. [CrossRef]
2. Ferreira, J.; Fonseca, J.; Gomes, D.; Barraca, J.; Fernandes, B.; Rufino, J.; Almeida, J.; Aguiar, R. PASMO: An open living lab for

cooperative ITS and smart regions. In Proceedings of the 2017 International Smart Cities Conference (ISC2), Wuxi, China, 14–17
September 2017; Volume 1, pp. 1–6. [CrossRef]

3. Manibardo, E.L.; Laña, I.; Del Ser, J. Deep learning for road traffic forecasting: Does it make a difference? IEEE Trans. Intell.
Transp. Syst. 2021. [CrossRef]

4. Awan, F.M.; Minerva, R.; Crespi, N. Improving Road Traffic Forecasting Using Air Pollution and Atmospheric Data: Experiments
Based on LSTM Recurrent Neural Networks. Sensors 2020, 20, 3749. [CrossRef] [PubMed]

5. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning. In Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sunday, Australia, 6–11 August 2017; Volume 3, pp. 2029–2042.

6. Hou, Y.; Deng, Z.; Cui, H. Short-Term Traffic Flow Prediction with Weather Conditions: Based on Deep Learning Algorithms and
Data Fusion. Complexity 2021, 2021, 6662959. [CrossRef]

7. Deb, B.; Khan, S.; Hasan, K.; Khan, A.; Alam, M. Travel Time Prediction using Machine Learning and Weather Impact on Traffic
Conditions. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India,
29–31 March 2019; pp. 1–8. [CrossRef]

8. Yin, X.; Wu, G.; Wei, J.; Shen, Y.; Qi, H.; Yin, B. Deep Learning on Traffic Prediction: Methods, Analysis and Future Directions.
IEEE Trans. Intell. Transp. Syst. 2021. [CrossRef]

9. Shahriar, S.; Al-Ali, A.R.; Osman, A.H.; Dhou, S.; Nijim, M. Prediction of EV Charging Behavior Using Machine Learning. IEEE
Access 2021, 9, 111576–111586. [CrossRef]

10. Badii, C.; Nesi, P.; Paoli, I. Predicting Available Parking Slots on Critical and Regular Services by Exploiting a Range of Open
Data. IEEE Access 2018, 6, 44059–44071. [CrossRef]

11. Lana, I.; Del Ser, J.; Velez, M.; Vlahogianni, E.I. Road Traffic Forecasting: Recent Advances and New Challenges. IEEE Intell.
Transp. Syst. Mag. 2018, 10, 93–109. [CrossRef]

12. Novakovic, J.; Veljovic, A.; Ilić, S.; Papic, Ž.M.; Milica, T. Evaluation of Classification Models in Machine Learning. Theory Appl.
Math. Comput. Sci. 2017, 7, 39–46.

13. Yi, H.; Bui, K.H.N. An automated hyperparameter search-based deep learning model for highway traffic prediction. IEEE Trans.
Intell. Transp. Syst. 2020, 22, 5486–5495. [CrossRef]

https://figshare.com/s/d324f5be912e7f7a0d21
https://figshare.com/s/d324f5be912e7f7a0d21
http://doi.org/10.1016/j.arcontrol.2017.03.005
http://dx.doi.org/10.1109/ISC2.2017.8090866
http://dx.doi.org/10.1109/TITS.2021.3083957
http://dx.doi.org/10.3390/s20133749
http://www.ncbi.nlm.nih.gov/pubmed/32635487
http://dx.doi.org/10.1155/2021/6662959
http://dx.doi.org/10.1109/I2CT45611.2019.9033922
http://dx.doi.org/10.1109/TITS.2021.3054840
http://dx.doi.org/10.1109/ACCESS.2021.3103119
http://dx.doi.org/10.1109/ACCESS.2018.2864157
http://dx.doi.org/10.1109/MITS.2018.2806634
http://dx.doi.org/10.1109/TITS.2020.2987614


Sensors 2022, 22, 4485 19 of 19

14. Sadeghi-Niaraki, A.; Mirshafiei, P.; Shakeri, M.; Choi, S.M. Short-term traffic flow prediction using the modified elman recurrent
neural network optimized through a genetic algorithm. IEEE Access 2020, 8, 217526–217540. [CrossRef]

15. Hu, Z.; Sun, R.; Shao, F.; Sui, Y. An efficient short-term traffic speed prediction model based on improved TCN and GCN. Sensors
2021, 21, 6735. [CrossRef]

16. Performance Measurement System (PeMS) Data Source. Available online: https://dot.ca.gov/programs/traffic-operations/
mpr/pems-source (accessed on 4 April 2022).

17. Wei, W.; Wu, H.; Ma, H. An autoencoder and LSTM-based traffic flow prediction method. Sensors 2019, 19, 2946. [CrossRef]
18. Simunek, M.; Smutny, Z. Traffic information enrichment: Creating long-term traffic speed prediction ensemble model for better

navigation through waypoints. Appl. Sci. 2020, 11, 315. [CrossRef]
19. Sun, B.; Sun, T.; Jiao, P. Spatio-temporal segmented traffic flow prediction with ANPRS data based on improved XGBoost. J. Adv.

Transp. 2021, 2021, 5559562. [CrossRef]
20. Guo, K.; Hu, Y.; Qian, Z.; Liu, H.; Zhang, K.; Sun, Y.; Gao, J.; Yin, B. Optimized graph convolution recurrent neural network for

traffic prediction. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1138–1149. [CrossRef]
21. Zhang, T.; Ding, W.; Chen, T.; Wang, Z.; Chen, J. A Graph Convolutional Method for Traffic Flow Prediction in Highway Network.

Wirel. Commun. Mob. Comput. 2021, 2021, 1997212. [CrossRef]
22. Hoseinzadeh, N.; Gu, Y.; Han, L.D.; Brakewood, C.; Freeze, P.B. Estimating freeway level-of-service using crowdsourced data.

Informatics 2021, 8, 17. [CrossRef]
23. IPMA. Serviços. Available online: https://www.ipma.pt/pt/produtoseservicos/index.jsp?page=dados.xml (accessed on 4 April

2022).

http://dx.doi.org/10.1109/ACCESS.2020.3039410
http://dx.doi.org/10.3390/s21206735
https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
http://dx.doi.org/10.3390/s19132946
http://dx.doi.org/10.3390/app11010315
http://dx.doi.org/10.1155/2021/5559562
http://dx.doi.org/10.1109/TITS.2019.2963722
http://dx.doi.org/10.1155/2021/1997212
http://dx.doi.org/10.3390/informatics8010017
https://www.ipma.pt/pt/produtoseservicos/index.jsp?page=dados.xml

	Introduction
	Motivation
	Contribution
	Organization

	Background
	Neural Networks
	Performance Metrics
	Related Work

	Proposed Traffic Flow Prediction Method
	Data Selecting
	Data Preprocessing
	Concatenating
	Model Training

	Results
	Discussion
	Conclusions
	References

