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Abstract: In this paper, a novel near-field high-resolution image focusing technique is proposed.
With the emergence of Millimeter-wave (mmWave) devices, near-field synthetic aperture radar
(SAR) imaging is widely used in automotive-mounted SAR imaging, UAV imaging, concealed threat
detection, etc. Current research is mainly confined to the laboratory environment, thus ignoring the
adverse effects of the non-ideal experimental environment on imaging and subsequent detection in
real scenarios. To address this problem, we propose an optimized Back-Projection Algorithm (BPA)
that considers the loss path of signal propagation among space by converting the amplitude factor in
the echo model into a beam-weighting. The proposed algorithm is an image focusing algorithm for
arbitrary and irregular arrays, and effectively mitigates sparse array imaging ghosts. We apply the
3DRIED dataset to construct image datasets for target detection, comparing the kappa coefficients
of the proposed scheme with those obtained from classic BPA and Range Migration Algorithm
(RMA) with amplitude loss compensation. The results show that the proposed algorithm attains a
high-fidelity image reconstruction focus.

Keywords: SAR; near-field; mmWave; high-fidelity; image reconstruction focusing; kappa coefficients

1. Introduction

With the increased popularity of low-cost commercial Millimeter-wave (mmWave)
radar sensors, high-resolution 3-D mmWave imaging systems have recently attracted a
wide range of attention [1]. Moreover, it now plays an essential role in many applica-
tions, including gesture recognition [2], medical imaging [3,4], automotive-mounted SAR
imaging [5,6], UAV imaging, non-destructive testing, and concealed threat detection [7],
etc. The success behind the works is partially due to the millimeter radar sensors, which
have smaller sizes, higher integration levels, and broader bandwidth [2]. mmWave can
penetrate objects such as various composites, wood, clothing, etc. A signal at the mmWave
is also non-ionizing and not considered a dangerous radiation source [4]. Although the
radar hardware is constantly updated, it is still a considerable challenge to obtain mil-
limeter resolution images. An effective way to acquire high-resolution data is through
SAR. The mmWave radar continuously obtains the synthetic aperture by adopting a planar
scanning pattern in space at the expense of time complexity to achieve high-resolution
imaging. In terms of imaging algorithms, the Back-Projection Algorithm (BPA) [8] and
Range Migration Algorithm (RMA) [9,10] are regarded as the most classic algorithms
in near-field radar imaging [11,12]. BPA can be used in any array configuration, which
offers a time-domain solution to estimate the target scattering coefficient by traversing
all imaging grid points to calibrate echo data. High computational loads are necessary
for larger data volumes, severely reducing computational efficiency. The RMA using
Fourier transform is the most efficient and widely used method in SAR imaging, which
is a frequency-domain fast imaging algorithm calculated by converting the echo signal
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to wavenumber-domain for phase correction. However, the approach is limited as it is
only applicable to regular spatial intervals. These algorithms perform image reconstruction
from different domains by inverting radar echoes into target scattering factors [13–15].
Most imaging algorithms research is based on these two models for optimization. Near
field imaging, fast imaging [15], sparse imaging [16,17], MIMO array design [18], and
optimization are frequent research topics [19–21]. In recent years, the compression-sensing
algorithm(CSA) has been a novel technique [22,23]. Since uniform arrays are costly, and
the incredibly massive number of arrays often result in complex data processing, the CSA
could take full advantage of the sparse characteristics of the target. The CSA requires an
extremely high signal-to-noise ratio and also requires extremely accurate physical models
to achieve good accuracy at sub-Nyquist sampling. Sun et al. [23] researched the NUFFT
algorithm to accelerate CS radar imaging, two fast Gaussian lattice point-based NUFFT
methods to expedite the CS process for solving computationally intensive problems in
large-scale and real-time radar imaging. Kajbaf H. et al. [24] investigated 3-D microwave
imaging compression-sensing processing and mainly discussed the inhomogeneous grid
and optimal path sparse sampling. Compared with the SISO-SAR imaging algorithm,
separating the transceiver array elements with the MIMO-SAR [25–27] should consider
the different trajectories of the reflected and transmitted electromagnetic waves, instead
of directly applying the equivalent phase model, which makes the signal processing more
complicated [28–32]. Yanik, M.E. [12] from the University of Texas pioneered a near-field
imaging system with commercially available low-cost industrial-grade mmWave MIMO
radar sensors, and explored the concept of virtual antenna array in near-field MIMO SAR,
incorporating a multistatic-to-monostatic correction factor to improve image formation.
Wang J [31] proposed an approach utilizing the NUFFT algorithm to estimate the signal
spectra over a rectilinear grid in the frequency-wavenumber (i.e., f-k) domain from the
spatial signals measured by a 2-D MIMO array. Finally, Smith, J.W. [32] introduced the
efficient 3-D near-field MIMO-SAR imaging for irregular scanning geometries.

However, the existing literature has not thoroughly discussed the suppression of the
imaging clutter or ghost due to the non-ideal electromagnetic environment or sparse arrays
during the imaging process [33]. Although practical progress has been made toward the
current imaging optimization algorithms, most of them are performed under darkroom
conditions and are not generally applicable to security detection scenarios [34–43].

In this article, from the essence of imaging, we propose a novel image reconstruction
focusing technique for the efficient near-field imaging in non-ideal electromagnetic envi-
ronments or sparse arrays, such as those present in security screening imaging, concealed
object imaging, automotive, and UAV SAR. We examine the signal models and system for
SAR and develop a method to enhance the imaging quality in terms of the radar equation
and the antenna beam. This technique extends the BPA to optimize coherent accumulation.
The measured results validate the robustness of the proposed algorithm in a complex
environment or sparse arrays, and the analysis in the subsequent sections provides an
intensive evaluation of the difference in parameter metrics between the technique and
traditional imaging algorithms. Finally, we use the 3DRIED [35] to construct the image
datasets under these three algorithms for practical inspection and validation. The proposed
method indicates a higher fidelity focus comparable to the traditional planar RMA and
BPA, even under non-ideal electromagnetic environments.

Within the article, Section 2 introduces the system models, including the signal model,
the RMA with Amplitude Loss Compensation and BPA, a novel enhancement technique
to planar BPA, and YOLO detection technique. Section 3 discusses imaging results and
parameter metrics presented. Section 4 constructs the image datasets to perform target de-
tection recognition to demonstrate the superiority of the proposed algorithm. Conclusively,
Section 5 summarizes the whole paper and then concludes.
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2. Relevant Research Theories
2.1. Signal Model

This paper uses the FMCW radar system to evaluate the performance metrics of mul-
tiple imaging algorithms in complex environments, with the specific radar measurement
scenario as shown in Figure 1. The traditional signal model for FMCW is well described in
the literature. Here, the FMCW radar emits a linear frequency modulated signal called chirp

m(t) = ej2π( fct+0.5Kt2) 0 ≤ t ≤ Tc (1)

where fc is the instantaneous carrier frequency at the time t = 0, K = B/Tc is the chirp
of the frequency slope. B is the signal of sweep band and Tc is the duration during the
fast time.

Figure 1. The geometry of the SISO-SAR imaging configuration, where a planar aperture is synthe-
sized by Z−shaped mechanical moving.

The signal s(t) is the radar transmitted signal, reflected by the scattering point. The
radar received antenna accepts the returned echo signal as a time delay of the transmitted
signal. It is known as de-chirping and leads to a complex intermediate frequency signal [37]

_
m(t) = σ

1
4πRtRr

ej2π( fc(t−τ)+0.5K(t−τ)2) (2)

where τ is the pulse round trip time delay, Rt and Rr is the path of electromagnetic wave
emission and reflection which can be described as

Rt =
√
(x− xt)

2 + (y− yt)
2 + (z− zt)

Rr =
√
(x− xr)

2 + (y− yr)
2 + (z− zr)

(3)

where τ = (Rt + Rr)/c, as the transmitted and received antennas are not located at the same
point. This is equated to the co-location of the received and transmitted antennas to facilitate
the subsequent signal processing. Unlike the direct EPC model for far fields, this approach
of near-field approximation has been discussed and researched in the literature [32].

2R = Rt + Rr ≈ 2R′ +
(dl

x)
2
+ (dl

y)
2

4z0
R′ =

√
(x− x′)2 + (y− y′)2 + (z− z′)2 (4)

where R is the range between the virtual array element and the target scattering point, dl
x and

dl
y are the horizontal and vertical distances between the transmitted and received antennas.
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Therefore, the received signal
_
m(t) is mixed with m(t) to generate a fundamental IF

signal, which can be expressed as

s(t) =
σ

8πR2 ej2π(Kτt+ fcτ−0.5Kτ2) (5)

The first phase term of (5) is the beat frequency representing range information, and
the second phase term means the Doppler phase, which is the critical factor in SAR imaging.
The last phase term is known as the residual video phase (RVP) to be ignored [37]. Finally,
the signal model can be represented as

s(k) = Aσ
ej2kR

R2
2π fc

c
≤ k ≤ 2π f

c
(6)

where f (x, y) is the scattering coefficient function and k = 2π f /c, f = fc + Kt. A is
the constant term. f indicates the sampling frequency at each sampling point on the
signal carrier frequency and k is the wavenumber. Expanding the signal model in (6), we
can obtain

s(x′, y′, k) =
x f (x, y, z)

R2 ej2kRdxdydz (7)

The mmWave radar scans a 2-D array by Z shaped mechanical moving to obtain the
3D raw echo data. Therefore, large bandwidth and high resolution in azimuth and height
are obtained. To ensure no ghost image, the horizontal and vertical synthetic aperture
with spatial sampling interval dx and dy should be satisfied with Nyquist criterion. λ is
the wavelength. For the worst case situation that the target is very close to the radar,
the aperture spatial interval should be less than λ/4.Traditionally, the aperture spatial
interval between λ/4 and λ/2 is the “industry standard” [2]. Furthermore, the resolution
of the range direction is determined by the system bandwidth. Specifically, the lower
the bandwidth, the larger the range direction resolution for the radar to distinguish two
targets. For the 3-D near-field radar imaging system, the spatial resolution [40] along each
dimension can be given by

δx ≈ λ

√
[(Dx+D′x)/4]2+(z−z′)2/4

Dx+D′x dx ≤ δx

δy ≈ λ

√
[(Dy+D′y)/4]2+(z−z′)2/4

Dy+D′y dy ≤ δy
δz ≈ c

2( f− fc)
≈ c

2B

(8)

where Dx and Dy are the width of the aperture along the x′ and y′ direction of a coordinate
system, respectively, D′x and D′y are the width of the aperture along the x and y direction
of the target. Furthermore, the spatial resolution [7] along azimuth and height dimensions
can be simply expressed as

δx ≈ λz0
2Dx

δy ≈ λz0
2Dy

(9)

2.2. Imaging Algorithm
2.2.1. Range Migration Algorithm with Amplitude Loss Compensation

The Fourier-based algorithm in the subsequent analysis is known as the range mi-
gration algorithm or ω − k algorithm, which has been widely discussed in more detail
elsewhere [2,32]. The amplitude factor and amplitude loss are usually ignored in RMA.
Here, we take the amplitude loss into account for a stationary target whose distance
Z0 = |z− z′| is constant. The imaging reconstruction will have the phase direction and the
preserved first order (Z0R)−1 to obtain. This amplitude approximation method has been
mentioned in the literature [41]. As a result, we can yield
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s(x′, y′, k) =
y

f (x, y, z)
ej2kR

R
dxdydz (10)

The next derivation is based on the fluctuation equation for spherical waves equivalent
to plane waves [30,43]. We can yield

s(x′, y′, k) =
y j

2π
f (x, y, z)

x ej[kx(x′−x)+ky(y′−y)+kz(z−z′)]

kz
dkxdkydxdydz (11)

where kx, ky, kz are the azimuthal-height-range direction of the wavenumber k, and it is
vital to note that 4k2 = kx

2 + ky
2 + kz

2, kx
2 + ky

2 ≤ 4k2 is the critical constraint for image
reconstruction. Leveraging conjugate symmetry of the spherical wavefront, we can obtain

s∗(x′, y′, k) =
j

2π

x
[
y

f (x, y, z)e−j(kx x+kyy+kzz)dxdydz]
ejkzz′

kz
ej(kx x′+kyy′)dkxdky (12)

where (·)∗ is the complex conjugate operation. In the Fourier transform operation FFT2D and
IFFT2D, the above difference between the primed and unprimed coordinate systems is
dropped, as they are coincident. Hence, Equation (9) becomes

s∗(x, y, k)

= j
2π

s
F(kx, ky, kz)

ejkzz′

kz
ej(kx x+kyy)dkxdky = j

2π IFFT2D

[
F(kx, ky, kz)

ejkzz′

kz

] (13)

The time-domain convolution corresponds to the frequency-domain product. Remov-
ing constant terms and combining Equations (13) can be rewritten as

s∗(kx, ky, k) = FFT2D[ f (x, y, kz)⊗ h(x, y)] = F(kx, ky, kz)H(kx, ky)

H(kx, ky) =
ejkzz′

kz

(14)

Therefore, the interpolation is used to resample the data cube to uniformly spaced
positions in kz, and the 3-D image reconstruction can be carried out as [44]

f (x, y, z) = IFFT3D
(kx,ky ,kz)

[
Stolt(k→kz)

[
S∗(kx, ky, k)

]
kze−jkzz′

]
(15)

where Stolt(k→kz) means the interpolation to resample the kz domain to uniformly
spaced positions.

2.2.2. Back Projection Algorithm

The gold-standard back-projection algorithm performs image reconstruction by co-
herently accumulating the signals of each transceiver antenna for each band in the time
domain. This method can be applied to arbitrary array configurations, but with high
computational complexity. Ignoring the loss path of the electromagnetic wave round trip,
Equation (7) can be expressed as

s(x′, y′, k) =
y

f (x, y, z)ej2kRdxdydz (16)

where R are given in Equation (4). Equation (16) can be rephrased to recover the scattering
coefficient function f (x, y, z) from the collected raw data s(x′, y′, k) as [8]

f (x, y, z) =
y

s(x′, y′, k)e−2kRdR (17)

s(x′, y′, k) is echo data and e−2kR is the calibration factor. The scattering coefficient
function f (x, y, z) can be obtained by sequentially phase-calibrating the echo data in the
time domain, traversing all orientation points. However, the traditional BPA has not consid-
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ered the effect of clutter on imaging results under the non-ideal condition. The following
sub-section provides an efficient solution for planar array imaging in non-ideal situation.

2.2.3. Enhanced Back Projection Algorithm

In this section, compared to the traditional 3-D planar SAR imaging reconstruction
methods using gold-standard BPA, this section proposes a beam-weighting-based En-
hanced back-projection algorithm. Replace the amplitude factor and amplitude loss of
1

R2 in Equation (6) with the beam-weighting amplitude compensation, which can effec-
tually reduce the adverse effects of the complex electromagnetic environment on image
reconstruction and effectively suppress the ghost caused by antenna spacing greater than
half-wavelength. The formula is derived as shown below.

Ignoring spatial noise, for an M-element spatial array with array element spacing
d(normally d = λ

2 ), the array response vector for a uniform line array is expressed as [45]

m(θ) =
[

1 e(−j2π d
λ sin θ) · · · e(−j2π(M−1) d

λ sin θ)
]T

(18)

where θ means the angle of azimuth of signal incidence and β = 2πd sin θ
λ The array output

can be shown as

Y =
M

∑
l=1

e−j 2π
λ (l−1)d sin θ =

M

∑
l=1

e−j(l−1)β =
sin(Mβ

2 )

M sin( β
2 )

ej(M−l)β/2 (19)

After normalization

G =
Y
|Y| =

∣∣∣∣ sin(Mβ/2)
M sin(β/2)

∣∣∣∣ (20)

For the virtual array elements shown in Figure 1, each array element varies in beam
direction from the image grid area. Here, we assume that the number of virtual array
elements is N. Then, Equations (18) and (20) can be expressed as

m = [m1(θ), m2(θ), · · · , mN(θ)]

=


1 1 · · · 1

e−j 2π
λ d sin θ1 e−j 2π

λ d sin θ2 · · · e−j 2π
λ d sin θN

...
...

. . .
...

e−j 2π
λ (M−1)d sin θ1 e−j 2π

λ (M−1)d sin θ2 · · · e−j 2π
λ (M−1)d sin θN


G = [G1, G2, · · · , GN ]

(21)

Discretize s(x′, y′, k) and the corrected phase of backscattered data correspond to the
distance between the virtual array element and the target’s plane grid point. The critical
step is to efficiently convert the coherent accumulation into a beam-weighting accumulation
process and compensate for the signal amplitude of the imaging grid point. We can yield
the 3-D scattering coefficient function f (Mi, Mjk′, z). Hence, the Enhanced BPA image
recovery process can be summarized as

f (Mi, Mjk′ , z) =

 N

∑
i=1

J

∑
j=1

K

∑
k′=1

IFT(kz)
[
s(Mi, Mjk′ , kStolt(k→kz ) )

]
e
−j2kRMi ,Mjk′ GMi ,Mjk′

WMi ,Mjk′

 (22)

where Stolt(k→kz) denotes the Stolt interpolation, IFT(kz) denotes 1-D inverse Fourier
transform operation over the kz domain, and Mi i = 1, 2, · · ·N means the virtual array
elements, where N is the total number of virtual aperture. Mjk′ represents the imaging
grid matrix j = 1, 2, · · ·J k′ = 1, 2, · · ·K, where J, K are the imaging grid size. WMi ,Mjk′

is the window function. The electromagnetic waves emitted by each virtual arrays are
propagated into space as spherical waves. The latter is mapped to the imaging grid as a
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two-dimensional antenna pattern. Its amplitude compensation coefficient corresponds to
the discrete normalized antenna beam.

The presented enhanced method is similar to the gold standard BPA. It improves
the quality of the image using beam-weighting to achieve amplitude compensation in the
non-ideal electromagnetic environment. This approach delivers high-fidelity image recon-
struction focusing on coherently accumulating the received signal from each transceiver
pair. Although its computational complexity is enormous [12,32,43], we can use the inte-
grated parfor-function or GPU of MATLAB to speed up the computation.

2.3. YOLO Detection Network

YOLO (you only look once) provides a fast detection and high accuracy method
for target detection, which takes the target detection problem as a predictive regression
problem of target regions and categories. In this method, a single neural network has been
used to directly predict the probabilities of target regions and categories, providing end-to-
end target detection. Compared to conventional target detection, it has the characteristics
of simpler process, faster speed, and easier training. YOLO unifies the target recognition
process into a neural network to predict the bounding box category of the target by utilizing
the complete image information. This network structure has been investigated in the
literature and employed as a detection method in this paper[44]. The model is shown
in Figure 2.

Figure 2. The system of detection models.

Class probability includes the probability of the prediction frame containing the target
and the accuracy of the prediction frame. It is assumed that the YOLO algorithm detects
the targets of n categories, then the class probability of the detected targets in this cell
belonging to n categories can be expressed as

Pr(classi|object)∗Pr(object) ∗ IOUtruth
pred = Pr(classi) ∗ IOUtruth

pred (23)

where Pr(classi) ∗ IOUtruth
pred is the confidence level and IOUtruth

pred is the ratio of the intersec-
tion between the prediction box and the actual box.

3. Imaging Results and Evaluation

The parameter configuration of the experimental platform is described, and the results
of imaging are used to evaluate these three imaging algorithms. As shown in Figure 3,
the system devices include a three-axis controllable stepper, a 77G ‘AWR1843’ mmWave
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radar sensor, which can generate 77–81 GHz linear frequency modulated continuous waves,
and a ‘DCA1000’ high-performance raw data acquisition card by Texas Instruments (TI),
personal computer (PC), and the target.

Figure 3. The experimental equipment of SAR system.

PC, as the control center, connects with the mmWave radar sensor “AWR1843”, high-
performance raw data acquisition card “DCA1000”, and the three-axis controllable stepper.
When the mmWave radar and three-axis controllable stepper are in simultaneous operation,
the “AWR1843” receives the echo signals on each sub-aperture point by point. It collects
the raw data at high speed by DCA1000 and subsequently transfers the echo data to PC via
the network.

In this paper, the above algorithm scheme is validated for mmWave FMCW-SAR
accurate measurements. The platform works by scanning through a Z−trajectory, and the
mmWave radar images the scissor and wrench in forward and side-looking modes. The
radar system parameters are shown in Table 1.

Table 1. The parameters of the SAR platform.

Parameter Type Numerical Value Unit

Centre Carrier Frequency 79 GHz
Platform Speed 20 mm/s

Pulse Repetition Period 25 ms
Bandwidth 4 GHz

Range Resolution 3.75 cm
Azimuth resolution 0.5 mm
Height resolution 0.5 mm

Azimuth to Sub-aperture spacing 0.5 mm
Scissor Height to sub-aperture spacing 1 mm
Wrench Height to sub-aperture spacing 2 mm

Scissor Synthetic Aperture Size 200 × 200 mm2

Wrench Synthetic Aperture Size 300 × 300 mm2

Vertical Distance between Scissor and Radar 280 mm
Vertical Distance between Wrench and Radar 300 mm
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In order to verify the superiority of the proposed algorithm in a 60 dBW gaussian
white noise environment, we perform a simulation using the radar parameters of the scissor
group described in the previous section to validate it. As shown in Figure 4a, the spatial
targets model with nine points are distributed in a non-ideal space. Figure 4b–d show the
2-D SAR image. Compared with the image result based on these algorithms, the proposed
algorithm can improve the measurement accuracy of RCS.

Figure 4. Spatial target model of multiple points in a 60 dBW gaussian white noise environment.
(a) are the multiple points. (b) is the 2-D multiple points imaging result in BPA. (c) is the 2-D multiple
points imaging result in RMA with amplitude loss compensation. (d) is the 2-D multiple points
imaging result in Enhanced BPA.

Figure 5 presents results of the scissor image reconstruction based on the three imaging
algorithms. The scissor group is surrounded by angular reflection and scatterers, and the
distance between the reference planar and the target is z0 = 280 mm. The number of space
sampling locations is chosen in an approximate virtual array from −100 mm to 100 mm
along the x and y directions. To satisfy the sampling condition, the distance between
adjacent sampling points is usually less than λ/4. Here, the horizontal and vertical space
sampling intervals are set as 0.5 mm and 1 mm, respectively. Figure 5a shows the optical
image of the experimental scissor model. Figure 5b–d show the 2-D SAR image. After
the basic image filtering, 3-D SAR image under these three algorithms are obtained, as
seen in Figure 5e–g. A comparison between Figure 5b,d indicates the scissor handle is
completely submerged in the side lobes clutter under the BPA. Furthermore, severe loss
of detail and edge diffraction can be observed. The scissors in the image under the RMA
with amplitude loss compensation are well imaged, only with some streaks on their object
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contours. However, the side lobes clutter of the image has effectively been suppressed,
with the most remarkable focusing result under the enhanced BPA.

Figure 5. Imaging results in a non-ideal environment. (a) is the scissor optical image. (b) is the
2-D scissor imaging result in BPA. (c) is the 2-D scissor imaging result in RMA with amplitude loss
compensation. (d) is the 2-D scissor imaging result in Enhanced BPA. (e) is the 3-D scissor imaging
result in BPA. (f) is the 3-D scissor imaging result in RMA with amplitude loss compensation. (g) is
the 3-D scissor imaging result in Enhanced BPA.
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Figure 6 shows the simulation using the radar parameters of the wrench group. As
shown in Figure 6a, the spatial targets model with nine points are distributed in an ideal
space. Figure 6b–d show the 2-D SAR image. When the vertical spacing is greater than half
a wavelength, we can clearly observe that the proposed algorithm can suppress the ghost
more effectively than the others.

Figure 6. Spatial target model of multiple points in an ideal space. (a) are the multiple points. (b) is
the 2-D multiple points imaging result in BPA. (c) is the 2-D multiple points imaging result in RMA
with amplitude loss compensation. (d) is the 2-D multiple points imaging result in Enhanced BPA.

The image reconstruction results of the wrench are shown in Figure 7. The wrench
group is placed in the darkroom environment and the distance between the reference planar
and the target is z0 = 300 mm. The number of space sampling locations is chosen in an
approximate virtual array from −150 mm to 150 mm along the x and y directions. The
horizontal space sampling interval is selected as 0.5 mm. The vertical distance of antenna
space sampling intervals is chosen to be 2 mm greater than half a wavelength, leading to
the ghost image. Figure 7a shows the optical image of the experimental wrench model.
Figure 7b–d show the 2-D SAR image. Figure 7e–g show the 3-D SAR image via these
three algorithms. Notice that the images under the BPA and the RMA with amplitude
loss compensation have more ghosts and streaks on the object contour. In contrast, the
image reconstruction under the enhanced BPA is optimal, in which the ghost image can be
effectively suppressed.
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Figure 7. Imaging results in dark environment. (a) is the wrench optical image. (b) is the 2-D wrench
imaging result in BPA. (c) is the 2-D wrench imaging result in RMA with amplitude loss compensation.
(d) is the 2-D wrench imaging result in Enhanced BPA. (e) is the 3-D wrench imaging result in BPA.
(f) is the 3-D wrench imaging result in RMA with amplitude loss compensation. (g) is the 3-D wrench
imaging result in Enhanced BPA.

In fact, BPA and RMA are essentially the same imaging algorithms, while the former
starts from the time domain and the latter from the frequency domain. In the time domain,
the energy of each imaging grid point is distributed over all synthetic apertures. BPA
compensates for the data of all synthetic aperture points on the imaging grid. At the same
time, RMA uses the Fourier transform to fix the energy of each target scattering point at a
frequency point in the wavenumber domain, which enables point-to-point focus.

However, in the real scenario, under near-field conditions, where the electromagnetic
wave is spherical, the data of the distance cell between the virtual point and imaging grid
point contain the scattered energy of the target and other unrelated targets at the same
distance. At the same time, the near-field condition means each radar beam could not
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fully illuminate the target. The traditional BPA will gather other clutter energy at the same
distance, thus affecting the image quality. In addition, the sparse space sampling in the
virtual array also causes the ghost image due to the appearance of grating lobes on the
frequency spectrum.

As for the solution to address side lobes clutter and the ghost, the proposed algorithm
sets a beam-weighting method based on the antenna orientation map. The amplitude
compensation is applied to the energy of each virtual point with all imaging grid points,
and then all virtual points are traversed. From the perspective of the frequency spectrum,
the side lobes and grating lobes are suppressed. In essence, the enhanced BPA is designed to
make the data on the imaging grid points as much as possible to achieve the real target RCS.

To further evaluate the image quality under these three algorithms, quantitative
analysis of the images, azimuth and height directional magnitude profiles, image contrast,
and entropy are introduced in the later sections.

In order to verify the imaging performance of the proposed algorithm, Figure 8 shows
the azimuth and height direction amplitude image of the scissor and wrench, respectively,
for these three algorithms. Row 1 is the azimuthal and height profiles of the scissor. The
azimuthal direction shows that the enhanced BPA reduces the intensity of the side lobes
clutter by 30–40 dB compared with the BPA. Comparing the RMA with amplitude loss
compensation in the scissor, the azimuthal image of the two principal lobes is narrower
in the proposed algorithm, which also indicates a higher focusing performance. Row 2
represents the azimuthal and height profiles of the wrench. In the azimuthal direction, the
proposed algorithm simply degrades the side lobes compared to the gold-standard BPA. It
achieves the same imaging performance as the RMA with amplitude loss compensation.
In the height direction, it can be clearly seen that the proposed algorithm shows a drop of
at least 20 dB in grating lobes. Therefore, the proposed method boasts the better image,
higher fidelity focusing ability, and effectively suppresses the ghost image under non-ideal
electromagnetic cases or sparse arrays, compared with the others.

As shown in Figure 8, when the scenario environment is non-ideal or arrays are sparse,
there are more grating lobes or side lobes clutter on the image using the traditional BPA
and RMA with amplitude loss compensation, contributing to worse image quality. To
further evaluate the image quality, the image contrast and entropy are introduced [45]
here. The image contrast is the difference of color in an image, indicating the image
texture characteristics. The higher the contrast, the more visible the image details. Entropy
represents the degree of system disorder. The image entropy can indicate the quality of
image focusing. The smaller the entropy, the better the effectiveness of focusing. The image
contrast and entropy can be expressed as

IContrast =

√√√√√ MN(∥∥αij
∥∥

2

)2

M

∑
i=1

N

∑
j=1

∣∣αij
∣∣4 IEntropy =

M

∑
i=1

N

∑
j=1

∣∣αij
∣∣2(∥∥αij
∥∥

2

)2 log

∣∣αij
∣∣2(∥∥αij
∥∥

2

)2 (24)

For imaging under three different algorithms, the values of the image contrast and
entropy are also rational, as shown in Table 2, From the viewpoint of the image quality. the
enhanced BPA contrast is larger than the others, and the image entropy is lower. It means
that the texture detail and image quality recovery is improved with the proposed method
in radar imaging.

Table 2. Quality evaluation of image contrast and entropy in different environments.

Evaluation Systems Enhanced BPA BPA Amplitude Compensation-RMA

IScissor
Contrast 134.5673 89.5611 112.6986
IScissor
Entropy 3.8054 4.2688 3.8837

IWrench
Contrast 220.877 188.3848 191.0390
IWrench
Entropy 3.7456 3.8230 3.8499
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Figure 8. Azimuthal and height profiles. Row 1 is the azimuthal and height profiles of the scissor,
while row 2 is the azimuthal and altitudinal profile of the wrench. Column 1 is the Azimuth profiles
of the targets; Column 2 is the height profiles of the targets.

4. Discussion

To further validate the strong robustness of the proposed algorithms in complex
environments, 3DRIED was used to construct the image datasets of these three imaging
algorithms, and the YOLO algorithm was used for detection and evaluation. Figure 9
shows the different targets of optical images, such as knife, concealed pistol, stiletto and
multi-target. Figure 10 shows the detection rates for different targets, with the green and
red boxes being the true and prediction boxes, respectively. The prediction box has the
category and confidence level in the upper left corner. It can be observed that YOLO can
effectively detect the imaged objects. Since the radar antenna spacing in 3DRIED is larger
than half a wavelength, the SAR images based on conventional algorithms are affected by
the ghost. Due to the presence of the ghost image, the neural network often misidentifies
shadows as targets, which affects the accuracy of detection.

The kappa coefficient is introduced further to measure the image evaluation accu-
racy [46]. It is used to evaluate the accuracy of the classification model. The higher the
coefficient, the better the classification accuracy of the image. The range of this coefficient
is [−1,1], and in practice, it is usually [0, 1]. The kappa coefficient can be expressed as

κ =
Paccuracy − Pexpected accuracy

1− Pexpected accuracy
(25)

where Paccuracy is the accuracy of the samples, and Pexpected accuracy is the expected accuracy
of the samples. The kappa coefficient of images classification are shown in Table 3. It is
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evident that the proposed algorithm could efficiently suppress the ghost image, and its
kappa coefficient is improved compared to the other two algorithms.

Figure 9. Optical image in different targets.

Figure 10. Detection and identification profiles. Row 1 is the knife of SAR images under the three
imaging algorithms. Row 2 is the concealed pistol of SAR images under the three imaging algorithms.
Row 3 is the stiletto of SAR images under the three imaging algorithms. Row 4 is the pistol and knife
of SAR images under the three imaging algorithms. Column 1 is the Enhanced BPA imaging detection
results. Column 2 is the BPA imaging detection results. Column 3 is the RMA with amplitude loss
compensation imaging results.



Sensors 2022, 22, 4509 16 of 18

Table 3. Quality evaluation of kappa coefficient in different objects.

Kappa Coefficients Enhancement-BPA BPA Amplitude Compensation-RMA

κkni f e 0.92 0.87 0.85
κpistol 0.93 0.92 0.91
κstiletto 0.95 0.86 0.89

κpistol,kni f e 0.93 0.87 0.81

5. Conclusions

In this paper, we design a 3-D near-field mmWave SAR imaging platform and propose
an image focusing algorithm. Our technique extends the traditional BPA by introducing
beam-weighting. The novel algorithm is proposed to efficiently suppress grating lobes
or side lobes clutter on the image, applicable to a diverse set of complex environments.
By conducting data acquisition, we analyze and evaluate the parameters of the imaging
results using these algorithms. The results demonstrate the robustness of our approach
in the presence of interference from external factors. Furthermore, we use the 3DRIED
to construct image datasets to validate the proposed algorithm. Our algorithm achieves
high-fidelity image reconstruction, focusing on experimental studies and detection results,
which provides high-quality images as input for subsequent applications. The detection
recognition rate is higher. Our purpose is to contribute a complete and efficient imaging
and detection identification process for facilitating industrial research.
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