
Citation: Sefati, S.S.; Halunga, S. A

Hybrid Service Selection and

Composition for Cloud Computing

Using the Adaptive Penalty Function

in Genetic and Artificial Bee Colony

Algorithm. Sensors 2022, 22, 4873.

https://doi.org/10.3390/s22134873

Academic Editors: Juan M. Corchado,

Bo Mei and Jinghuey Khor

Received: 6 June 2022

Accepted: 24 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Hybrid Service Selection and Composition for Cloud
Computing Using the Adaptive Penalty Function in Genetic
and Artificial Bee Colony Algorithm
Seyed Salar Sefati * and Simona Halunga

Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest,
060042 Bucures, ti, Romania; simona.halunga@upb.ro
* Correspondence: sefati.seyedsalar@upb.ro

Abstract: The rapid development of Cloud Computing (CC) has led to the release of many services
in the cloud environment. Service composition awareness of Quality of Service (QoS) is a significant
challenge in CC. A single service in the cloud environment cannot respond to the complex requests
and diverse requirements of the real world. In some cases, one service cannot fulfill the user’s needs,
so it is necessary to combine different services to meet these requirements. Many available services
provide an enormous QoS and selecting or composing those combined services is called an Np-hard
optimization problem. One of the significant challenges in CC is integrating existing services to meet
the intricate necessities of different types of users. Due to NP-hard complexity of service composition,
many metaheuristic algorithms have been used so far. This article presents the Artificial Bee Colony
and Genetic Algorithm (ABCGA) as a metaheuristic algorithm to achieve the desired goals. If the
fitness function of the services selected by the Genetic Algorithm (GA) is suitable, a set of services is
further introduced for the Artificial Bee Colony (ABC) algorithm to choose the appropriate service
from, according to each user’s needs. The proposed solution is evaluated through experiments using
Cloud SIM simulation, and the numerical results prove the efficiency of the proposed method with
respect to reliability, availability, and cost.

Keywords: service composition; cloud computing; quality of service (QoS); adaptive penalty function
genetic algorithm; artificial bee colony

1. Introduction

In the last several years, Cloud Computing (CC) has become very popular, due to the
benefits offered by cloud services in terms of the facilities provided by its hardware and
software, combined with the low cost of this equipment [1]. In addition, cloud users do
not need to have computer knowledge or Information Technology (IT) proficiency to use
these services [2]. In fact, clients only pay for the services, and are not involved in technical
issues and other practical complexities necessary for the provision of the services [3]. CC is
being redesigned to provide services similar to traditional utilities like electricity, water,
gas, and telephone, offering them at lower costs [4]. The CC architecture provides three
primary services according to the customers’ needs. Software as a Service (SaaS) [5] offers
users access to different applications as a service in the initial stage. Next, Platform as
a Service (PaaS) provides the platform for constructing more complex applications, like
Google Engine [6]. Lastly, Infrastructure as a Service (IaaS) offers a platform for developing
and deploying virtual machines and storage facilities [7]. CC aims to develop an intelligent,
robust, and secure network to access their services, based on competitive costs and Quality
of Service (QoS) [8]. A group of cloud providers, such as private or public clouds, may
assess the QoS of the cloud while performing a set of relevant services.

In CC, there are two types of resource service requesters: (1) a single service request,
that can be completed by a single resource service, and (2) a multiple service request,

Sensors 2022, 22, 4873. https://doi.org/10.3390/s22134873 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7208-3576
https://orcid.org/0000-0001-7028-3921
https://doi.org/10.3390/s22134873
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134873?type=check_update&version=2


Sensors 2022, 22, 4873 2 of 22

that can be completed by numerous services in a given order. Offering one optimal
service is straightforward [9], but selecting a set of many services simultaneously can be
more challenging [10,11]. In many circumstances, users’ demands may only be fulfilled
by aggregating and combining several resources and services [12], in a process known
as service composition. One of the significant challenges in CC is integrating existing
services to meet the intricate necessities of different types of users [13]. The cloud providers
must combine different available services in order to fulfill the users’ requests. Service
composition is an Np-hard issue [14], and one single service cannot respond to a large and
complex request [15]. These factors determined the necessity of using services composition
in order to build larger services with superior functionalities [16]. Service composition will
receive broad acceptance only when consumers are confident that the offered services are
reliable. One of the most important concerns in CC is creating cloud services based on trust
value. Availability [17], responsibility [18], success [19], ability [20], reliability [21], and
cost [22] are traits that build trust.

To tackle Np-hard issues, metaheuristic algorithms have to identify near-optimal solu-
tions with the best possible performances [23]. The fundamental purpose of this research is
to offer a unique approach for choosing the most appropriate service that responds to users’
requests in terms of QoS. In this paper, an attempt is made to solve the abovementioned
issue with the help of an adaptive penalty function developed using the Genetic Algorithm
(GA) and Artificial Bee Colony (ABC) algorithm. First, the GA finds the appropriate ser-
vices, according to the fitness function. Then, these services are introduced to the ABC
algorithm to combine them, according to a predetermined evaluation criterion, based on
the user’s set of QoS. Briefly, the contributions of the current article are:

the optimal collection of services has been determined, that are contingent on the QoS
criteria upon which the services are constructed, in order to fulfill the user’s objective;
the response time and the cost-of-service choices have been decreased and, subsequently,
this raises the speed of service composition;
the power consumption has been reduced in comparison to another metaheuristic algorithm
presented in the literature.

2. Related Work

This part assesses some of the most relevant papers previously published in this
area and explains their contributions. The articles reviewed in this section have examined
the composition of the service using various methods. A selection technique involves a
set of service composition instructions, based on the available information in the system
at runtime.

2.1. Deterministic Methods

Deterministic methods pursue a strict methodology to describe activity arrangement
in resolving task disagreements, which are often said to be incorrect or uncertain and,
hence, get locked in a local optimum [24]. Deterministic techniques are effective for solving
minor size difficulties. A deterministic approach may be described as an automaton that
performs discrete transitions between different states. In service composition, applying a
deterministic method may result in the ability to forecast network performance and QoS.
The availability of a network and its recursive behavior is a critical parameter in CC, which
may be evaluated using a deterministic approach.

Yaghoubi and Maroosi [25] provide a service composition approach that concerns
the Service Level Agreement (SLA) constraints, using an Improved Multi-verse Optimiza-
tion Algorithm (IMVO). In this proposed algorithm, the distance traveled is defined as
a weighted summation of the QoS attributes determined by the user’s preferences and
the path of the search space close to the top solution is used in order to identify a su-
perior one. The traveling distance in this algorithm is an essential parameter because it
directly decreases the repetition. When repetition for finding suitable services fails in this
algorithm, a new, improved algorithm is developed. This method brings higher avail-



Sensors 2022, 22, 4873 3 of 22

ability and reliability, but the authors did not pay attention to energy consumption and
the algorithm’s complexity. Song, Wang [26] presented an approach for predicting the
trustworthiness of service compositions that are based on a Bayes reliability evaluation. To
assess the productivity and precision of the strategies, their paper focused on fully utilizing
the previous information provided by the services, and developed a Markov Model (MM)
to emulate the compositions framework and each service’s reliability. Their method brings
higher reliability, but the authors did not pay attention to energy consumption and cost. Jia,
Lu [27] proposed a strategy based on Hidden Markov Models (HMMs) to autonomously
identify service composition process faults. The analytical technique combines historical
information regarding the process into a model-based analysis system to overcome the
restrictions due to incomplete process model and limited historical process data. Addi-
tionally, it provides a diagnostic system design that simplifies the investigative procedure,
expands capabilities, and ensures services’ privacy. This method guarantees fault toler-
ance and brings high reliability, but suffers scalability, inconsistency in comparison issues
and it is difficult to revise comparison in the method. Kumar, Kumari [28] developed a
novel methodology for service composition, that increases the reliability of service-oriented
systems, named the Topsis algorithm. This technique is used to select reliable volunteer
services in the initial phase, and the algorithm is solved using a prioritizing strategy based
on service QoS similarity. The Topsis algorithm for service composition has been developed
on the grounds of an order preference and resemblance to obtain an ideal answer. Their
approach facilitates different users to access diverse options of services based on QoS
criteria; the criteria are ranked and prioritized, based on their QoS performances, and
then the decision is made, based on a multi-criteria methodology. This method brings low
response time and high reliability, but suffers from high energy consumption and also high
computational complexity.

2.2. Metaheuristic Methods

In various engineering and scientific applications, detecting the maximum and mini-
mum values is a critical task. To address specific issues, efficient analytical-based methods
are available. However, no practical techniques for discrete and combinatoric optimiza-
tion issues have been developed yet. Heuristic approaches employ empirical methods or
approximations that do not guarantee an optimal general solution but are sufficient to
achieve approximate solutions for given specific problems. This technique is satisfactory in
a limited time frame and can also significantly speed up the optimization process [29].

Zhang, Yang [30] proposed a service composition system based on a flower pollination
algorithm. This approach is used to classify the services based on their inconsistencies with
respect to the QoS parameters. A novel fuzzy-based quality-of-service-aware mathematical
model is used to account for preferences, by weighting distinct subtasks in order to deter-
mine a global fuzzy QoS. This algorithm achieves good results with respect to efficiency in
reliability and availability, but the authors do not take into account latency and scalability
issues. Alamri [31] suggested another technique to determine the best service composition
route by expressing an optimization problem with QoS constraints and solving it using an
Ant Colony Optimization (ACO) algorithm. The ACO algorithm was used in their paper to
compose the services and select the optimal configuration for different devices. The ACO
algorithm selects the best service composition strategy, while the ants control the most
appropriate composition path between the services for each user. The algorithm proposed
achieves a low encoding time, but, nevertheless, the mentioned technique suffers from low
load balancing and availability. Jatoth, Gangadharan [32] present a unique Optimal Fitness
Aware Cloud Service Composition (OFASC) based on an Adaptive Genotype Evolution-
based Genetic Algorithm (AGEGA) to cope with varying QoS boundaries and to provide
service arrangements that fit the best with the user demands. The suggested algorithm
satisfies the varying QoS bounds and service composition’s connection restrictions. The
empirical investigation demonstrated that their approach reached superior performance
in terms of process convergence speed and computational complexity, but it had the dis-



Sensors 2022, 22, 4873 4 of 22

advantage of high energy consumption. Liu, Wang [33] introduced the unique hybrid
approach to solve Manufacturing Service Composition (MSC) recommendations. At first, a
Clustering-based Collaborative Filtering (CCF) procedure is used to determine customer
priority restrictions and, after that, an enhanced personalization-oriented third generation
algorithm is presented. The method proposed in their paper proved to attain a good
efficiency in energy consumption, but the reliability of the overall process was reduced.

2.3. Service Recommendation Methods

The number of cloud services in manufacturing processes is rapidly increasing, and
online service platforms have become more widespread [34]. Large volumes of customer-
related data are stored in multiple service platforms that include, if possible, preference
information. Service recommendation technology may quantify consumer preferences more
precisely by exploring this data, creating clustering comparable groups of customers and
perform attribute analysis of diverse user activity data [35]. Furthermore, big data increase
the versatility of service recommendation expertise and allow the parameters of algorithms
to be altered dynamically, depending on change in customer preferences. Collaborative
data processing, context-oriented recommendation, and heterogeneous networks are now
some of the most common service recommendation technologies [36]. One of the most
well-known customized recommendation procedures is collaborative filtering, that dives
into users’ preferences for various patterns, based on their general comportment data
(e.g., purchase history, service evaluation, search history, etc.).

Li, Ma [37] presented a trust-conscious service trading system for efficiently match-
ing numerous cloud services to meet varied user demands. T-broker produces excellent
outcomes in many common scenarios, and the suggested mechanism is strong enough to
manage a wide range of service resources, but, unfortunately, suffers from high energy
consumption. Sefati and Navimipour [14] suggested an efficient method based on an HMM
for addressing the service composition problem while improving QoS. The model was
trained to forecast the QoS parameters, and a Viterbi algorithm was used to improve the
transition matrices. They used the ACO method to discover a viable route. This method
brings high reliability and availability, but it also suffers from high energy consumption
and the high complexity of the algorithm. Kuang, Yu [38] presented a customized QoS
prediction technique based on users’ reputations and positioning knowledgeable collab-
orative filtering for Cyber-Physical Systems (CPS) services, as well as a framework for
QoS prediction for those services. Their method first estimates the user reputation using
the Dirichlet probability to detect untrustworthy users and handles their faulty data, and,
then, it delves the geographic location into three layers to enhance the user and service
similarity calculations. This method has good efficiency in scalability and performance,
but it suffers from a long convergence time issue. Su, Xiao [39] employ a beta reputation
system to cluster users and to compute their information. Then, a group of similar trust-
worthy users is selected based on the determined user reputation and similarity. Finally,
by clustering the services, they find similar services and create predictions for active users
based on the QoS and similar services. This solution has good efficiency with respect to
low response time and high throughput, but it suffers from a low load balancing issue. Li,
Ma [40] concentrated on the trust computing requirements of multiple-cloud collabora-
tion services and created Data-driven and Feedback-Enhanced Trust (DFET) computing.
In this case, a distributed soft agent-based trust-conscious service monitoring system is
suggested as a middleware for multi-cloud trust computing. This method is suited for
service-oriented cloud applications and numerous critical service indications in trust com-
puting. More importantly, they suggest an upgraded hierarchical feedback mechanism
based on the fundamental interaction between users, monitors, and service providers,
which may substantially minimize the networking risk while enhancing system reliability.



Sensors 2022, 22, 4873 5 of 22

2.4. Comparison and Overview

Deterministic algorithms have proved to have good performance in availability and
response time. Besides, the energy consumption of their algorithms, compared with ones
from other categories, is lower, but they have proved to be unsuitable for some issues,
such as the Np-hard problem. Metaheuristic algorithms are mostly composed of heuristic
algorithms that can be more responsive to Np-hard problems. In the metaheuristic tech-
nique, these algorithms have high complexity and high energy consumption in comparison
with other methods. However, these algorithms have proved to have good scalability in
service composition. According to a related literature study, many articles evaluated the
algorithms in terms of cost, duration of convergence rate, and reliability. Still, most of the
proposed methods have not been tested in real environments. According to the literature
review, the vast majority of service recommendation technologies increase the quantifi-
cation accuracy of consumer preferences and ensure suggestion outcomes better follow
changes in customer demands. However, most of the particular service solutions presented
are limited. The described technologies develop practical solutions that face the challenges
of flexible and diversified composite services. Their results are readily invalidated when
customer-related behavior data is insufficient. Consequently, multi-attribute decisions
incorporate both the QoS objective aspects of fabrication services as well as the preference
attributes of consumers. This technique is a more successful approach than unilateral
subjective decision-making in obtaining recommendation outcomes.

3. Motivation

RESERVOIR [41], PCMONS [42], RightScale [43], SpotCloud Aeolus [40], and OPTI-
MIS [44] are examples of CC that have recently emerged as potential solutions for providing
superior service to customers. The development of cloud brokers works as an intermediate
among cloud suppliers and clients to settle and transfer resources [45]. Unfortunately,
except for OPTIMIS, the majority of these CC do not offer trust management abilities for
clients [46]. In Figure 1, users connect to the providers to use the cloud services according
to the needs of QoS. Brokering services provide data to the cloud as storage and select
the service according to the proposed algorithm. All the M users that access the cloud
simultaneously can benefit from the cloud brokering in high QoS. Managing and planning
the existing resources with high trustworthiness requires an accurate technique. Evaluating
and forecasting consumption patterns of computational resources is problematic because it
can change dynamically over time. This research aims to develop a service composition
algorithm that efficiently matches the existing computer resources to various user demands.
This subject has attracted the interest of different researchers, but their methodologies have
not been able to significantly advance created notions in earlier trust models [47].

Sensors 2022, 22, x FOR PEER REVIEW 5 of 23 

 

2.4. Comparison and Overview 
Deterministic algorithms have proved to have good performance in availability and 

response time. Besides, the energy consumption of their algorithms, compared with ones 
from other categories, is lower, but they have proved to be unsuitable for some issues, 
such as the Np-hard problem. Metaheuristic algorithms are mostly composed of heuristic 
algorithms that can be more responsive to Np-hard problems. In the metaheuristic 
technique, these algorithms have high complexity and high energy consumption in 
comparison with other methods. However, these algorithms have proved to have good 
scalability in service composition. According to a related literature study, many articles 
evaluated the algorithms in terms of cost, duration of convergence rate, and reliability. 
Still, most of the proposed methods have not been tested in real environments. According 
to the literature review, the vast majority of service recommendation technologies increase 
the quantification accuracy of consumer preferences and ensure suggestion outcomes 
better follow changes in customer demands. However, most of the particular service 
solutions presented are limited. The described technologies develop practical solutions 
that face the challenges of flexible and diversified composite services. Their results are 
readily invalidated when customer-related behavior data is insufficient. Consequently, 
multi-attribute decisions incorporate both the QoS objective aspects of fabrication services 
as well as the preference attributes of consumers. This technique is a more successful 
approach than unilateral subjective decision-making in obtaining recommendation 
outcomes. 

3. Motivation 
RESERVOIR [41], PCMONS [42], RightScale [43], SpotCloud Aeolus [40], and 

OPTIMIS [44] are examples of CC that have recently emerged as potential solutions for 
providing superior service to customers. The development of cloud brokers works as an 
intermediate among cloud suppliers and clients to settle and transfer resources [45]. 
Unfortunately, except for OPTIMIS, the majority of these CC do not offer trust 
management abilities for clients [46]. In Figure 1, users connect to the providers to use the 
cloud services according to the needs of QoS. Brokering services provide data to the cloud 
as storage and select the service according to the proposed algorithm. All the M users that 
access the cloud simultaneously can benefit from the cloud brokering in high QoS. 
Managing and planning the existing resources with high trustworthiness requires an 
accurate technique. Evaluating and forecasting consumption patterns of computational 
resources is problematic because it can change dynamically over time. This research aims 
to develop a service composition algorithm that efficiently matches the existing computer 
resources to various user demands. This subject has attracted the interest of different 
researchers, but their methodologies have not been able to significantly advance created 
notions in earlier trust models [47]. 

 
Figure 1. Existing brokering scenario without user feedback. 

3.1. Problem Statement 
The service composition aims to discover the most suitable set of Cloud-based 

Manufacturing Services (CMSs) from a pool of services for delivering enhanced user 

Figure 1. Existing brokering scenario without user feedback.

3.1. Problem Statement

The service composition aims to discover the most suitable set of Cloud-based Manu-
facturing Services (CMSs) from a pool of services for delivering enhanced user experience
while meeting the QoS limitations [48]. In order to increase efficiency, a manufactured



Sensors 2022, 22, 4873 6 of 22

product has to be broken down into multiple sub-products. QoS-aware composition targets
discovering a set of candidate services with comparable functionalities to improve users’
satisfaction and the overall QoS quality [49]. Figure 2 shows the formal definition of service
composition, where it has been assumed that, from the total of m candidate services that
are available in the cloud, n services, (X1, X2 · · · Xn) have to be combined with each other
in order to achieve the targeted QoS and configured to meet the user’s needs. There are
many different modes of combining a set of services, but it is excessively time-consuming
to consider all possible ways and select the optimal method. This paper solved the service
combining issue by using Artificial Bee Colony and Genetic Algorithm (ABCGA).

Sensors 2022, 22, x FOR PEER REVIEW 6 of 23 

 

experience while meeting the QoS limitations [48]. In order to increase efficiency, a 
manufactured product has to be broken down into multiple sub-products. QoS-aware 
composition targets discovering a set of candidate services with comparable 
functionalities to improve users’ satisfaction and the overall QoS quality [49]. Figure 2 
shows the formal definition of service composition, where it has been assumed that, from 
the total of m candidate services that are available in the cloud, n services, (𝑋  , 𝑋  . . . 𝑋 ) have to be combined with each other in order to achieve the targeted QoS 
and configured to meet the user’s needs. There are many different modes of combining a 
set of services, but it is excessively time-consuming to consider all possible ways and select 
the optimal method. This paper solved the service combining issue by using Artificial Bee 
Colony and Genetic Algorithm (ABCGA). 

 
Figure 2. Service composition method. 

As has been previously mentioned, service composition techniques combine several 
separate services to achieve the highest QoS and offer the best services for users [50]. The 
QoS offered by different services is constantly changing, therefore the candidate services’ 
criteria need to change over time. The Service-Level Agreement (SLA) is a sort of 
understanding between consumers and cloud service providers that meets the QoS 
standards. Recommendation services are one of the cloud-based intelligent strategies for 
addressing the challenge of locating acceptable services in order to answer all the users’ 
needs. The recommendation system can suggest the best services for a set of users. In 
contrast, the services in the cloud have a lot of QoS requirements, so finding suitable 
services is a challenging task. A candidate service is recommended to each target user 
depending on the profile. For instance, Amazon’s Kindle Bookstore employs suggested 
technology for books and CDs, while Netflix.com uses it for movies, with over 17,000 
films. They are well-positioned in the market. 

3.2. The QoS-Aware Service Composition 
The scope of QoS-aware service composition is to select the optimal execution plan to 

maximize the end-to end QoS of the service composition. In most cases, besides selecting the 
optimal execution plan that takes exponential time and costs, new approaches are satisfied 
with finding a nearly optimal solution, even when simplifications are used. We will present 
several definitions that might help define the issue more clearly below. 

Definition 1. Assuming that there are two services 𝑆 , 𝑆  ∈ S, connected to a set, (Q) of QoS 
criteria, we say that 𝑆  dominates 𝑆 , denoted as 𝑆  < 𝑆 , if 𝑆  superior than 𝑆  in all parameters in 
(Q) and superior in at least one parameter in (Q), i.e., ∀k ∈ [1, |Q|]: 𝑞  (𝑆 ) ≤ 𝑞  (𝑆 ) and ∃k ∈ 
[1, |Q|]: 𝑞  (𝑆 ) < 𝑞  (𝑆 ), where the notation 𝑞  (𝑆 ) represent the 𝑛  QoS attribute of the 𝑚  
service [3]. 

Figure 2. Service composition method.

As has been previously mentioned, service composition techniques combine several
separate services to achieve the highest QoS and offer the best services for users [50].
The QoS offered by different services is constantly changing, therefore the candidate
services’ criteria need to change over time. The Service-Level Agreement (SLA) is a sort
of understanding between consumers and cloud service providers that meets the QoS
standards. Recommendation services are one of the cloud-based intelligent strategies for
addressing the challenge of locating acceptable services in order to answer all the users’
needs. The recommendation system can suggest the best services for a set of users. In
contrast, the services in the cloud have a lot of QoS requirements, so finding suitable
services is a challenging task. A candidate service is recommended to each target user
depending on the profile. For instance, Amazon’s Kindle Bookstore employs suggested
technology for books and CDs, while Netflix.com uses it for movies, with over 17,000 films.
They are well-positioned in the market.

3.2. The QoS-Aware Service Composition

The scope of QoS-aware service composition is to select the optimal execution plan to
maximize the end-to end QoS of the service composition. In most cases, besides selecting
the optimal execution plan that takes exponential time and costs, new approaches are
satisfied with finding a nearly optimal solution, even when simplifications are used. We
will present several definitions that might help define the issue more clearly below.

Definition 1. Assuming that there are two services S1, S2 ∈ S, connected to a set, (Q) of QoS criteria,
we say that S1 dominates S2, denoted as S1 < S2, if S1 superior than S2 in all parameters in (Q) and
superior in at least one parameter in (Q), i.e., ∀k ∈ [1, |Q|]: qk (S1) ≤ qk (S2) and ∃k ∈ [1, |Q|]:
qk (S1) < qk (S2), where the notation qn (Sm) represent the nth QoS attribute of the mth service [3].

Definition 2. A set of superior services (SLS) is described as a collection of services in (S) that are
not dominated by another service. i.e., SLS = (Si ∈ S|@Sk ∈ S: Sk < Si) [3].

The aim of the service composition is to discover the most suitable set of CMSs
from a pool of services for delivering enhanced user experience while meeting the QoS



Sensors 2022, 22, 4873 7 of 22

limitations. Sometimes, we may encounter challenges in a broad range of applications in
cloud manufacturing, when finding a service composition is a difficult task. Assuming
that N is number of services involved in the combination process, (S) = (T1, T2, T3, . . . , TN)
represents a particular combination of tasks, M is the number of the candidate services
available for each abstract service and (Cu) = (Cu1, C2u, C3u, . . . , CMu) is the number of
existing services. This issue can be mathematically formulated as follows.

Maximize ∑D
k=1 wk fk (

{
∑N

i=1 ∑M
j=1 SijCu

}
) (1)

Subject to fk({∑N
i=1 ∑M

j=1 Sij qijk}) (2)

∑D
k=1 wk = 1, wij ∈ {0, 1} (3)

∑D
k=1 Sij = 1 (4)

i = 1, 2, . . . , N, j = 1, 2, . . . , M (5)

In the equations above, we denoted the weight of the QoS characteristic by wk. The
aggregation function, denoted by fk, is used to evaluate the mixed rate of k quality. Sij
shows the specific service selection, the particular service j being chosen for an abstract
service i. qijk shows the QoS of the selected service. wij determines whether the candidate of
cloud-based service CMSj is selected or not. When the combinatorial is optimized, it must
meet the global QoS attribute restriction and the maximum value, as stated in Equation (1).

The method of creating services using the integer coding strategy is shown in Figure 3.
The sequential combination is (S) = (Task1, Task2, . . . , TaskN), in which each task or
candidate service is associated to an abstract service. Each service has N concrete tasks,
each of them set such to satisfy different QoS parameters. One particular service is chosen
from many available services, and all of the services have a specific duty in the cloud
environment. The optimal value is determined by combining those physical services to
maximize Equation (1) with the restriction given in Equation (2). Each service sets a unique
number in this combination of integer-coded services. For example, in Figure 3, Task1
candidate service has been chosen C11, Task2 been chosen C2,1 in the integer code, and at
the end the sum of these integer codes shows the service composition.

3.3. Objective Attributes of QoS

The QoS measures non-functional aspects of different services, such as time delay in
response, accessibility, and cost. The components, such as response time, energy consump-
tion, and latency must be reduced, while availability and reliability must be enhanced.
Table 1 describes the QoS parameters in CC.

The response time is the capability of a service to fulfill the necessary functions under
determined circumstances in a given time interval, and it can be mathematically described
by Equation (6) [14].

RARk =
RESk
RECk

, k = 1, M (6)

where, RESK, k = 1, M represents the number of tasks sent to a certain service, RK, that
were performed within a specified period, typically of several tasks in milliseconds, while
RECK indicates the total number of requests.

The availability refers to the capacity of a service to be available and operable at any
time, and it evaluates if a certain service may be used for the whole duration of a given
task. Mathematically, it can be described by Equation (7).

AVRk =
Ak
Nk

, k = 1, M (7)



Sensors 2022, 22, 4873 8 of 22

where, AVRk is the availability of resource Rk, Nk shows the total number of tasks submitted
to Rk while Ak defines the number of jobs accepted by the Rk.Sensors 2022, 22, x FOR PEER REVIEW 8 of 23 

 

 
Figure 3. An intuitive description of QoS-aware method for service composition. 

3.3. Objective Attributes of QoS 
The QoS measures non-functional aspects of different services, such as time delay in 

response, accessibility, and cost. The components, such as response time, energy 
consumption, and latency must be reduced, while availability and reliability must be 
enhanced. Table 1 describes the QoS parameters in CC. 

Table 1. The definitions of the QoS parameters for service. 

QoS Standards Measure Explanation  

Response time ms 
The time interval between receiving 

a demand from one user and 
answering it.  

Energy consumption j 

In the cloud, the machines are 
running for providing services and 

these machines also consume energy 
to perform their tasks. 

Cost $ 
The expense needed for 

implementing a certain service. 

Availability Percent 
The possibility to access the service 

from any place at any time. 

Reliability MTBF 

The capacity of a certain device 
(hardware or software) to complete 

a given task in a specific time, 
depending on the system 

requirements. 

The response time is the capability of a service to fulfill the necessary functions under 
determined circumstances in a given time interval, and it can be mathematically described 
by Equation (6) [14]. 

Figure 3. An intuitive description of QoS-aware method for service composition.

Table 1. The definitions of the QoS parameters for service.

QoS Standards Measure Explanation

Response time ms The time interval between receiving a demand from one user
and answering it.

Energy consumption j In the cloud, the machines are running for providing services
and these machines also consume energy to perform their tasks.

Cost $ The expense needed for implementing a certain service.
Availability Percent The possibility to access the service from any place at any time.

Reliability MTBF
The capacity of a certain device (hardware or software) to
complete a given task in a specific time, depending on the

system requirements.

The Cost is the quantity of funds necessary to satisfy the requirements of a virtual
service depending on the total amount of memory used, processing time, and bandwidth
consumed. It may be mathematically evaluated using Equation (8).

Cost = ∑K
i=1 (Ci ∗ Ti) (8)

where K is the size of the service, Ci is the number of assigned users’ requests and Ti is the
time for which the user can use the services.

Reliability refers to certain hardware or software equipment’s capacity to complete a
job in a specific time, depending on system requirements, Equation (9).

RERK =
Ck
Ak

, k = 1, M (9)



Sensors 2022, 22, 4873 9 of 22

where Ak is the number of jobs that have been accepted by a certain resource Rk and Ck the
number of jobs successfully completed by this same resource.

The energy consumption represents the quantity of energy necessary to fulfill a certain
task, and it is usually evaluated via the processing time or processor usage.

Ui = ∑n
j=1 ui,j (10)

where n is the number of tasks running at that time and ui,j is amount of the resource used.
Stability. In a dynamic Cloud Manufacturing (CMF) system, different services may

change from one time instant to another. If the QoS of a service is unstable and values
fluctuate, the consumers cannot accept this situation; thus, the fluctuating of QoS services
will pose a danger to service selection and composition. The QoS stability (Sta) of service Si
may be characterized based on standard deviation as shown in Equations (11)–(13).

Sta(Si) =
1
p∑p

q=1 Staq (Si,q) (11)

Staq(Si,q) = 1− 1
Si,q

√
1
M∑M

t=1 (S
t
i,q−Si,q)

2 (12)

Si,q =
1
M
·∑M

t=1 St
i,q (13)

Sta(Si) denotes the total QoS stability of service Si and (Si,q) is the stability of a certain
attribute q of the service Si in the time period of interest, St

iq denotes the attribute q value
of service Si at the t moment, while M indicates the number of jobs sent to the service in
t time.

Since the various QoS characteristics have distinct measurements and optimization
features, normalization is essential in order to guarantee that each QoS goal attribute has
the same assessment standard and logic. Therefore, they should be standardized. Positive
and negative QoS features are divided into two groups. For positive characteristics, such as
reliability or availability, the higher the numerical value the better the quality. In contrast,
for negative factors, such as response time or cost, the lower the numerical value the better
the quality. To prevent inaccurate calculation of various QoS measurement criteria, attribute
values should be normalized, so that all QoS characteristics are evaluated on the same scale.
Therefore, to normalize these characteristics on a standard scale, the positive attributes of
Equation (14) are used, and for the negative factors, Equation (15) is used:

ql
sij

=


ql

sij
−Min(ql

sij
)

Max(ql
sij )−Min(ql

sij )
, Max(ql

sij
)−Min(ql

sij
) 6= 1

0 , Max
(

ql
sij
)−Min(ql

sij
) = 1

(14)

ql
sij

=


Max(ql

sij
)−ql

sij

Max(ql
sij )−Min(ql

sij )
, Max(ql

sij
)−Min(ql

sij
) 6= 1

1 , Max
(

ql
sij
)−Min(ql

sij
) = 1

(15)

ql
Sij

represents to the l quality of the j service from the i service while Max
(

ql
Sij

)
and

Min
(

ql
Sij

)
are the extreme values of the l for the i service.

The critical objective of service composition is to provide QoS services that adhere to
user-defined limitations and improve a fitness function, which should be to optimize the
rates of the QoS parameters. Positive and negative parameters have an inverse relationship
with their evaluation function. The competence function should maximize the importance



Sensors 2022, 22, 4873 10 of 22

of the built-in composite service’s QoS parameters. Positive and negative parameters have
the opposite tendency and have the opposite influence on the evaluation function.

QoS(WS) = Min
(
∑D

i=1 wi ·QoS( fi)
)

(16)

where fi represents the quality value of each parameter from the service Si, and wi repre-
sents the user’s desired weight for that quality parameter in the overall QoS, and D is the
number of service dimensions for a workflow.

3.4. ABCGA Algorithm

In this paper, the ABCGA algorithm is applied to solve the service composition
problem in cloud computing. The correspondence between the ABC and GA algorithms in
service composition is shown in Tables 2 and 3. Since we wanted to preserve the notations
from the original algorithms, in the following table, the correspondence between those
notations and their correspondent service selection and composition for cloud computing
is provided.

Table 2. Correspondence between GA and service composition.

Definition of the GA Defining in the Cloud

Chromosome Abstract services
Generation Generate new candidate solution

Genome One candidate solution

Crossover Different topological services, because the size of
services is different.

Parent chromosomes

During evolution, the chromosomes chosen for
crossover, according to their fitness values, are known
as parents, and the products of crossover are referred

to as children.

Fitness function Evaluate the fitness and goodness of the chromosomes
for the problem to be solved.

Mutation
The mutation operator targets at toggle each abstract
service in a genome with a probability that may not be

found according to user needed.

Table 3. Correspondence between ABC algorithm and service composition.

Definition of the ABC Defining in the Cloud

Food source position Service composition solution
Food source Services

Pollen Quality of Services
New position New selected service

Previous position Pervious selected service
Nectar quality Quality of the composite service

Speed of searching and foraging Speed of algorithm optimization
The best food source The optimal service composition solution

Dimension of food source Dimension of service quality attributes

An intelligent algorithm has many benefits, but there are often several disadvan-
tages. For example, GA considers the values of the target function immediately as search
information, and, thus, demonstrates archiving, robust resilience and high search rate.
Moreover, GA has proved efficient for solving large-scale challenges. However, GA’s search
performances are highly influenced by reduced local search capacity and, thus, GA is easily
localized. A Genetic algorithm is a type of meta-algorithm based on biological theory that is
random and intelligent. The process begins with generating an entirely random collection
of entities and random actions on prior generations that will cause future generations.
From each generation, the best entity is selected. If the customer’s requirements are met,



Sensors 2022, 22, 4873 11 of 22

that entity is introduced as the answer to the problem, and the algorithm ends. Otherwise,
another set of new entities is established, and the process continues until it achieves the
customer requirements. If an appropriate entity is not found, the algorithm terminates.
When it reaches the specified maximum number of iterations and introduces the last entity
obtained from those iterations, it is presented as the best answer to the problem. Each
chromosome is made up of several genes and random selection and combinations of genes
create new chromosomes. One of the factors in GA is called a crossover, and the random
selection of genes from chromosomes is called a mutation.

The idea of the ABC algorithm starts from an example in nature, where the bees can
spread in different locations and over long distances to obtain food sources. Pollen can
be collected with little effort in areas where there is a large amount available. Usually, if
the region has a high pollen quantity, there is a high probability that many bees will visit
these areas. Worker bees seek to find a new food source based on their already known ones.
Using the information supplied by worker bees, the observer bee is continuously searching
for new food sources. Finally, when the pollen source is used up, the bees will randomly
seek new areas for food supply. The ABC algorithm is a universal search procedure that
can effectively avoid local optima but suffers from long search times and slow convergence.

Step1: In the first stage, the initial population is set for the GA and it calculates the
chromosomes’ suitability. It is a sequence of numbers that can be considered one of the
answers to the problem, and the algorithm is seeking to determine the best values for each
of the genes in order to reach the optimal point. Therefore, the chromosome arises from
the parameters of this algorithm. The fitness function must be able to determine the best
combination of services. For this function, the quantitative and qualitative characteristics of
the selected services should be examined. According to the data set used, and its properties,
the objective function is defined as the weighted average of the Equation (16) properties.

Step2: In order to improve outcomes from one generation to another, the chromosomes
should be selected. Equation (17) indicates the probability of selecting a chromosome, P(x),
where f (x) represents the quality value of each parameter and (Σf ) shows the quality of
value of all of them. In Equation (17), the ratio of the fitness function of one chromosome
to all chromosomes is calculated. The more significant is the number obtained, the more
likely the chromosome will be selected.

P(x) = f (x) ·∑ f (all) (17)

Figure 4 shows an example of a pie-type diagram in which a segment of a circle is
assigned to each chromosome according to its fitness.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 23 

 

areas. Worker bees seek to find a new food source based on their already known ones. 
Using the information supplied by worker bees, the observer bee is continuously 
searching for new food sources. Finally, when the pollen source is used up, the bees will 
randomly seek new areas for food supply. The ABC algorithm is a universal search 
procedure that can effectively avoid local optima but suffers from long search times and 
slow convergence. 

Step1: In the first stage, the initial population is set for the GA and it calculates the 
chromosomes’ suitability. It is a sequence of numbers that can be considered one of the 
answers to the problem, and the algorithm is seeking to determine the best values for each of 
the genes in order to reach the optimal point. Therefore, the chromosome arises from the 
parameters of this algorithm. The fitness function must be able to determine the best 
combination of services. For this function, the quantitative and qualitative characteristics of 
the selected services should be examined. According to the data set used, and its properties, 
the objective function is defined as the weighted average of the Equation (16) properties. 

Step2: In order to improve outcomes from one generation to another, the 
chromosomes should be selected. Equation (17) indicates the probability of selecting a 
chromosome, P(x), where 𝑓(𝑥) represents the quality value of each parameter and (Σ𝑓) 
shows the quality of value of all of them. In Equation (17), the ratio of the fitness function 
of one chromosome to all chromosomes is calculated. The more significant is the number 
obtained, the more likely the chromosome will be selected. 

( ) ( ) ( )P x f x f all= ⋅  (17)

Figure 4 shows an example of a pie-type diagram in which a segment of a circle is 
assigned to each chromosome according to its fitness. 

 
Figure 4. Segment of a circle of each chromosome. 

Step3: The production of child chromosomes from parent chromosomes is known as 
crossover. In this study, the weighted average intersection was used to combine the two 
parent chromosomes and produce an offspring. For each parent chromosome, a random 
number in the domain (0, 1) is generated. For example, if the first chromosome weighs 0.9, 
then the weight of the second parent will be 0.1. A mutation is a random control element 
in which the values of some genes on a chromosome are replaced with new ones. In this 
study, the chromosome is chosen randomly from the entire population. If the fitness 
functions of the obtained selected services are better, so this result is closer to the user 
requirements, GA stores them and introduces them to the ABC algorithm. Otherwise, the 
Adaptive Penalty Function in the Genetic Algorithm will be used. This technique uses a 
penalty function to support dependency constraints and interoperability between 
services, thus imposing fines for the impossible solutions. In the penalty-based genetic 
algorithm, such fines are used for those chromosomes that have impossible genes and 
have violated limitations of the interdependence and incompatibilities between services. 
A chromosome with many restrictions should be severely penalized. Equations (18) and 
(19) express the fitness and penalty functions, respectively. 

Figure 4. Segment of a circle of each chromosome.

Step3: The production of child chromosomes from parent chromosomes is known as
crossover. In this study, the weighted average intersection was used to combine the two
parent chromosomes and produce an offspring. For each parent chromosome, a random
number in the domain (0, 1) is generated. For example, if the first chromosome weighs 0.9,
then the weight of the second parent will be 0.1. A mutation is a random control element in
which the values of some genes on a chromosome are replaced with new ones. In this study,



Sensors 2022, 22, 4873 12 of 22

the chromosome is chosen randomly from the entire population. If the fitness functions of
the obtained selected services are better, so this result is closer to the user requirements, GA
stores them and introduces them to the ABC algorithm. Otherwise, the Adaptive Penalty
Function in the Genetic Algorithm will be used. This technique uses a penalty function
to support dependency constraints and interoperability between services, thus imposing
fines for the impossible solutions. In the penalty-based genetic algorithm, such fines are
used for those chromosomes that have impossible genes and have violated limitations of
the interdependence and incompatibilities between services. A chromosome with many
restrictions should be severely penalized. Equations (18) and (19) express the fitness and
penalty functions, respectively.

(x) = 0.5 + (0.5 ∗ Fobj(x)) + P(x) (18)

P(x) =

{
0, i f v(x)= 0;
−0.5− v(x)

vmax

Otherwise (19)

In the first equation Fobj is the function that evaluates and reflects the qualitative
properties of the fit function for the x chromosome. In addition, P(x) is the penalty calculated
and attributed to the x chromosome. In the second equation, v(x) represents the total
number of constraints violated by the X chromosome, while vmax is the maximum number
of cases of restriction violations. Therefore, when v(x) is zero, this shows that chromosome
x has not violated the constraint. According to Equation (18) if chromosome x corresponds
to a resolvable solution, the penalty will be zero. Otherwise, it calculates the amount of
fine imposed on the x chromosome, as an impossible solution, ensuring thus that the more
restrictions an impossible solution violates, the higher will be the fine applied.

Step4: After GA finds the most suitable QoS service, the ABC algorithm starts to
combine services to satisfy the user’s need.

Step5: Regarding the search for a service location, the ABC algorithm looks for the
best possible answer in the search space, creates a new search location for each service, and
then moves on, as suggested in Equation (20)

Qik = Qij + φ ·Qkj (20)

Qij represents the current position of the bee, Qkj represents the new position of the
bee, ϕ is a random number in the range of negative one and positive one. Qik represents
the new position of the bees. The worker bee searches for selected services, based on the
GA, and calculates the amount of nectar per flower.

Step6: All the population of food sources is indicated as a xmi, and m shows population
size. This population size shows the number of services in the CC,

xmi = li + rand(0, 1) ∗ (ui − li) (21)

where li and ui demonstrate the lower and upper boundaries of the parameter xmi, respectively.
Step7: Employed bees search for a new food resource and in CC employed bees are

trying find all of the services. vm shows the new food source, and xmi shows the nectar
within the neighborhood of the food source in their memory.

vmi = xmi + φmi(xmi − xki) (22)

where xk is a randomly selected food source, i is a randomly chosen parameter index and
φmi is a random number within the range [−1, +1].

Step8: Since discovering the new food source (services), the fitness function of the
services is evaluated; if the fitness function is desired in terms of the user requests, it is
selected as the best service, otherwise it tries to find another suitable service. The fitness
function is calculated for each service using the following formula. In general, the most



Sensors 2022, 22, 4873 13 of 22

crucial element in the ABC is the fitness function, which greatly affects the performance
and efficiency of the ABC, determining whether it is successful or not.

f itm(xm) =

{
1

1+ fm(xm)
, if f m(xm) > 0

1 + abs( fm(xm)), if f m(xm) < 0
(23)

where fm is the objective function value of the solutions.
Step9: If the fitness function of services is not suitable, the onlooker bees start to find

new services. The onlooker bees evaluate the potential food supply in a new location, and
the value of the fitness functions is determined. If the new position value is a better food
supply than the previous position, then the bee forgets the last position and keeps the
new one in memory. Otherwise, the bee remains in its previous position. Equation (24)
describes, mathematically, how the worker bees moves:

Xnew
id = Xold

id + φid(Xold
id − Xid) (24)

where Xid is the i component of the vector that indicates the position of the onlooker
bee, Xik indicates its previous position of the employed bee, until the bee moves towards
Xik = (X1k, X2k . . . Xn). Xold

id , indicates the previous position of the employed bee. φ is a
random vector in the interval (1, −1). Xnew

id shows the new position of onlooker bees. In
the upgrade phase observer bees use the status of worker bee information.

In Figure 5, the proposed method is explained using a block diagram. According to
this flowchart, first, we used the genetic algorithm to select the appropriate service and
then, according to a user’s requests, the services are combined using the ABC algorithm.
Table 4 shows the summary of notation used in the procedure and Algorithm 1 describes
the ABCGA algorithm.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 23 

 

supply than the previous position, then the bee forgets the last position and keeps the new 
one in memory. Otherwise, the bee remains in its previous position. Equation (24) 
describes, mathematically, how the worker bees moves: 

( )new old old
id id id id idX X X Xφ= + −  (24)

where 𝑋  is the i component of the vector that indicates the position of the onlooker bee, 𝑋  indicates its previous position of the employed bee, until the bee moves towards 𝑋  = 
(𝑋 , 𝑋 … 𝑋 ). 𝑋 , indicates the previous position of the employed bee. φ  is a random 
vector in the interval (1, −1). 𝑋   shows the new position of onlooker bees. In the upgrade 
phase observer bees use the status of worker bee information. 

In Figure 5, the proposed method is explained using a block diagram. According to 
this flowchart, first, we used the genetic algorithm to select the appropriate service and 
then, according to a user’s requests, the services are combined using the ABC algorithm. 
Table 4 shows the summary of notation used in the procedure and Algorithm 1 describes 
the ABCGA algorithm. 

 
Figure 5. General structure of ABCGA algorithm. 

Table 4. Summary of notations used in procedure. 

Abbreviations & Parameter Implication 
C Number of candidate service 
¥ Selection space 
R Selection space decrease factor 
P Penalization function 
G Constraint value in case of violation 
F Fitness function    𝜑 is a random number 𝜑 ∈ [−1, 1] 

Priss A priori service set 
SP A priori exploration strategy 
E Selection space equilibrium selection strategy 

[α, β]  
The upper and lower limits of the quantity of 

food supply in each generated set  
η The search step 

Figure 5. General structure of ABCGA algorithm.



Sensors 2022, 22, 4873 14 of 22

Table 4. Summary of notations used in procedure.

Abbreviations & Parameter Implication

C Number of candidate service
¥ Selection space
R Selection space decrease factor
P Penalization function
G Constraint value in case of violation
F Fitness function
ϕ is a random number ϕ ∈ [−1, 1]

Priss A priori service set
SP A priori exploration strategy
E Selection space equilibrium selection strategy

[α, β] The upper and lower limits of the quantity of
food supply in each generated set

η The search step

Algorithm 1. ABCGA algorithm description

Input: Obtain the request from the client. Define a label that includes the requested service;
Output: Suitable service
Initialize C, ¥, R
While

1. Initialize the set variables (X) uniformly distributed within the sampling space ¥
2. Calculate the objective function f (x)
3. Assign the number of generations to 0 (to = 0)
4. Evaluate the individuals in population
5. If the fitness functions the obtained optimal service
6. Go to line 16
7. Else
8. While termination function is not satisfied do

9. Apply to approach the objective function
10.ϕ (x) = P (x) ∗ f (x)
11. Where P (x) = f (x) ∗ Σf (ALL)

12. The probability of p of each candidate service C in the cohort is calculated as: PC =
1
ϕ
∗X

Σf (ALL)
13. Use the roulette wheel method to select, for every candidate C, the behavior to follow from the
available choices.
14. Reduce each candidate C sampling interval ¥ c in its vicinity by reducing the sampling space
parameters R and set of solution x c

¥ c = [ ¥ c, lower QoS, ¥ c , upper QoS ] = [ x c-|| ¥ c, lower QoS ,¥ c , upper QoS

2 || * R, x c+||
¥ c, lower QoS ,¥ c , upper QoS

2 || * R]
Next, each candidate C will select its variable from the updated sampling interval ¥ c

15. If: there is no significant improvement in system solution is saturated.
Each candidate C should expand the sampling interval ¥ c to its original ¥. Accept the current
behavior of the group, the ϕ (x) and the associated attributes of x.
Else
ABC: Initialization1. Service space exploration strategies identification.
16. The exploration strategies in the Service space are determining
Initial service domain attributes generation
17. xm←Init Food Source Gen
workflow, SN
(α, β): m = 1, 2, . . . , SN.
(α, β): indicates the quantity of food in the different service sets∗
Driven employed service domain attributes (local optimization)



Sensors 2022, 22, 4873 15 of 22

18. Fit(vm)← Fitness ( f itus, f itc, f itDc); m = 1,2,.., SN;
f itus: User satisfaction; f itc: correlation ship meeting degree; f itDc: domain constraints
satisfaction degree
19. If (fit (Vm) ≥ fit (xm)) then Xm←Vm ;m = 1, 2 . . . , SN
20. End if
21. Repeat
Local optimization–droven onlook phase
22. psi←Calc selection prob (Fit(x1), Fit (x2), Fit (SN)); I = 1, 2 . . . , SN.
xm←Select (rand (), psi);
Vm←Neighbor exploration (xm,Exploration strategy, η);
Fit (Vm)← Fitness (Vm), ( f itus, f itc, f itDc);
If (Fit (Vm) > Fit (Xm)) then
xm←Vm = 1, 2 . . . SN
23. End if
Store in the memory the best solution achieved so far
Global best solution← optimal selection (x1, x2, . . . ,→ xm, Global best solution);
Arbitration Criteria.
Arbitration criteria (Max time, user satisfaction, best composite service) == true
Return Global best solution2

4. The Simulation Environment

In order to simulate the previously discussed algorithms, the Cloud SIM software
was used to emulate the features, settings, and information utilized. The software ran on a
computer with the following specifications: 16 GB RAM, Intel Core i7 3.2 GHz CPU. Cloud
SIM is an open-source platform for simulating cloud computing services and infrastructure.
It was developed by the CLOUDS Laboratory team and is totally Java-based. It is used
to model and simulate a cloud computing environment and to test the hypothesis before
software development, so that tests and findings may be replicated. The load distribution
system attempts to enhance efficiency by transferring some processes from busy servers to
underloaded servers. In the current study, the components of the Cloud SIM, including the
datacenter, Virtual Machine (VM), host, and cloudlet were used to analyze and perform
the simulation. The cloud SIM has lots of advantages, such as: the software is free to use;
it is easy to use and scalable; the risks can be assessed early in the process; there is no
need for trial-and-error methods. A block description of the components used is presented
in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 23 

 

4. The Simulation Environment 
In order to simulate the previously discussed algorithms, the Cloud SIM software 

was used to emulate the features, settings, and information utilized. The software ran on 
a computer with the following specifications: 16 GB RAM, Intel Core i7 3.2 GHz CPU. 
Cloud SIM is an open-source platform for simulating cloud computing services and 
infrastructure. It was developed by the CLOUDS Laboratory team and is totally Java-
based. It is used to model and simulate a cloud computing environment and to test the 
hypothesis before software development, so that tests and findings may be replicated. The 
load distribution system attempts to enhance efficiency by transferring some processes 
from busy servers to underloaded servers. In the current study, the components of the 
Cloud SIM, including the datacenter, Virtual Machine (VM), host, and cloudlet were used 
to analyze and perform the simulation. The cloud SIM has lots of advantages, such as: the 
software is free to use; it is easy to use and scalable; the risks can be assessed early in the 
process; there is no need for trial-and-error methods. A block description of the 
components used is presented in Figure 6. 

 
Figure 6. The architecture of Cloud sim. 

20. End if 
21. Repeat 
Local optimization–droven onlook phase 
22. 𝑝𝑠 ←Calc selection prob (Fit(x1), Fit (x2), Fit (SN)); I = 1, 2..., SN. 𝑥 ←Select (rand (), 𝑝𝑠 ); 𝑉 ←Neighbor exploration (𝑥 ,Exploration strategy, η); 
Fit (𝑉 ) ← Fitness(𝑉 ), (𝑓𝑖𝑡 ,𝑓𝑖𝑡 ,𝑓𝑖𝑡 ); 
If (Fit (𝑉 ) > Fit (𝑋 )) then 𝑥 ←𝑉  = 1, 2... SN 
23. End if 
Store in the memory the best solution achieved so far 
Global best solution← optimal selection (𝑥 , 𝑥 ,..., → 𝑥 , Global best solution); 
Arbitration Criteria. 
Arbitration criteria (Max time, user satisfaction, best composite service) == true 
Return Global best solution2 

Figure 6. The architecture of Cloud sim.



Sensors 2022, 22, 4873 16 of 22

4.1. The Simulation Data Parameters

We used the Quality of Web Service (QWS) to generate the dataset. We generated qual-
ifier metrics for additional qualitative features, such as practicality, safety, and adaptability,
and we employed six QoS criteria with a standard data format. To make the procedure more
accessible, the classification attributes for security, usability, and flexibility were labeled as
low, medium, and high. Response times were divided (0.5, 2, 3 and etc.) and availability
was divided in values (99.5, 99.9 and 99.999) and, also, for costs there were values (5, 20, 30,
40). After sorting based on QWS, we obtained a dataset with 50 services for the six chosen
criteria. It is essential to highlight the fact that, in order to employ the proposed strategy
in a real-world situation, the service provider must adjust the QoS features accordingly.
Communication between the user and cloud data center was considered between 20–500
and between the user and service set between 50–400. We used Cloud SIM to emulate CC
at SaaS level for testing, since this simulator allows you to create a virtual environment and
manage the supply of resources necessary to meet the users’ demands.

4.2. Results and Discussion

Based on the results obtained, the suggested technique was compared with Moth
flame Optimization (MFO) [3], ABC [51], Greedy (GR) [52], and the Grey wolf optimization
(GWO) algorithms [6], HMM [27] in the same dataset. In this paper, the cost was computed,
based on the sum of the services selected, and other methods were calculated according to
different criteria. The proposed method gives the user reliability to express the importance
of each determining factor. Reliability is usually deployed on virtual machines (VMs)
for some critical areas, such as power supply, traffic control, medical healthcare. In our
method, providing the chromosomes as a service reduced the overall cost, since each
chromosome and gene could find a suitable service, making it less expensive and less
resource-consuming. Figure 7 shows the average cost results versus the number of requests,
for the method proposed in this paper and for the other five ones mentioned above. It can
be easily observed that the proposed method implied a reduced cost in comparison with
the other methods, being followed by the MFO algorithm. HMM achieved an unfavorable
result in the cost criteria.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 23 

 

4.1. The Simulation Data Parameters 
We used the Quality of Web Service (QWS) to generate the dataset. We generated 

qualifier metrics for additional qualitative features, such as practicality, safety, and 
adaptability, and we employed six QoS criteria with a standard data format. To make the 
procedure more accessible, the classification attributes for security, usability, and 
flexibility were labeled as low, medium, and high. Response times were divided (0.5, 2, 3 
and etc.) and availability was divided in values (99.5, 99.9 and 99.999) and, also, for costs 
there were values (5, 20, 30, 40). After sorting based on QWS, we obtained a dataset with 
50 services for the six chosen criteria. It is essential to highlight the fact that, in order to 
employ the proposed strategy in a real-world situation, the service provider must adjust 
the QoS features accordingly. Communication between the user and cloud data center 
was considered between 20–500 and between the user and service set between 50–400. We 
used Cloud SIM to emulate CC at SaaS level for testing, since this simulator allows you to 
create a virtual environment and manage the supply of resources necessary to meet the 
users’ demands. 

4.2. Results and Discussion 
Based on the results obtained, the suggested technique was compared with Moth 

flame Optimization (MFO) [3], ABC [51], Greedy (GR) [52], and the Grey wolf 
optimization (GWO) algorithms [6], HMM [27] in the same dataset. In this paper, the cost 
was computed, based on the sum of the services selected, and other methods were 
calculated according to different criteria. The proposed method gives the user reliability 
to express the importance of each determining factor. Reliability is usually deployed on 
virtual machines (VMs) for some critical areas, such as power supply, traffic control, 
medical healthcare. In our method, providing the chromosomes as a service reduced the 
overall cost, since each chromosome and gene could find a suitable service, making it less 
expensive and less resource-consuming. Figure 7 shows the average cost results versus 
the number of requests, for the method proposed in this paper and for the other five ones 
mentioned above. It can be easily observed that the proposed method implied a reduced 
cost in comparison with the other methods, being followed by the MFO algorithm. HMM 
achieved an unfavorable result in the cost criteria. 

 
Figure 7. Average cost in 50 services and in different numbers of requests. 

With respect to the response time, the cloud was trying to answer to user’s demands 
as fast as possible, in order to provide the desired services. The user’s needs were first 
analyzed and then answered using metaheuristic algorithms in our approach. In the MFO 
algorithm the services were found using the help of butterflies’ algorithms, which, due to 
low convergence speed, had a better response than the one achieved with the ABC 
algorithm. Since in the ABC the worker bee first seeks out the nectar of the food, then, 
after finding suitable food, informs the other bees, this process causes more time to be 

Figure 7. Average cost in 50 services and in different numbers of requests.

With respect to the response time, the cloud was trying to answer to user’s demands
as fast as possible, in order to provide the desired services. The user’s needs were first
analyzed and then answered using metaheuristic algorithms in our approach. In the MFO
algorithm the services were found using the help of butterflies’ algorithms, which, due
to low convergence speed, had a better response than the one achieved with the ABC
algorithm. Since in the ABC the worker bee first seeks out the nectar of the food, then, after
finding suitable food, informs the other bees, this process causes more time to be wasted.
The GWO algorithm achieved similar results to the ones obtained by the ABC algorithm



Sensors 2022, 22, 4873 17 of 22

with respect to response time. In the GWO algorithm, alpha first seeks service, and after
finding a suitable service, informs the herd. Response time elapses between sending a
request and providing the data or declaring an inability to provide the data. It takes time for
a memory circuit or storage device to prepare the requested data by the Central Processing
Unit (CPU). Figure 8 shows the average response times in services versus the number of
requests for MFO, GR, ABC and GWO algorithms, and it can be seen that the proposed
method achieved the lowest response time compared to the other algorithms, followed by
the MFO algorithm. HMM is a complex algorithm, therefore the response time achieved
using this method was not suitable for extensive services.

From the cloud provider and the service consumer’s perspective, availability is one
of the most critical success factors. Availability is the amount of time the equipment and
the associated assets can be used by a certain service at any time instance. In general,
when calculating availability, shutdown times include all scheduled times of maintenance
and repairs, as well as unplanned maintenance and repair operations. The availability
of the proposed method was higher than for the other algorithms it was compared with,
while the GWO and GR algorithms achieved the lowest availability. Figure 9 illustrates the
availability values as a function of the number of requested services.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 23 

 

wasted. The GWO algorithm achieved similar results to the ones obtained by the ABC 
algorithm with respect to response time. In the GWO algorithm, alpha first seeks service, 
and after finding a suitable service, informs the herd. Response time elapses between 
sending a request and providing the data or declaring an inability to provide the data. It 
takes time for a memory circuit or storage device to prepare the requested data by the 
Central Processing Unit (CPU). Figure 8 shows the average response times in services 
versus the number of requests for MFO, GR, ABC and GWO algorithms, and it can be seen 
that the proposed method achieved the lowest response time compared to the other 
algorithms, followed by the MFO algorithm. HMM is a complex algorithm, therefore the 
response time achieved using this method was not suitable for extensive services. 

 
Figure 8. Average response time in 50 services and in different number of requests. 

From the cloud provider and the service consumer’s perspective, availability is one 
of the most critical success factors. Availability is the amount of time the equipment and 
the associated assets can be used by a certain service at any time instance. In general, when 
calculating availability, shutdown times include all scheduled times of maintenance and 
repairs, as well as unplanned maintenance and repair operations. The availability of the 
proposed method was higher than for the other algorithms it was compared with, while 
the GWO and GR algorithms achieved the lowest availability. Figure 9 illustrates the 
availability values as a function of the number of requested services. 

 
Figure 9. Availability in 50 services and in different number of requests. 

Reliability is another important parameter, as defined in Section 3.3, and evaluates 
whether a system or ensemble of systems offering a certain functionality item operate 

Figure 8. Average response time in 50 services and in different number of requests.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 23 

 

wasted. The GWO algorithm achieved similar results to the ones obtained by the ABC 
algorithm with respect to response time. In the GWO algorithm, alpha first seeks service, 
and after finding a suitable service, informs the herd. Response time elapses between 
sending a request and providing the data or declaring an inability to provide the data. It 
takes time for a memory circuit or storage device to prepare the requested data by the 
Central Processing Unit (CPU). Figure 8 shows the average response times in services 
versus the number of requests for MFO, GR, ABC and GWO algorithms, and it can be seen 
that the proposed method achieved the lowest response time compared to the other 
algorithms, followed by the MFO algorithm. HMM is a complex algorithm, therefore the 
response time achieved using this method was not suitable for extensive services. 

 
Figure 8. Average response time in 50 services and in different number of requests. 

From the cloud provider and the service consumer’s perspective, availability is one 
of the most critical success factors. Availability is the amount of time the equipment and 
the associated assets can be used by a certain service at any time instance. In general, when 
calculating availability, shutdown times include all scheduled times of maintenance and 
repairs, as well as unplanned maintenance and repair operations. The availability of the 
proposed method was higher than for the other algorithms it was compared with, while 
the GWO and GR algorithms achieved the lowest availability. Figure 9 illustrates the 
availability values as a function of the number of requested services. 

 
Figure 9. Availability in 50 services and in different number of requests. 

Reliability is another important parameter, as defined in Section 3.3, and evaluates 
whether a system or ensemble of systems offering a certain functionality item operate 

Figure 9. Availability in 50 services and in different number of requests.

Reliability is another important parameter, as defined in Section 3.3, and evaluates
whether a system or ensemble of systems offering a certain functionality item operate
smoothly under specified and predetermined conditions for a specified time interval.
Almost all the methods obtained slightly similar results with respect to the reliability
parameter, even though the proposed method achieved a slightly higher value, as illustrated



Sensors 2022, 22, 4873 18 of 22

in Figure 10. HMM is a predictable algorithm, therefore the reliability of this proposed
method was lower than the ones achieved by the other algorithms.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 23 

 

smoothly under specified and predetermined conditions for a specified time interval. 
Almost all the methods obtained slightly similar results with respect to the reliability 
parameter, even though the proposed method achieved a slightly higher value, as 
illustrated in Figure 10. HMM is a predictable algorithm, therefore the reliability of this 
proposed method was lower than the ones achieved by the other algorithms. 

 
Figure 10. Reliability in 50 different services. 

Figure 11 represents the energy usage as a function of the number of service requests, 
and it can be observed that the MFO algorithm had the best performance in terms of energy 
consumption, while the proposed algorithm obtained close results to the ones achieved by 
MFO, as long as the number of requests was relatively small. However, after 9000 requests, 
the energy consumption increased. The HMM algorithm also achieved good results in 
comparison to the ABC algorithm and GR algorithm, but the energy consumption achieved 
with GWO, MFO and the algorithm proposed in this paper was lower. 

 
Figure 11. Energy consumption in 50 different services. 

Figure 12 shows the algorithms’ convergence versus the number of service requests, 
and it can be observed that the proposed method converged faster than all the other 
methods under our study. Moreover, the convergence achieved its minimum value after 
around 40 iterations. Therefore, the results have been represented only till 100 iterations. 

Figure 10. Reliability in 50 different services.

Figure 11 represents the energy usage as a function of the number of service requests,
and it can be observed that the MFO algorithm had the best performance in terms of energy
consumption, while the proposed algorithm obtained close results to the ones achieved by
MFO, as long as the number of requests was relatively small. However, after 9000 requests,
the energy consumption increased. The HMM algorithm also achieved good results in
comparison to the ABC algorithm and GR algorithm, but the energy consumption achieved
with GWO, MFO and the algorithm proposed in this paper was lower.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 23 

 

smoothly under specified and predetermined conditions for a specified time interval. 
Almost all the methods obtained slightly similar results with respect to the reliability 
parameter, even though the proposed method achieved a slightly higher value, as 
illustrated in Figure 10. HMM is a predictable algorithm, therefore the reliability of this 
proposed method was lower than the ones achieved by the other algorithms. 

 
Figure 10. Reliability in 50 different services. 

Figure 11 represents the energy usage as a function of the number of service requests, 
and it can be observed that the MFO algorithm had the best performance in terms of energy 
consumption, while the proposed algorithm obtained close results to the ones achieved by 
MFO, as long as the number of requests was relatively small. However, after 9000 requests, 
the energy consumption increased. The HMM algorithm also achieved good results in 
comparison to the ABC algorithm and GR algorithm, but the energy consumption achieved 
with GWO, MFO and the algorithm proposed in this paper was lower. 

 
Figure 11. Energy consumption in 50 different services. 

Figure 12 shows the algorithms’ convergence versus the number of service requests, 
and it can be observed that the proposed method converged faster than all the other 
methods under our study. Moreover, the convergence achieved its minimum value after 
around 40 iterations. Therefore, the results have been represented only till 100 iterations. 

Figure 11. Energy consumption in 50 different services.

Figure 12 shows the algorithms’ convergence versus the number of service requests,
and it can be observed that the proposed method converged faster than all the other
methods under our study. Moreover, the convergence achieved its minimum value after
around 40 iterations. Therefore, the results have been represented only till 100 iterations.

The stability of an algorithm measures how good a job the algorithm does at solv-
ing problems to the achievable accuracy defined by their conditioning. Stability is often
identified as a sensitivity to the disruption of input data during the process of selecting
significant features. Another critical test for metaheuristic algorithms is determining the
stability due to the unpredictable and uncertain character of metaheuristic algorithms.
Figure 13 compares the stability of the proposed method with other techniques for different
tasks and iterations. The strength of agreement of the stability index was divided into
three parts: weak, medium, and excellent. If the stability value was less than 0.55 the
criteria of value it was considered excellent, or if the result was between 0.56 and 0.69 it
was considered medium, and higher than 0.7 it was considered weak. Stability is the algo-



Sensors 2022, 22, 4873 19 of 22

rithm’s capacity to generate similar replies for multiple performances. The five algorithms’
stabilities are depicted in Figure 13 as a function of the number of iterations. It can be seen
that the proposed method achieved the best results concerning that parameter. Due to
combining the ABC algorithm and GA more problems could be solved compared with the
other algorithms.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 23 

 

Fi
tn

es
s 

fu
nc

ti
on

 
Figure 12. Convergence in 80 tasks and 100 rounds. 

The stability of an algorithm measures how good a job the algorithm does at solving 
problems to the achievable accuracy defined by their conditioning. Stability is often 
identified as a sensitivity to the disruption of input data during the process of selecting 
significant features. Another critical test for metaheuristic algorithms is determining the 
stability due to the unpredictable and uncertain character of metaheuristic algorithms. 
Figure 13 compares the stability of the proposed method with other techniques for 
different tasks and iterations. The strength of agreement of the stability index was divided 
into three parts: weak, medium, and excellent. If the stability value was less than 0.55 the 
criteria of value it was considered excellent, or if the result was between 0.56 and 0.69 it 
was considered medium, and higher than 0.7 it was considered weak. Stability is the 
algorithm’s capacity to generate similar replies for multiple performances. The five 
algorithms’ stabilities are depicted in Figure 13 as a function of the number of iterations. 
It can be seen that the proposed method achieved the best results concerning that 
parameter. Due to combining the ABC algorithm and GA more problems could be solved 
compared with the other algorithms. 

 
Figure 13. Stability in 80 tasks and 30 times the implementation of the algorithm. 

Figure 14 shows the assessment of network resource consumption for all the methods 
studied, where the 50 services considered different numbers of requests. This figure 
clearly shows that the proposed algorithm had the lowest network resource usage 

Figure 12. Convergence in 80 tasks and 100 rounds.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 23 

 

Fi
tn

es
s 

fu
nc

ti
on

 
Figure 12. Convergence in 80 tasks and 100 rounds. 

The stability of an algorithm measures how good a job the algorithm does at solving 
problems to the achievable accuracy defined by their conditioning. Stability is often 
identified as a sensitivity to the disruption of input data during the process of selecting 
significant features. Another critical test for metaheuristic algorithms is determining the 
stability due to the unpredictable and uncertain character of metaheuristic algorithms. 
Figure 13 compares the stability of the proposed method with other techniques for 
different tasks and iterations. The strength of agreement of the stability index was divided 
into three parts: weak, medium, and excellent. If the stability value was less than 0.55 the 
criteria of value it was considered excellent, or if the result was between 0.56 and 0.69 it 
was considered medium, and higher than 0.7 it was considered weak. Stability is the 
algorithm’s capacity to generate similar replies for multiple performances. The five 
algorithms’ stabilities are depicted in Figure 13 as a function of the number of iterations. 
It can be seen that the proposed method achieved the best results concerning that 
parameter. Due to combining the ABC algorithm and GA more problems could be solved 
compared with the other algorithms. 

 
Figure 13. Stability in 80 tasks and 30 times the implementation of the algorithm. 

Figure 14 shows the assessment of network resource consumption for all the methods 
studied, where the 50 services considered different numbers of requests. This figure 
clearly shows that the proposed algorithm had the lowest network resource usage 

Figure 13. Stability in 80 tasks and 30 times the implementation of the algorithm.

Figure 14 shows the assessment of network resource consumption for all the methods
studied, where the 50 services considered different numbers of requests. This figure clearly
shows that the proposed algorithm had the lowest network resource usage consumption
when compared to the other methods. At the same time, the HMM algorithm was more
often used than the different metaheuristic algorithms. Compared with HMM and GWO,
our proposed method kept nearly 40 percent, on average, in network resources, regardless
of the number of services.



Sensors 2022, 22, 4873 20 of 22

Sensors 2022, 22, x FOR PEER REVIEW 21 of 23 

 

consumption when compared to the other methods. At the same time, the HMM 
algorithm was more often used than the different metaheuristic algorithms. Compared 
with HMM and GWO, our proposed method kept nearly 40 percent, on average, in 
network resources, regardless of the number of services. 

 
Figure 14. Network usage consumption in 50 different services. 

5. Conclusions and Future Work 
Cloud Computing (CC) has become very popular, due to the benefits offered by 

cloud services, notably facilities provided by hardware and software and the relatively 
low cost of the equipment from the user’s point of view. The composition of different 
services face Np-hard issues, and one single service cannot respond to a large and 
complex request. These factors determined the necessity of using services composition to 
develop larger services with superior functionalities. In this paper, GA uses the penalty 
approach in cases of violation dependency and incompatibility constraints, but this does 
not mean that the impossible solution is completely eliminated. Impossible solutions help 
in reaching an achievable solution faster and achieving the customer’s composite service 
more quickly. In this technique, the GA selects the appropriate services according to user 
needs. Then, the ABC algorithm evaluates the services selected by GA and combines them, 
if the services are appropriate. Several experiments were performed with various tasks in 
Cloud-SIM simulation. The proposed method performed excellently with regards to 
response time, reliability, and cost, compared to other algorithms. Its energy consumption 
was higher than the MFO algorithm. 

In the future, work could be performed using a neural network in GA. First, the GA 
performs its typical operations and calculates the chromosomes’ suitability by considering 
all inter-service relationships and modes. Simultaneously, the chromosome and its degree 
of suitability are given as input to the neural network algorithm in order to train it during 
the learning phase. The neural network algorithm predicts the fitness function for the 
chromosome, and, thus, the GA works normally until the ABC algorithm carries out the 
combining of the service. A predictable algorithm, such as HMM and Topsis algorithms, 
can be helpful for service composition in cloud computing as well, and the researchers 
can use the HMM algorithm to predict the QoS and recommend the appropriate services 
for users according to their needs. 

Author Contributions: Conceptualization, S.S.S.; methodology, S.S.S.; software, S.S.S.; validation, 
S.S.S. and S.H.; formal analysis, S.S.S.; investigation, S.S.S.; resources, S.S.S. and S.H.; data curation, 
S.S.S.; writing—original draft preparation, S.S.S. and S.H.; writing—review and editing, S.H.; 
supervision, S.H.; project administration, S.H; funding acquisition, S.H. All authors have read and 
agreed to the published version of the manuscript. 

Figure 14. Network usage consumption in 50 different services.

5. Conclusions and Future Work

Cloud Computing (CC) has become very popular, due to the benefits offered by cloud
services, notably facilities provided by hardware and software and the relatively low cost
of the equipment from the user’s point of view. The composition of different services face
Np-hard issues, and one single service cannot respond to a large and complex request.
These factors determined the necessity of using services composition to develop larger
services with superior functionalities. In this paper, GA uses the penalty approach in cases
of violation dependency and incompatibility constraints, but this does not mean that the
impossible solution is completely eliminated. Impossible solutions help in reaching an
achievable solution faster and achieving the customer’s composite service more quickly. In
this technique, the GA selects the appropriate services according to user needs. Then, the
ABC algorithm evaluates the services selected by GA and combines them, if the services
are appropriate. Several experiments were performed with various tasks in Cloud-SIM
simulation. The proposed method performed excellently with regards to response time,
reliability, and cost, compared to other algorithms. Its energy consumption was higher than
the MFO algorithm.

In the future, work could be performed using a neural network in GA. First, the GA
performs its typical operations and calculates the chromosomes’ suitability by considering
all inter-service relationships and modes. Simultaneously, the chromosome and its degree
of suitability are given as input to the neural network algorithm in order to train it during
the learning phase. The neural network algorithm predicts the fitness function for the
chromosome, and, thus, the GA works normally until the ABC algorithm carries out the
combining of the service. A predictable algorithm, such as HMM and Topsis algorithms,
can be helpful for service composition in cloud computing as well, and the researchers can
use the HMM algorithm to predict the QoS and recommend the appropriate services for
users according to their needs.

Author Contributions: Conceptualization, S.S.S.; methodology, S.S.S.; software, S.S.S.; validation,
S.S.S. and S.H.; formal analysis, S.S.S.; investigation, S.S.S.; resources, S.S.S. and S.H.; data curation,
S.S.S.; writing—original draft preparation, S.S.S. and S.H.; writing—review and editing, S.H.; super-
vision, S.H.; project administration, S.H; funding acquisition, S.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This study has been conducted under the project ‘Mobility and Training foR beyond 5G
ecosystems (MOTOR5G)’. The project has received funding from the European Union’s Horizon 2020
programme under the Marie Skłodowska Curie Actions (MSCA) Innovative Training Network (ITN)
having grant agreement No. 861219.

Institutional Review Board Statement: Not applicable.



Sensors 2022, 22, 4873 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This study has been conducted under the project ‘Mobility and Training foR
beyond 5G ecosystems (MOTOR5G)’. The project has received funding from the European Union’s
Horizon 2020 programme under the Marie Skłodowska Curie Actions (MSCA) Innovative Training
Network (ITN) having grant agreement No. 861219.

Conflicts of Interest: The authors confirm that there is no conflict of interest in this research paper.

References
1. Bella, H.K.; Vasundra, S. A study of Security Threats and Attacks in Cloud Computing. In Proceedings of the 2022 4th International

Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 658–666.
2. Li, F.; Lu, H.; Hou, M.; Cui, K.; Darbandi, M. Customer satisfaction with bank services: The role of cloud services, security,

e-learning and service quality. Technol. Soc. 2021, 64, 101487. [CrossRef]
3. Ghobaei-Arani, M.; Rahmanian, A.A.; Souri, A.; Rahmani, A.M. A moth-flame optimization algorithm for web service composition

in cloud computing: Simulation and verification. Softw. Pract. Exp. 2018, 48, 1865–1892. [CrossRef]
4. Sefati, S.; Mousavinasab, M.; Zareh Farkhady, R. Load balancing in cloud computing environment using the Grey wolf optimiza-

tion algorithm based on the reliability: Performance evaluation. J. Supercomput. 2022, 78, 18–42. [CrossRef]
5. Cho, S.; Hwang, S.; Shin, W.; Kim, N.; In, H.P. Design of military service framework for enabling migration to military SaaS cloud

environment. Electronics 2021, 10, 572. [CrossRef]
6. Yang, Y.; Yang, B.; Wang, S.; Liu, W.; Jin, T. An improved grey wolf optimizer algorithm for energy-aware service composition in

cloud manufacturing. Int. J. Adv. Manuf. Technol. 2019, 105, 3079–3091. [CrossRef]
7. Manvi, S.S.; Shyam, G.K. Resource management for Infrastructure as a Service (IaaS) in cloud computing: A survey. J. Netw.

Comput. Appl. 2014, 41, 424–440. [CrossRef]
8. Hajipour, V.; Niaki, S.T.A.; Rahbarjou, M. An optimisation model for cloud-based supply chain network design: Case study in the

banking industry. Int. J. Commun. Netw. Distrib. Syst. 2021, 27, 119–146. [CrossRef]
9. Rahimi, M.; Navimipour, N.J.; Hosseinzadeh, M.; Moattar, M.H.; Darwesh, A. Toward the efficient service selection approaches in

cloud computing. Kybernetes 2021, 51, 1388–1412. [CrossRef]
10. Slimani, S.; Hamrouni, T.; Ben Charrada, F. Service-oriented replication strategies for improving quality-of-service in cloud

computing: A survey. Clust. Comput. 2021, 24, 361–392. [CrossRef]
11. Ye, Z.; Zhou, X.; Bouguettaya, A. Genetic algorithm based QoS-aware service compositions in cloud computing. In International

Conference on Database Systems for Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 321–334.
12. Buyya, R.; Ranjan, R.; Calheiros, R.N. Intercloud: Utility-oriented federation of cloud computing environments for scaling of

application services. In International Conference on Algorithms and Architectures for Parallel Processing; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 13–31.

13. Mezgár, I.; Rauschecker, U. The challenge of networked enterprises for cloud computing interoperability. Comput. Ind. 2014,
65, 657–674. [CrossRef]

14. Sefati, S.; Navimipour, N.J. A qos-aware service composition mechanism in the internet of things using a hidden-markov-model-
based optimization algorithm. IEEE Internet Things J. 2021, 8, 15620–15627. [CrossRef]

15. Zheng, Z.; Zhu, J.; Lyu, M.R. Service-generated big data and big data-as-a-service: An overview. In Proceedings of the 2013 IEEE
International Congress on Big Data, Santa Clara, CA, USA, 6–9 October 2013; pp. 403–410.

16. Zeng, L.; Benatallah, B.; Ngu, A.H.; Dumas, M.; Kalagnanam, J.; Chang, H. QoS-aware middleware for web services composition.
IEEE Trans. Softw. Eng. 2004, 30, 311–327. [CrossRef]

17. Bauer, E.; Adams, R. Reliability and Availability of Cloud Computing; John Wiley & Sons: Hoboken, NJ, USA, 2012.
18. Latif, R.; Abbas, H.; Assar, S.; Ali, Q. Cloud computing risk assessment: A systematic literature review. Future Inf. Technol. 2014,

276, 285–295.
19. Garrison, G.; Kim, S.; Wakefield, R.L. Success factors for deploying cloud computing. Commun. ACM 2012, 55, 62–68. [CrossRef]
20. Amin, Z.; Singh, H.; Sethi, N. Review on fault tolerance techniques in cloud computing. Int. J. Comput. Appl. 2015, 116. [CrossRef]
21. Sefati, S.; Abdi, M.; Ghaffari, A. Cluster-based data transmission scheme in wireless sensor networks using black hole and ant

colony algorithms. Int. J. Commun. Syst. 2021, 34, e4768. [CrossRef]
22. Chaisiri, S.; Lee, B.-S.; Niyato, D. Optimization of resource provisioning cost in cloud computing. IEEE Trans. Serv. Comput. 2011,

5, 164–177. [CrossRef]
23. Almufti, S.M.; Marqas, R.B.; Othman, P.S.; Sallow, A.B. Single-based and Population-based Metaheuristics for Solving NP-hard

Problems. Iraqi J. Sci. 2021, 62, 1710–1720.
24. Azhir, E.; Jafari Navimipour, N.; Hosseinzadeh, M.; Sharifi, A.; Darwesh, A. Deterministic and non-deterministic query

optimization techniques in the cloud computing. Concurr. Comput. Pract. Exp. 2019, 31, e5240. [CrossRef]

http://doi.org/10.1016/j.techsoc.2020.101487
http://doi.org/10.1002/spe.2598
http://doi.org/10.1007/s11227-021-03810-8
http://doi.org/10.3390/electronics10050572
http://doi.org/10.1007/s00170-019-04449-9
http://doi.org/10.1016/j.jnca.2013.10.004
http://doi.org/10.1504/IJCNDS.2021.116796
http://doi.org/10.1108/K-02-2021-0129
http://doi.org/10.1007/s10586-020-03108-z
http://doi.org/10.1016/j.compind.2014.01.017
http://doi.org/10.1109/JIOT.2021.3074499
http://doi.org/10.1109/TSE.2004.11
http://doi.org/10.1145/2330667.2330685
http://doi.org/10.5120/20435-2768
http://doi.org/10.1002/dac.4768
http://doi.org/10.1109/TSC.2011.7
http://doi.org/10.1002/cpe.5240


Sensors 2022, 22, 4873 22 of 22

25. Yaghoubi, M.; Maroosi, A. Simulation and modeling of an improved multi-verse optimization algorithm for QoS-aware web
service composition with service level agreements in the cloud environments. Simul. Model. Pract. Theory 2020, 103, 102090.
[CrossRef]

26. Song, Y.; Wang, Y.; Jin, D. A Bayesian approach based on bayes minimum risk decision for reliability assessment of Web service
composition. Future Internet 2020, 12, 221. [CrossRef]

27. Jia, Z.-C.; Lu, Y.; Li, X.; Xing, X. HMM-based fault diagnosis for Web service composition. J. Comput. 2020, 31, 18–33.
28. Kumar, R.R.; Kumari, B.; Kumar, C. CCS-OSSR: A framework based on hybrid MCDM for optimal service selection and ranking

of cloud computing services. Clust. Comput. 2021, 24, 867–883. [CrossRef]
29. S.S., V.C.; H.S., A. Nature inspired meta heuristic algorithms for optimization problems. Computing 2022, 104, 251–269. [CrossRef]
30. Zhang, W.; Yang, Y.; Zhang, S.; Yu, D.; Li, Y. Correlation-aware manufacturing service composition model using an extended

flower pollination algorithm. Int. J. Prod. Res. 2018, 56, 4676–4691. [CrossRef]
31. Alamri, A. Nature-inspired multimedia service composition in a media cloud-based healthcare environment. Clust. Comput. 2016,

19, 2251–2260. [CrossRef]
32. Jatoth, C.; Gangadharan, G.; Buyya, R. Optimal fitness aware cloud service composition using an adaptive genotypes evolution

based genetic algorithm. Future Gener. Comput. Syst. 2019, 94, 185–198. [CrossRef]
33. Liu, Z.; Wang, L.; Li, X.; Pang, S. A multi-attribute personalized recommendation method for manufacturing service composition

with combining collaborative filtering and genetic algorithm. J. Manuf. Syst. 2021, 58, 348–364. [CrossRef]
34. He, W.; Xu, L. A state-of-the-art survey of cloud manufacturing. Int. J. Comput. Integr. Manuf. 2015, 28, 239–250. [CrossRef]
35. Su, Q.; Chen, L. A method for discovering clusters of e-commerce interest patterns using click-stream data. Electron. Commer. Res.

Appl. 2015, 14, 1–13. [CrossRef]
36. Xu, M.; Liu, S. Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based

social networks. IEEE Access 2019, 7, 17493–17502. [CrossRef]
37. Li, X.; Ma, H.; Zhou, F.; Yao, W. T-broker: A trust-aware service brokering scheme for multiple cloud collaborative services. IEEE

Trans. Inf. Forensics Secur. 2015, 10, 1402–1415. [CrossRef]
38. Kuang, L.; Yu, L.; Huang, L.; Wang, Y.; Ma, P.; Li, C.; Zhu, Y. A personalized QoS prediction approach for CPS service

recommendation based on reputation and location-aware collaborative filtering. Sensors 2018, 18, 1556. [CrossRef]
39. Su, K.; Xiao, B.; Liu, B.; Zhang, H.; Zhang, Z. TAP: A personalized trust-aware QoS prediction approach for web service

recommendation. Knowl. Based Syst. 2017, 115, 55–65. [CrossRef]
40. Li, X.; Ma, H.; Yao, W.; Gui, X. Data-driven and feedback-enhanced trust computing pattern for large-scale multi-cloud

collaborative services. IEEE Trans. Serv. Comput. 2015, 11, 671–684. [CrossRef]
41. Rochwerger, B.; Breitgand, D.; Levy, E.; Galis, A.; Nagin, K.; Llorente, I.M.; Montero, R.; Wolfsthal, Y.; Elmroth, E.; Caceres, J. The

reservoir model and architecture for open federated cloud computing. IBM J. Res. Dev. 2009, 53, 4:1–4:11. [CrossRef]
42. Da Cunha Rodrigues, G.; Calheiros, R.N.; Guimaraes, V.T.; Santos, G.L.d.; De Carvalho, M.B.; Granville, L.Z.; Tarouco, L.M.R.;

Buyya, R. Monitoring of cloud computing environments: Concepts, solutions, trends, and future directions. In Proceedings of the
31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 4–8 April 2016; pp. 378–383.

43. Furht, B.; Escalante, A. Handbook of Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2010; Volume 3.
44. Badshah, A.; Ghani, A.; Shamshirband, S.; Aceto, G.; Pescapè, A. Performance-based service-level agreement in cloud computing

to optimise penalties and revenue. IET Commun. 2020, 14, 1102–1112. [CrossRef]
45. Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Service composition approaches in IoT: A systematic review. J. Netw. Comput. Appl.

2018, 120, 61–77. [CrossRef]
46. Kuo, M.-H. Opportunities and challenges of cloud computing to improve health care services. J. Med. Internet Res. 2011, 13, e1867.

[CrossRef]
47. Fernandes, D.A.; Soares, L.F.; Gomes, J.V.; Freire, M.M.; Inácio, P.R. Security issues in cloud environments: A survey. Int. J. Inf.

Secur. 2014, 13, 113–170. [CrossRef]
48. Yu, T.; Lin, K.-J. A broker-based framework for qos-aware web service composition. In Proceedings of the 2005 IEEE International

Conference on e-Technology, e-Commerce and e-Service, Hong Kong, China, 29 March–1 April 2005; pp. 22–29.
49. Karimi, M.B.; Isazadeh, A.; Rahmani, A.M. QoS-aware service composition in cloud computing using data mining techniques

and genetic algorithm. J. Supercomput. 2017, 73, 1387–1415. [CrossRef]
50. Channabasavaiah, K.; Holley, K.; Tuggle, E. Migrating to a service-oriented architecture. IBM Dev. 2003, 16, 727–728.
51. Zanbouri, K.; Jafari Navimipour, N. A cloud service composition method using a trust-based clustering algorithm and honeybee

mating optimization algorithm. Int. J. Commun. Syst. 2020, 33, e4259. [CrossRef]
52. Ma, H.; Wang, A.; Zhang, M. A hybrid approach using genetic programming and greedy search for QoS-aware web service

composition. In Transactions on Large-Scale Data-and Knowledge-Centered Systems XVIII; Springer: Berlin/Heidelberg, Germany,
2015; pp. 180–205.

http://doi.org/10.1016/j.simpat.2020.102090
http://doi.org/10.3390/fi12120221
http://doi.org/10.1007/s10586-020-03166-3
http://doi.org/10.1007/s00607-021-00955-5
http://doi.org/10.1080/00207543.2017.1402137
http://doi.org/10.1007/s10586-016-0647-9
http://doi.org/10.1016/j.future.2018.11.022
http://doi.org/10.1016/j.jmsy.2020.12.019
http://doi.org/10.1080/0951192X.2013.874595
http://doi.org/10.1016/j.elerap.2014.10.002
http://doi.org/10.1109/ACCESS.2019.2895824
http://doi.org/10.1109/TIFS.2015.2413386
http://doi.org/10.3390/s18051556
http://doi.org/10.1016/j.knosys.2016.09.033
http://doi.org/10.1109/TSC.2015.2475743
http://doi.org/10.1147/JRD.2009.5429058
http://doi.org/10.1049/iet-com.2019.0855
http://doi.org/10.1016/j.jnca.2018.07.013
http://doi.org/10.2196/jmir.1867
http://doi.org/10.1007/s10207-013-0208-7
http://doi.org/10.1007/s11227-016-1814-8
http://doi.org/10.1002/dac.4259

	Introduction 
	Related Work 
	Deterministic Methods 
	Metaheuristic Methods 
	Service Recommendation Methods 
	Comparison and Overview 

	Motivation 
	Problem Statement 
	The QoS-Aware Service Composition 
	Objective Attributes of QoS 
	ABCGA Algorithm 

	The Simulation Environment 
	The Simulation Data Parameters 
	Results and Discussion 

	Conclusions and Future Work 
	References

