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Abstract: Biosensing technologies are required for point-of-care testing (POCT). We determine some
physical parameters such as molecular charge and mass, redox potential, and reflective index for
measuring biological phenomena. Among such technologies, biologically coupled gate field-effect
transistor (Bio-FET) sensors are a promising candidate as a type of potentiometric biosensor for the
POCT because they enable the direct detection of ionic and biomolecular charges in a miniaturized
device. However, we need to reconsider some technical issues of Bio-FET sensors to expand their
possible use for biosensing in the future. In this perspective, the technical issues of Bio-FET sensors
are pointed out, focusing on the shielding effect, pH signals, and unique parameters of FETs for
biosensing. Moreover, other attractive features of Bio-FET sensors are described in this perspective,
such as the integration and the semiconductive materials used for the Bio-FET sensors.

Keywords: biosensing; potentiometric biosensor; biologically coupled gate field-effect transistor
(Bio-FET); ionic and biomolecular charge; Debye length; measurement solution; pH response;
subthreshold slope; semiconductive material; integrated device

1. Introduction

Ionic or biomolecular charges induce a change in potential at the electrolyte solu-
tion/electrode interface. As a type of potentiometric biosensor, biologically coupled gate
field-effect transistors (Bio-FETs), which are originally based on solution-gated FETs, are at-
tracting attention worldwide [1–6]. This is probably because various types of biomolecules
with charges can be directly detected as electrical signals with the Bio-FETs in a label-free
and real-time manner, and various semiconductive materials can also be applied to biosens-
ing [7–14]. Furthermore, the integrated Bio-FET chip based on a complementary metal
oxide semiconductor (CMOS) technology enables the simultaneous detection of multiple
samples [15].

However, some critical issues constrain such advantages of the Bio-FETs, such as the
shielding effect due to counter ions (Debye length limit) and the fabrication process. The
Debye length limit is controlled by changing the ionic strength in a measurement solution,
that is, diluted measurement solutions are useful for improving the detection sensitivity of
the Bio-FETs to charged biomolecules because of the reduction in the shielding effect by
counter ions [16–30]. Although the dilution of measurement solutions contributes to the
improvement, it is not useful for real samples with high ionic strengths such as blood in a
real-time measurement [30], depending on the application. On the other hand, solution-
gated FETs are promising for the detection of changes in pH owing to the equilibrium
reaction between hydrogen ions with the smallest size and hydroxy groups at an oxide gate
insulator, in accordance with the Nernstian response. That is, the detection of changes in pH
induced by biological phenomena may be straightforward and effective for biosensing with
solution-gated FETs [31–41], although various receptor molecules should be modified on
the gate electrode to specifically and selectively detect target biomolecules and to broaden
the applications of Bio-FETs as a platform technology for biosensing, considering the Debye
length limit.
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Moreover, the Bio-FETs are not simple potentiometric biosensors. In other words,
their features can be effectively utilized for biosensing. For instance, the subthreshold
slope (SS) near the thermal limit contributes to a large shift in drain current (ID) at a
constant gate voltage (VG) in the SS region, indicating a high sensitivity with a low limit
of detection (LOD) [14,42,43]. Alternatively, the capacitive components of functional
polymer membranes on the gate electrode are electrically changed by the interaction with
noncharged biomolecules [41,44,45].

Considering the above, the technical issues of the Bio-FETs are pointed out in this
perspective, focusing on the shielding effect, pH signals, and the unique parameters of
FETs for biosensing.

2. How Is the Measurement Solution Used?

Around two decades ago, a nonoptical and label-free DNA analytical method was
proposed on the basis of Bio-FET technology [17–28]. Not only were DNA molecules an
easy target for Bio-FETs owing to their molecular charges based on phosphate groups, but
the development of label-free DNA chips was also actively pursued as one of the post-
genome technologies. Single-stranded DNA probes were chemically tethered on the gate
electrode, and then the complementary DNA targets were hybridized with the probes, the
immobilization density of which was at least on the order of, ca., 1011/cm2 [26], inducing
the change in the density of negative charges on the gate electrode (Figure 1). Moreover,
extension reactions were performed for nonhybridized sequences of target DNA partly
complementary to the probe on the gate electrode, resulting in the increase in the density
of negative charges. Indeed, these reactions were successfully detected for DNA molecules
with a few tens of bases on the basis of the principle of Bio-FETs, whereas longer DNA
sequences could not be electrically detected [27]. However, relatively long DNA molecules
of approximately 5–10 nm in length could be detected with the Bio-FETs as expected.
This expectation was based on the detection of DNA molecular recognition events in a
measurement buffer solution with a relatively low ionic strength (i.e., relatively large
Debye length) after the bound/free (B/F) molecule separation for each reaction. That is,
targeted molecules are specifically bound to substrates, whereas molecules nonspecifically
and unexpectedly adsorbed there are washed out. Note that the same buffer solution
should be used for each measurement after the B/F molecule separation because the effect
of buffer concentration on signal drifts could be neglected. This means that the DNA
chip for applications such as single-nucleotide polymorphism (SNP) genotyping, which
is based on the hybridization or extension reaction, is tolerant to the B/F separation in
every measurement. Thus, the diluted measurement solution can be used for reducing
the shielding effect by counter ions. In addition, the B/F separation may be needed to
wash out the gate electrode and reduce the nonspecific adsorptions of interfering species
with charges. Then, the same measurement solution should be used before and after the
reactions to maintain the Debye length. Their applications do not necessarily require the
in situ measurement of real samples containing more counter ions. Similarly, the above
consideration is also applicable to antigen–antibody reactions and so forth [29].

Figure 1. Schematic illustration of measurement process with Bio-FET.
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3. Straightforward Mechanism in Bio-FETs

A general cell culture medium includes various ions and chemicals such as serum
and glucose. As described in Section 2, in such a medium, the shielding effect caused by
counter ions is a problem because Bio-FETs are very insensitive to the changes in the density
of molecular charges based on biomolecular recognition events on the gate electrode in
the cell culture medium. In other words, nonspecific electrical signals can be prevented
from interfering with species in the cell culture medium because some proteins contained
in it have been nonspecifically adsorbed on the gate electrode during preculture. Then,
what specific targets are detected by the Bio-FETs under this condition? Hydrogen ions, in
particular, which have the smallest size, induce changes in pH. Actually, cellular respiration
activities can be easily and continuously monitored for any living cells using Bio-FETs
with an oxide gate electrode in the cell culture medium [32,34–40]. Some proteins in the
cell culture medium are adsorbed at the oxide gate surface during preculture, resulting
in the adhesion of cells at the substrate. These macromolecules prevent targeted ionic
charges from coming into contact with the gate, but hydrogen ions can easily attach to the
oxide gate surface, where the equilibrium reaction between hydroxyl groups and hydrogen
ions contributes to the change in the charge density at the oxide gate electrode (Figure 2).
Moreover, hydrogen ions are concentrated in the closed nanogap space between the cell
membrane and the oxide gate electrode [36,38]. This detection mechanism is very simple,
that is, living cells are simply cultured on the oxide gate electrode of the original solution-
gated FET (i.e., pH-responsive ion-sensitive FET (ISFET)) for monitoring cellular respiration,
although there is a report that the action potential of nerve cells can be monitored in less
than one second on the basis of the capacitive coupling model of the cell membrane and
the oxide gate electrode [46]. In addition, the cell culture medium with high ionic strength
contributes to the reduction in the effect of other ionic and biomolecular charges on the
output signal by minimizing the Debye length. This is a straightforward mechanism in
the pH-responsive ISFET. As a similar case, we had a breakthrough in label-free DNA
sequencing with arrayed ISFET devices based on the CMOS process, which resulted in
massively parallel DNA sequencing followed by a cost-effective and high-speed gene
analysis [15]. This method was based on the detection of ionic charges, that is, not negative
charges of extended base pairs mentioned in Section 2 but positive charges of hydrogen ions
generated by enzymatic reactions as byproducts [31]. This means that the pH-responsive
ISFET was principally utilized for label-free DNA sequencing, which makes the Debye
length limit almost negligible. Thus, it is also important to reconsider the intrinsic features
of Bio-FETs, which allow the stable monitoring without additional modifications of the
gate electrode.

Figure 2. Schematic illustration of nanogap interface between cell and Bio-FET.

4. Features of Transistor for Biosensing

In general, biomolecular recognition events can be analyzed from transistor charac-
teristics such as a VG–ID transfer characteristic (e.g., ∆VG at a constant ID regarded as a
threshold voltage shift (∆VT)) (Figure 3). Mostly, ∆VG at a constant ID before and after
various biomolecular recognition events (e.g., DNA hybridization) is estimated in the linear
region of Bio-FETs. This evaluation method is appropriate for potentiometric biosensors.
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Indeed, pH-responsive ISFETs ideally show the Nernstian response (59.2 mV/pH at 25 ◦C)
on the basis of ∆VG at a constant ID (∆VT). On the other hand, ultrasensitive recognition of
biomolecules is expected in the subthreshold regime of Bio-FETs (Figure 3). For instance,
the solution-gated FET with a 20 nm thick indium tin oxide (ITO) channel exhibited a
markedly steep SS, which was very close to the thermal limit (60 mV/dec at 300 K) and may
result in a steep SS of less than 60 mV/dec in two-dimensional (2D)-FETs [14]. As a result,
the electrical signals measured in the subthreshold regime were about 10 times larger than
those measured in the linear regime, which could contribute to the ultrasensitive detection
of biomolecules. Moreover, the sensitivity of one-dimensional (1D) nanowire-FET sensors
was exponentially enhanced in the subthreshold regime [43]. Thus, the intrinsic features of
Bio-FETs should be further improved for biosensing. Note that the Bio-FETs with steeper
SS should also be developed not only as simple potentiometric biosensors, although their
electrical stabilities have to be improved for the measurements in electrolyte solutions.
With these features, 1D and 2D semiconductive materials (1D, e.g., silicon nanowire and
carbon nanotube; 2D, e.g., graphene and molybdenum disulfide (MoS2)) are attractive for
the development of novel Bio-FETs owing to their high responsiveness [7–11,14,43].

Figure 3. Schematic illustration of VGS–IDS transfer curve of Bio-FET.

Moreover, ∆VT in the solution-gated FETs is based on the change in the density of ionic
and molecular charges at the gate electrode. As mentioned in Section 1, the equilibrium
reaction between hydrogen ions and hydroxyl groups at the oxide gate electrode contributes
to the change in the charge density at the gate electrode surface, which depends on pH. pH-
responsive ISFETs with the oxide gate electrode (e.g., Ta2O5) ideally follow the Nernstian
response because the site density of hydroxy groups at the Ta2O5 surface is expected to be
about 1015/cm2 [47], which is sufficiently high. That is, regardless of the area of the oxide
gate electrode, which comes in direct contact with electrolyte solutions, such pH-responsive
ISFETs must show the Nernstian response with the change in pH if the change in the
charge density is identical. In accordance with this concept, the smaller the area of the
gate electrode, the fewer the number of biomolecules reacting at the gate electrode surface.
This indicates that a single-biomolecule measurement may be realized using Bio-FETs with
a smaller area of the gate electrode on a molecular scale. Actually, the nanowire-based
Bio-FETs appear to show an ultrasensitive biomolecular recognition [7]. In addition, the pH
responsivity may be increased beyond the Nernst limit using dual-gate FETs with nanowires
on the basis of the capacitive coupling effect between the liquid and bottom gates [48–50].
Note that the amplification of electrical signals based on the detection principle may
include that of background noise derived from interfering species, leakage, photoinduced
fluctuations, and the temperature effect, as well as that of specific signals expected from
targeted biomolecules. That is, some treatments such as surface modifications of functional
membranes at the active gate electrode are required for increasing the signal-to-noise
ratio (S/N).

5. Conclusions

In this perspective, the significant features of Bio-FETs and the important points for
measuring using the Bio-FETs were indicated, focusing on the measurement solution,
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their basic and reliable pH dependence, and the transistor parameters. In addition, the
arrayed-gate Bio-FETs should be necessarily applied for multibiosensing, as mentioned in
Section 1. This may be actually the most unique feature of FETs because other biosensors
(e.g., surface plasmon resonance (SPR) sensors and quartz crystal microbalance (QCM)
sensors) hardly enable the integration of electrodes as in CMOS sensors. Moreover, FETs are
commonly used in various electric devices such as smartphones and body thermometers
because FETs in themselves are miniaturized and included in such devices. Moreover, new
semiconductive materials, the functionalities of which are controlled on the nanometer
order, must expand the possible applications of Bio-FETs in the future. Note that functional
membranes at the electrolyte solution/gate electrode interface should be continuously
developed for detecting selectively specific target biomarkers [51–56], considering the
prevention/filtering of nonspecific signals based on interfering species [57,58]. Moreover,
such functional membranes (e.g., lipid membrane) may extend the Debye length to improve
the detection limit for biosensing [59].
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