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Abstract: With the continuous development and improvement in Internet-of-Things (IoT) technology,
indoor localization has received considerable attention. Particularly, owing to its unique advantages,
the Wi-Fi fingerprint-based indoor-localization method has been widely investigated. However,
achieving high-accuracy localization remains a challenge. This study proposes an application of
the standard particle swarm optimization algorithm to Wi-Fi fingerprint-based indoor localization,
wherein a new two-panel fingerprint homogeneity model is adopted to characterize fingerprint
similarity to achieve better performance. In addition, the performance of the localization method is
experimentally verified. The proposed localization method outperforms conventional algorithms,
with improvements in the localization accuracy of 15.32%, 15.91%, 32.38%, and 36.64%, compared to
those of KNN, SVM, LR, and RF, respectively.

Keywords: Wi-Fi fingerprint; indoor localization; particle swarm optimization; location estimation

1. Introduction

In recent years, Internet-of-Things (IoT) technology, an extension of the Internet that
envisions connecting all devices to the Internet for communications, is developing rapidly
and is expected to radically transform education, healthcare, smart home, manufacturing,
commerce, and transportation, etc. It is essential for transforming the world into a smart
world, wherein localization of devices or terminals is an indispensable aspect [1–3]. Al-
though the global positioning system (GPS) satisfies the wide requirements of outdoor
scenes, it performs poorly and has very limited usage in indoor scenes [4]. There exist
numerous requirements and challenges in the development of indoor localization.

According to the signal source, indoor-localization technologies can be divided into
external and natural signal sources. External signal sources mainly include Wi-Fi [5],
Bluetooth [6], ultra-wide band (UWB) [7], visible light [8], ZigBee [9], computer vision [10],
and radio-frequency identification (RFID) [11]. By contrast, indoor localization technology
based on natural signal sources primarily relies on the sensors of terminal devices to achieve
localization, including inertial measurement units (IMU) [12] and geomagnetics [13], etc.
The list of these technologies can be extended as technology develops. For example, Long
Range (LoRa), originally developed for long-range communication with a high link budget,
can also be employed for indoor localization [14].

Among these, UWB-based indoor-localization technology offers the advantages of
high accuracy and simple localization methods; however, it relies on additional deployment
devices and incurs a high cost [15]. A localization system based on vision utilizes high-
precision computer vision technology, but it can only spread within the line of sight
and requires high hardware cost and complex computation [10]. The main principle
of RFID localization [16] is to perform non-contact communication transmission using
the spatial coupling characteristics of the radio frequency. Passive RFID equipment is
cheap but has a small transmission range, whereas active signals have wide coverage
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but high hardware costs. However, its localization accuracy is inadequate. The IMU
localization system uses an accelerometer, gyroscope, magnetometer, and other sensors
of the terminal equipment to perform navigation calculations; however, the localization
accuracy is limited by hardware devices and inevitably produces cumulative errors [17],
which require continuous calibration with external information. For the LoRa, the received
signal strength (RSS) distance method, an RSS-based logarithmic path loss model, could
be adopted for indoor localization. RSS values are used to calculate the location of an
object according to the principle of trilateration [14]. Further, Wi-Fi, ZigBee, and Bluetooth
are wireless-sensor-network technologies based on IEEE 802 standards, featuring low
power consumption and low cost [18]. The ranging principle is mainly based on geometric
constraints and signal-strength feature matching. Zigbee-based localization measures the
distance between the unknown and reference points in advance, and the signal has a low
transmission rate and a short transmission distance. Moreover, Bluetooth and Wi-Fi are
supported in most terminal devices, but the range of Bluetooth signal communication is
limited, and the localization accuracy is inadequate, with a large time delay. In contrast, Wi-
Fi signal transmission rate is fast, its localization range is wide, and equipment deployment
is easy.

In the field of indoor localization, Wi-Fi fingerprint-based localization is a current main-
stream method [15]. However, it is limited by the volatility of Wi-Fi signal, which makes
offline data not reliable enough, and it is difficult to achieve stable high-accuracy localiza-
tion. Therefore, this study focused on the accuracy improvement of Wi-Fi fingerprint-based
localization, adopting a robust localization model [19] and utilizing the standard particle
swarm optimization (SPSO) algorithm [20] to determine the optimal location estimation.
The main contributions of this study are as follows:

• A two-panel fingerprint homogeneity model was adopted to characterize fingerprint
similarity. In addition to considering both the real distance and direction difference
of two fingerprints, this study proposes another combination, Euclidean metric and
cosine distance, which was used in the system for a more robust performance.

• An effective application of a standard particle swarm optimization (SPSO) algo-
rithm for Wi-Fi fingerprint-based indoor localization is proposed to improve the
localization accuracy.

• Experiments on data sets and tests were conducted in a real-world environment
and the results were compared with those obtained using other classical localization
methods, thereby verifying the effectiveness of the proposed localization method.

The remainder of this paper is organized as follows. In Section 2, related work is briefly
reviewed. Section 3 describes the proposed localization system in detail. In Section 4, the
field experiments conducted to examine the proposed algorithm are described, followed by
the conclusions in Section 5.

2. Related Work

Wi-Fi technology, as an important sensor in IoT, has been utilized in many areas of
indoor scenes. For an interesting example, detecting motion in a room or detecting when
a potential user approaches a Wi-Fi-enabled device are important applications of Wi-Fi
sensing, and of interest in areas such as system wake up and environment monitoring [21].
The suitability of using Wi-Fi to sense fire, another potential application, was demonstrated
in [22], which proved that there is a direct relationship between flame and channel state
information (CSI) signatures. Indoor localization is also a significant application area of
Wi-Fi technology.

2.1. Wi-Fi-Based Indoor Localization

Wi-Fi-based indoor-localization technology offers the advantages of wide signal cover-
age, relatively mature equipment, easy deployment (it needs no additional sensor equip-
ment), low cost, strong applicability, and expansibility [23]. Therefore, indoor-localization
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technology based on Wi-Fi has high research value and broad application prospects. Wi-Fi-
based indoor-localization technology includes the following two types:

• Triangulation method. This method relies on the measurement of distance. Thereafter,
the location estimation is obtained through geometric calculation. Classical triangula-
tion localization methods [24] include time of arrival (TOA), time difference of arrival
(TDOA), and angle of arrival (AOA). TOA is a measurement method to calculate the
distance between the terminal device and the Wi-Fi access point (AP) by recording the
unidirectional or bidirectional arrival time of Wi-Fi signals between the their terminals.
However, it requires the precise synchronization of the time stamps at the transmitter
and receiver. TDOA uses the characteristic that two focal distances on a hyperbola
remain fixed. Based on the arrival time difference between the terminal device and
different APs, using the hyperbolic equation, the location of the localization point can
be solved. In contrast to TOA, TDOA reduces the time synchronization requirement,
but accurate time measurement is a limiting factor. Moreover, it is susceptible to non-
line-of-sight (NLOS) problems. AOA involves obtaining positions through azimuth
angle measurements. It eliminates the need for accurate time synchronization between
devices and requires a small number of base stations. However, it measures the signal
transmission angle, which requires localization equipment carrying an antenna array
device, thereby increasing the difficulty of its popularization.

• Wi-Fi fingerprint-based method. This method utilizes the mapping correlation be-
tween Wi-Fi signal characteristics and physical locations. In the ideal localization
environment, each physical location should have a unique and distinguishable finger-
print [23]. Generally, in this method, an indoor-location area is divided into a series of
discrete grid spaces in advance to obtain the radio fingerprint map. Further, in the Of-
fline phase, the Wi-Fi received signal strength (RSS) from different access points (APs)
are collected on each reference point (RPs) of discrete grid points. Consequently, com-
bining the physical coordinates of RPs, the fingerprint database is constructed. Thus,
a received Wi-Fi fingerprint can determine the most similar fingerprint of database in
the Online phase, and, subsequently, the corresponding coordinate can be estimated.

By contrast, Wi-Fi fingerprint-based indoor-localization technology is not affected by
NLOS and does not require the location information of APs. It has been extensively studied
since it was proposed by Bahl [25]. Moreover, many methods have been proposed, which
can be divided into deterministic and probabilistic methods.

• Deterministic methods. These algorithms directly use the one-to-one mapping rela-
tionship between Wi-Fi fingerprint and physical location and estimate the unknown
position based on the closest fingerprint location in signal space. K-nearest neighbor
(KNN) [25] is one such example. The method is to determine the K most similar Wi-Fi
fingerprints from a database using the Euclidean distance, and then calculate the
average of the K corresponding physical locations. Ma et al. [26] improved the KNN
algorithm and proposed the WKNN algorithm, which used a weighted average for
location estimation. Neural network (NN) algorithms [27], such as the multi-layer
neural network [28], have also been applied to Wi-Fi fingerprint-based localization
but with high computational cost. NN obtains the mapping relationship between a
fingerprint and physical position after considerable training, then uses it to predict
the unknown position. Certain other, more deterministic, algorithms such as support
vector machine [29], random forests [30] and linear discriminant analysis [31] are also
used in localization.

• Probabilistic methods. Contrary to deterministic algorithms, probabilistic methods
employ the probability density function, which characterizes changes in RSS. The key
is to predict the possibility of relationships between real-time data and the coordinates
of RPs. Horus [32] estimated the unknown position using a probabilistic model
considering the signal distribution in the site. Bayesian network [33], expectation
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maximization [34], Gaussian process [35] and conditional random field [36] are also
effective probabilistic algorithms.

In addition, some Wi-Fi fingerprint-based indoor localization frameworks have been
proposed. Ref. [37] proposed a Wi-Fi localization framework via fingerprint clustering
and adaptive KNN based on fusion fingerprints. They cluster offline fingerprints via
the Gaussian mixture model (GMM) to divide the localization area into several subareas.
In addition, a random-forest-based subarea classifier is trained by the offline data and
corresponding subarea labels used for the online localization. The authors of [19] focused
on indoor Wi-Fi fingerprint localization in multistory buildings and proposed a novel
floor-identification module with a Wi-Fi-fingerprint-graph representation and a fingerprint
graph attention mechanism, to confine the search scope to a specific floor. The two-panel
fingerprint-homogeneity graph adopted is a novel mehod to gauge the similarity of Wi-Fi
fingerprints robustly.

2.2. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm originated from the study of for-
aging behavior of birds and other social animals and is a type of biological evolutionary
algorithm first proposed by Eberhart and Kennedy [38]. It is a random optimization tech-
nique in which the potential solution of the problem is represented by the position of
the particles in the swarm. Specifically, a particle is an individual in a bird swarm, and
the optimal solution is where the bird looks for the target food. According to the best
foraging result of individual birds (historical optimal solution of each particle, pbest) and
the best foraging result of the bird swarm (historical optimal solution of the particle swarm,
gbest), every bird flies towards the best position and explores the best foraging position.
This is calculated using the fitness function value of each particle, and the flight direction
is determined to adjust the direction of convergence. Thus, after several iterations, the
optimal foraging position (global optimal solution) can be explored by using a bird swarm
(particle swarm).

In the standard particle swarm optimization (SPSO) algorithm [20], let the solution
space be S with D dimensions, and the boundary of each dimension be [xd min, xd max].
Suppose that the number of particles is Nps and the maximum iteration is T. The rules of
position updating in the SPSO algorithm are expressed as

S = {x ∈ RD|xd ∈ [xd min, xd max], d = 1, 2, . . . , D} (1)

vt+1
id = ωvt

id + c1r1(pbestt
id − xt

id) + c2r2(gbestt
d − xt

id) (2)

xt+1
id = xt

id + vt+1
id (3)

where i = 1, 2, . . . , Nps represents the index of each particle, and vt
i = [vt

i1, vt
i2, . . . , vt

iD] and
xt

i = [xt
i1, xt

i2, . . . , xt
iD] are the velocity and position variables of the ith particle in the tth

iteration, respectively. To control the particles in space S, the velocity |vt
id| is limited to

the maximum vmax. Meanwhile, for the tth iteration, each particle has a historical optimal
position: pbestt

i = [pbestt
i1, pbestt

i2, . . . , pbestt
iD], and gbestt = [gbestt

1, gbestt
2, . . . gbestt

D]
denotes the historical optimal position of the entire particle swarm. Further, c1 and c2
denote the acceleration factor and r1 and r2 are random numbers in the range [0, 1]. In
addition, ω is the inertia weight, and its initial and final values are ωinit and ωend for Tmax
iterations, respectively, which can be defined as follows:

ωt = ωinit + (ωend −ωinit)

(
Tmax − t

Tmax

)
(4)

PSO has been applied in various fields of practical engineering owing to its advan-
tages of fast convergence and nonlinearity. The essence of indoor localization involves
determining the optimal location estimation; therefore, the SPSO algorithm is feasible for
Wi-Fi indoor localization. However, few scholars have discussed the application of the PSO
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algorithm in Wi-Fi localization technology, such as combining the AP selection strategy [39],
the wireless-signal-propagation model [40], and triangulation localization [41]. In addition,
Bi et al. [42] represented the fingerprint of each particle using the inverse distance weighted
algorithm to find the optimal location estimation using PSO. Li et al. [43] combined PSO
and an artificial neural network (ANN) to reduce the localization error and shorten the pre-
diction time. However, at present, the PSO algorithm has yet to be sufficiently developed
and explored in the design of indoor-localization models based on Wi-Fi-fingerprint.

3. System Overview

A schematic of the proposed localization system is shown in Figure 1. A two-panel fin-
gerprint homogeneity model was used to characterize fingerprint similarity. Subsequently,
a fitness function was provided for SPSO, and the optimal solution can be obtained. This
is the optimal location estimation for query data. The process is described in detail in the
following sections.

Figure 1. Schematic of the localization system.

3.1. Preliminary

For a clear description, certain primary notations are defined here and listed in Table 1.

Table 1. The descriptions of each notation.

Notations Descriptions

AP Set of Access Points
M Number of Access Points
RPtrain, RPtrain i Set of Reference Points for Training and its ith Point
RPtest, RPtest i Set of Reference Points for Test and its ith Point
Fintrain, Fintrain i Training Fingerprints and the ith Training Fingerprint
Fintest, Fintest i Test Fingerprints and the ith Test Fingerprint
RSSAP j

train i Received Signal Strength of ith RP from jth AP
Ntr Number of Training Fingerprints
Nte Number of Test Fingerprints/Query Fingerprints
Finquery The Query Fingerprint in the Online Phase
disEuc, discos Euclidean and Cosine Distance of Two Vectors
simEuc, simcos The Simlarity Characterization of Two Vectors according to Euclidean and Cosine Distance
K Number of the Most Similar Training Fingerprints to Test Fingerprint
Finsim k

train The kth Most Similar Training Fingerprint to Query Fingerprint
ωEuc k, ωcos k The Location Coefficients of Location Estimation according to Euclidean and Cosine Distance
D Dimension of the Particles
Nps Size of Particle Swarm/Number of Particles
c1, c2 Acceleration Factors in SPSO
ωt Inertia weight for the tth Iteration in SPSO
vt

i , vt
id Velocity vector and its dth Dimension Velocity of the ith particle in the tth iteration

xt
i , xt

id Position vector and its dth Dimension Position of the ith particle in the tth iteration
pbestt

i , pbestt
id Historical Optimal Solution of Each Particle and its dth Dimension Value in the tth iteration

gbestt, gbestt
d Historical Global Optimal Solution of Particle Swarm and its dth Dimension Value in the tth iteration

Tmax Maximum Iterations
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Given sets of RPs RPtrain = {RPtrain 1, RPtrain 2, . . . RPtrain Ntr} and APs AP = {AP1, AP2,
. . . APM}, suppose that M APs are deployed in the indoor environment, and Ntr RPs are
selected as signal collection points in the offline phase. Consequently, each RP has a coordinate
RPtrain i = (xtrain i, ytrain i) and a Wi-Fi fingerprint Fintrain i (as in Equation (5)). The entire Wi-Fi
fingerprint in the offline phase is denoted by Equation (6).

Fintrain i = (RSSAP 1
train i, RSSAP 2

train i, . . . , RSSAP M
train i) (5)

Fintrain = (Fintrain 1, Fintrain 2, · · · , Fintrain Ntr )
T

=


RSSAP 1

train 1 RSSAP 2
train 1 · · · RSSAP M

train 1
RSSAP 1

train 2 RSSAP 2
train 2 · · · RSSAP M

train 2

· · · · · · . . .
...

RSSAP 1
train Ntr

RSSAP 2
train Ntr

· · · RSSAP M
train Ntr

 (6)

where RSSAP j
train i is the RSS of ith RP from jth AP (i = 1, 2, . . . , Ntr; j = 1, 2, . . . , M). Similarly,

in the online phase, a series of (such as Nte) query fingerprints Finquery are collected when
some users make a location request. In this study, each of these was denoted as a test
fingerprint Fintest i:

Fintest i = (RSSAP 1
test i , RSSAP 2

test i , . . . , RSSAP M
test i ) (7)

Fintest = (Fintest1, Fintest2, · · · , FintestNte)
T

=


RSSAP 1

test 1 RSSAP 2
test 1 · · · RSSAP M

test 1
RSSAP 1

test 2 RSSAP 2
test 2 · · · RSSAP M

test2

· · · · · · . . .
...

RSSAP 1
test Nte

RSSAP 2
test Nte

· · · RSSAP M
test Nte

 (8)

where Nte denotes the number of test fingerprints. Correspondingly, the actual coordi-
nates are RPtest i = (xtest i, ytest i), RPtest i ∈ RPtest = {RPtest 1, RPtest 2, . . . RPtest Nte}, i =
1, 2, . . . , Nte.

3.2. Two-Panel Fingerprint-Homogeneity Model

In Wi-Fi fingerprint-based indoor localization system, similarity characterization is
essential for the test fingerprint Fintest i to match the K most similar training fingerprints
Finsim k

train
, (k = 1, 2, . . . , K) in the offline database Fintrain. Generally, it is expressed in terms

of Euclidean distance; the closer the distance, the more similar it is to the fingerprints. Then,
the location estimation can be calculated using Equation (9).

(x, y) = (
∑K

k=1 xtrain k

K
,

∑K
k=1 ytrain k

K
) (9)

To further constrain the bias in fingerprint similarity characterization, a two-panel
fingerprint-homogeneity model [19] was adopted to gauge the similarity of different fin-
gerprints. In contrast to [19], for the first panel, Euclidean distance was used to gauge
the homogeneity of different data. Further, the cosine distance was used to reflect the
divergence of different vectors from a directional aspect in another panel. For vectors with
the same dimension n, the two distances are denoted by Equations (10) and (11), and the
similarity can be expressed as Equations (12) and (13).
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disEuc(v1, v2) = ‖v1 − v2‖2 =
√

∑n
i=1 (v1i − v2i)

2 (10)

discos(v1, v2) = 1− v1 · v2

‖ v1 ‖ · ‖ v2 ‖
(11)

simEuc(v1, v2) = 10−disEuc(v1,v2) (12)

simcos(v1, v2) = 10−discos(v1,v2) (13)

For a specific test fingerprint Fintest and a specific training fingerprint Fintrain, their
Euclidean and cosine distances are denoted by Equations (14) and (15). Next, the corre-
sponding location coefficients (as weights) were obtained based on the two distances, as
Equations (16) and (17).

disEuc(Fintest, Fintrain) =

√
∑M

j=1 (RSSAP j
test − RSSAP j

train)
2

(14)

discos(Fintest, Fintrain) = 1−
∑M

j=1 RSSAP j
test · RSSAP j

train√
∑M

j=1

(
RSSAP j

test

)2
√

∑M
j=1

(
RSSAP j

train

)2
(15)

ωEuc k = 10ˆ[−disEuc(Fintest, FinsimEuck
train )] (16)

ωcos k = 10ˆ[−discos(Fintest, Finsimcosk
train )] (17)

Actually, if only one panel of the two-panel fingerprint-homogeneity model or other
distance metrics were used, the localization results would be affected. Different combina-
tions will result in different performances. The details are discussed in Section 4.

3.3. SPSO Algorithm for Localization

To obtain the optimal predicted location of Fintest i, the optimal value of the parameter
K and the coordinate (x, y) must be solved. The SPSO algorithm can be used for this
purpose. The target fitness function is defined by Equation (18).

f (x, y, K) =

√
(x−∑K

k=1
ωEuc k

∑K
k=1 ωEuc k

xsimEuck
train )

2
+ (y−∑K

k=1
ωEuc k

∑K
k=1 ωEuc k

ysimEuck
train )

2

+

√
(x−∑K

k=1
ωcos k

∑K
k=1 ωcos k

xsimcosk
train )

2
+ (y−∑K

k=1
ωcos k

∑K
k=1 ωcos k

ysimcosk
train )

2
(18)

At each iteration, the minimum fitness value of the particle and particle swarm were
determined. Finally, the optimal location estimation was obtained. The specific procedure
is summarized in Algorithm 1. In addition, the mathematical model of the algorithm can
be found at the link: https://github.com/Kiron666/SPSO_2P (accessed on 30 June 2022).

Algorithm 1 The algorithm procedure of localization
Input:

The offline fingerprints data Fintrain and the coordinates data RPtrain;
The query fingerprint Finquery;

Output:
The location estimation of the query fingerprint.

1: Offline data collection, and obtain the training data Fintrain, RPtrain;
2: Obtain the query data Finquery;
3: **Similarity calculation by two-panel fingerprint-homogeneity model**
4: For i = 1 to Ntr do

https://github.com/Kiron666/SPSO_2P
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5: Calculate the Euclidean distance and corresponding similarity of Finquery and
Fintrain i according to Equations (12) and (14)

6: Calculate the cosine distance and corresponding similarity of Finquery and Fintrain i
according to Equations (13) and (15)

7: End for
8: Sort simEuc in descending order, return the indexEuc;
9: Sort simcos in descending order, return the indexcos;

10: **SPSO Initialization**
11: Set constants Nps = 100, t = 0, Tmax = 10,000, c1 = c2 = 1.5, ωinit = 0.4, ωend = 0.9;
12: Set boundary of the particle positions and velocities
13: For each particle
14: Randomly initialize the particle positions x0

i ;
15: Randomly initialize the particle velocities v0

i ;
16: Evaluate the ith particle according to Equations (16)–(18) and set pbest0

i = x0
i

17: End for
18: gbest0 = arg min[ f (pbest0

i )]
19: **Particle swarm update process**
20: While t <= Tmax
21: t = t + 1, ωt = ωinit + (ωend −ωinit)(Tmax − t)/Tmax
22: For each particle
23: Update vt

i and xt
i according to Equations (2) and (3)

24: Evaluate the ith particle according to Equations (16)–(18)
25: If f (xt

i) < f (pbestt−1
i )

26: pbestt
i = xt

i
27: Else
28: pbestt

i = pbestt−1
i

29: End if
30: End for
31: If min[ f (pbestt

i)] < f (gbestt−1)
32: gbestt = arg min[ f (pbestt

i)]
33: Else
34: gbestt = gbestt−1

35: End if
36: End while
37: Return gbest
38: **Location estimation**
39: (xp, yp) = (x, y) of gbest
40: **Error evaluation**

4. Experiments and Analysis
4.1. Experimental Setup

The experiment was conducted in a 324 m2 one-floor building, with lengh of 27 m and
width of 12 m. There are two offices, a conference room, an open office area containing
five desks and several chairs, and an exhibition area containing six large robots, with
relatively high but unintentional and random personnel flow. The spatial layout and indoor
localization environment are shown in Figures 2 and 3a, which include 10 APs deployed
on the perimeter at a height of 1.2 m above the floor level. Notwithstanding, these APs are
also shown, although their coordinates are not necessarily a priority condition. In addition,
the data was collected by a mobile robot (product name: TurtleBot 3) with a RTL8188CUS
Wi-Fi Module, as Figure 3b shows. To reflect the actual scenario, the data collection was
performed in the presence of obstacles.
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Figure 2. Layout of the experiment area (the dots represent the locations of all reference points).

(a) (b)

Figure 3. (a) The indoor environment. (b) The data-collection device.

The localization area was divided into multiple grids of width 1.0 m. In the offline
phase, 187 points were set as the RPs. At each RP, the RSS from each AP was uniquely
identified by MAC address and measured 30 times (at 1 min intervals). The IEEE 802.11n
with 2.4 GHz band, 40 MHz channel bandwidth and MCS 0, were used during this time.
Thus, 56,100 units of RSS data were processed. The mean of each 30 measurements from
the 10 APs were taken as the fingerprint of the RP. Further, the approximately uniformly
distributed 52 groups of RPs with over 2.0 m spacing, and the corresponding fingerprints,
constituted the training dataset, a sparse set; the remaining 135 groups constituted the
test dataset and were used to test the performance of the localization system during the
localization process.

4.2. Performance Metric

To evaluate the localization performance, several evaluation indices in machine learn-
ing were applied. The mean squared error (MSE), mean absolute error (MAE), root MSE
(RMSE), and standard deviation (STD) were adopted as the main performance metrics. Fur-
thermore, the mean of the Euclidean distance between the estimated location and the actual
location was considered as a measure of accuracy. These metrics are defined as follows.

ErrorMSE =
1

Nte

Nte

∑
i=1

[(xp i − xtest i)
2 + (yp i − ytest i)

2] (19)

ErrorMAE =
1

Nte

Nte

∑
i=1

(|xp i − xtest i|+ |yp i − ytest i|) (20)

ErrorRMSE =

√√√√ 1
Nte

Nte

∑
i=1

[(xp i − xtest i)
2 + (yp i − ytest i)

2] (21)
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ErrorSTD =

√√√√ 1
Nte

Nte

∑
i=1

(erri − err)2,

erri =
√
(xp i − xtest i)

2 + (yp i − ytest i)
2,

err = Accuracy =
1

Nte

Nte

∑
i=1

erri

(22)

where (xp, yp) is the estimated location obtained by the localization algorithm and (xtest, ytest)
is the actual location of the RSS collection device.

4.3. Results and Discussion
4.3.1. Performance Comparison of Different Methods

To evaluate the localization performance of the proposed system, it was compared
with four other classical machine-learning (ML) algorithms: (1) the K-nearest-neighbor
(KNN) method [44]; (2) the support-vector-machine (SVM) method [45]; (3) the linear-
regression (LR) method [46]; and (4) the random-forest (RF) method [47]. All the ML-based
results were calculated on a computer with 16.0 GB of RAM, Intel(R) Core(TM) i7-10700
CPU and the program environment of Python 3.7.8.

A quantitative analysis of the localization errors was performed, as shown in Table 2.
It shows that the four performance metrics of the proposed localization system were all
minimum except for the STD, with MSE 6.0433 m, MAE 2.6288 m, and RMSE 2.4583 m,
which is also shown in Figure 4. However, the difference in STD from the minimum
was less than 0.04. Meanwhile, it is evident that it exhibited the best performance on
the basis of 25/50/75% error, implying that the percentage accounted for all localization
errors. In particular, the 50% error was less than 2.00 m and the 75% error was within
3.00 m. In terms of the improvement rate of RMSE, improvements by 11.25 16.28 33.56
and 36.76% compared with KNN, SVM, LR and RF, respectively, were observed. In general,
the proposed method exhibited the best performance.

The CDF curve and the box plot can represent the localization performance and the
distribution of the localization errors, in a visualized manner, as in Figure 5a,b, respectively.
It is clear that the performance of SPSO is better than that of the other four. For LR and
RF, their performances were not that different and were relatively mediocre. However, the
performances of KNN and SVM were moderate. In the box plot, it is evident that, regardless
of the median, maximum, minimum, upper quartile, or lower quartile, the localization
error of the proposed method is the lowest, and no extreme outliers exist (outliers are
shown as * in Figure 5b). Moreover, it still performs well in the presence of mild outliers.

Table 2. The performance metrics of different localization models.

Performance Metrics SPSO KNN SVM LR RF

MSE (m) 6.0433 7.6718 8.6224 13.6885 15.1111
MAE (m) 2.6288 3.1389 3.0370 3.8667 4.1630
RMSE (m) 2.4583 2.7698 2.9364 3.6998 3.8873
STD (m) 1.3076 1.2758 1.5789 2.0518 2.0777
Accuracy (m) 2.0817 2.4585 2.4757 3.0788 3.2855
25% Error (m) 1.0122 1.5104 1.0000 1.4142 1.4142
50% Error (m) 1.8329 2.2451 2.2361 2.2361 3.1623
75% Error (m) 2.7831 3.2639 3.1623 4.1231 4.2426
Improvement in RMSE / 11.25% 16.28% 33.56% 36.76%
Improvement in Accuracy / 15.32% 15.91% 32.38% 36.64%
Time Consumption (s) <0.05 <0.01 <0.001 <0.001 <0.01
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Figure 5. Distribution of the localization error. (a) CDF curve of the different models. (b) Box plot of
the localization errors.

For the accuracy, the method proposed in this study achieved 2.0817 m, which is the
best out of the five localization models. Compared with the four conventional methods,
the accuracy improved by 15.32%, 15.91%, 32.38%, and 36.64%, respectively. Considering
the stochasticity of the SPSO algorithm, the proposed method was run 50 times with
100 particles and 10,000 iterations each time, and the above results are their average
performance. The standard deviation of the accuracy over 50 runs was 0.0431 m. On
the other hand, the SPSO algorithm inevitably increases the complexity of the system,
conforming to the no-free-lunch theorem. A time-consumption comparison experiment was
performed. For completing a single localization, all four conventional methods took less
than 0.1 s, while SPSO took less than 0.05 s, which is also a real-time and acceptable result.

4.3.2. Model Analysis

It should be noted that there are three factors that determine the performance of
the model in the proposed method. In this section, comparison of one panel and two-
panel, impact of different distance metrics, and impact of different weight assignations
are discussed and analyzed. For the one panel, the fitness function Equation (18) was
replaced by Equation (23). For the distance metrics, Euclidean metric (Euc, Equation (14))
and Mahalanobis distance (Mahal, Equation (24); the covariance matrix Σ was calculated
by the training fingerprints) are common for Wi-Fi fingerprint similarity characterization.
The correlation metric (Cor, Equation (25)) and cosine distance (Cos, Equation (15)) were
adopted in [19]. For the weight assignments, reciprocal distance (weight 1 in Table 3)
and Softmax function (weight 2 in Table 3) are commonly used. Considering that, in the
log-distance path-loss model, the relationship between the RSS and the distance is related
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to the logarithmic function of base 10 [35], ω3 in Equation (26) (weight 3 in Table 3) was
used in this study. The details are shown in Table 3.

f (x, y, K) =

√
(x−∑K

k=1
ω k

∑K
k=1 ω k

xsimk
train)

2
+ (y−∑K

k=1
ω k

∑K
k=1 ω k

ysimk
train)

2
(23)

disMahal(Fintest, Fintrain) =
√
(Fintest − Fintrain)Σ−1(Fintest − Fintrain)T (24)

disCor(Fintest, Fintrain) = 1− 1
M− 1 ∑M

j=1

(RSSAP j
test − Fintest) · (RSSAP j

train − Fintrain)

σFintest · σFintrain

(25)

in which • and σ are, respectively, the mean and standard deviation of the fingerprint.

ω1k =

1
dk+ε

∑K
k=1

1
dk+ε

, ω2k =
e−dk

∑K
k=1 e−dk

, ω3k =
10−dk

∑K
k=1 10−dk

(26)

in which dk means the distance between Fintest and Finsim k
train, and ε is a very small value to

avoid the problem of division by zero.

Table 3. The performance comparison 1 of different distance metrics and weight assignments.

No. Distance Metrics Weight Accuracy (m) RMSE (m) STD (m)

1 Euclidean Metric
1 2.3600 2.6768 1.2631
2 2.2261 2.6311 1.4026
3 2.3555 2.7770 1.4708

2 Mahalanobis Distance
1 4.0090 4.7974 2.6350
2 3.8229 4.5652 2.4952
3 3.6852 4.5175 2.6128

3 Correlation Metric
1 2.3250 2.6555 1.2831
2 2.4336 2.7733 1.3299
3 2.4509 2.8180 1.3909

4 Cosine Distance
1 2.2089 2.5444 1.2629
2 2.3378 2.6648 1.2789
3 2.3857 2.7082 1.2818

5 Euc and Mahal
1 2.6692 3.1911 1.7490
2 2.4599 2.9309 1.5934
3 2.4903 3.0561 1.7714

6 Euc and Cor
1 2.2177 2.5252 1.2077
2 2.1432 2.5172 1.3203
3 2.1707 2.5491 1.3364

7 Euc and Cos
1 2.2584 2.5892 1.2664
2 2.1516 2.5497 1.3681
3 2.1128 2.4766 1.2922

8 Mahal and Cor
1 2.5656 3.0026 1.5599
2 2.6912 3.1527 1.6422
3 2.6900 3.2157 1.7621

9 Mahal and Cos
1 2.5490 2.9419 1.4689
2 2.7242 3.1993 1.6775
3 2.6901 3.2255 1.7797

10 Cor and Cos [19]
1 2.2559 2.5988 1.2902
2 2.2831 2.6071 1.2587
3 2.3244 2.6445 1.2612

1 All results in this table are medians over 20 runs.



Sensors 2022, 22, 5051 13 of 16

A. Comparison of one panel and two-panel. To further analyze the characteristics of the
model, a comparative experiment on one panel and two-panel was carried out. In this study,
the two-panel fingerprint-homogeneity model was used to construct the fitness function of
the SPSO algorithm. Actually, Equation (18) presents the fact that its geometric meaning is
to find the situation where the estimated locations of the two panels are the closest. The
situation can be determined by the parameter K, i.e., a specific value of K can uniquely
determine the estimated locations of the two panels. For particles, their optimal position
is on the line segment where the estimated location of the two panels are the endpoints.
Obviously, Equation (18) has multiple solutions. However, if only one of the two panels
were used, the particles would always find the optimal position that minimizes the fitness
function (to 0), no matter what the value of K is. In the same case of multiple solutions,
the solutions of one panel will be more dispersed, meaning that the model is not robust
enough. As shown in Table 3, No. 1–4 are the results of one panel, and No. 5–10 are those of
two-panel with different distance metrics and weight assignments. Although their results
were similar, since K was limited to [2, 8] for better results, the performance of two-panel
is better than at least one panel, in general. This means that the results of two panels can
constrain each other, especially in combinations involving Mahalanobis distance.

B. Impact of different distance metrics. Wi-Fi fingerprint-based indoor localization is
inseparable from the comparison of similar fingerprints. It is clear that different distance-
characterization methods will lead to different localization results with the two-panel
fingerprint-homogeneity model. A comparative experiment was conducted to analyze their
impact on localization performance. The reliable covariance matrix cannot be obtained
from the sparse training set; we can see in Table 3 that the accuracy of the combination
involving Mahalanobis distance performs poorly. The two-panel method using Euclidean
metric and cosine distance achieved the best performance. This is why we used them for
Wi-Fi fingerprint-similarity characterization in this study.

C. Impact of different weight assignments. In fact, the neighboring fingerprints can
generally be found correctly through different distance metrics. However, achieving high-
accuracy localization with proper weight assignment is a challenging problem, because
the transformation relationship from the fingerprint domain to the physical coordinate
domain is uncertain. The effects of three weight assignments (Equation (26)) were compared
experimentally in this study. Obviously, weight 1 is often applied, but it is not always
the best. Weight 2 and weight 3 have little difference in actual performance. For the
proposed method, weight 3 performs best with the two-panel approach using Euclidean
metric and cosine distance. It verified the viability of weight 3 in Wi-Fi fingerprint-based
indoor localization.

5. Conclusions

Although indoor localization based on Wi-Fi is promising, achieving improved ac-
curacy remains a difficult problem. In this study, an application method of a particle
swarm optimization algorithm in Wi-Fi fingerprint location was proposed, which adopted
a two-panel fingerprint-homogeneity model to express the similarity among different
fingerprints with greater robustness. The experimental results showed that the average
accuracy of the proposed localization system was 2.0817 m. Further, the proposed particle
swarm optimization algorithm outperforms other conventional algorithms, verifying its
effectiveness and feasibility for improving the accuracy of indoor localization.

Future work will focus on extending radio fingerprint maps and mitigating the effects
of Wi-Fi signal volatility. In addition, fusion localization with other methods will be consid-
ered to improve the performance of the localization system by combining the advantages
offered by the different sensors.
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