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Abstract: Cleaning is an important task that is practiced in every domain and has prime importance.
The significance of cleaning has led to several newfangled technologies in the domestic and profes-
sional cleaning domain. However, strategies for auditing the cleanliness delivered by the various
cleaning methods remain manual and often ignored. This work presents a novel domestic dirt image
dataset for cleaning auditing application including AI-based dirt analysis and robot-assisted cleaning
inspection. One of the significant challenges in an AI-based robot-aided cleaning auditing is the
absence of a comprehensive dataset for dirt analysis. We bridge this gap by identifying nine classes
of commonly occurring domestic dirt and a labeled dataset consisting of 3000 microscope dirt images
curated from a semi-indoor environment. The dirt dataset gathered using the adhesive dirt lifting
method can enhance the current dirt sensing and dirt composition estimation for cleaning auditing.
The dataset’s quality is analyzed by AI-based dirt analysis and a robot-aided cleaning auditing task
using six standard classification models. The models trained with the dirt dataset were capable
of yielding a classification accuracy above 90% in the offline dirt analysis experiment and 82% in
real-time test results.

Keywords: domestic dirt; dirt dataset; audit robot; cleaning benchmark; dirt classification;
robot-aided cleaning auditing

1. Introduction

Cleaning is an inevitable routine associated with every domain. According to the
recent market studies, the professional cleaning industry is steeply growing and expected
to reach a market size of USD 88.9 billion by 2025 [1,2]. The growth of the cleaning industry
is further boosted up by the increasing demand during the pandemic outbreak. A plethora
of leading edge technologies have been introduced to the field of domestic and profes-
sional cleaning to enhance the performance of cleaning and maximize the productivity
for the past decade [3–5]. This includes the usage of novel cleaning strategies using floor
cleaning robots [3], Ultra-Violet-C (UVC) disinfection robots [4], cable-driven wall cleaning
robots [5], etc. Currently, the reported studies about the cleaning performance enhance-
ment are centered on the development of novel classes of cleaning robots and its associated
components including robot efficient navigation, control, multi-robot cooperation, etc. For
example, a morphology switching strategy for maximizing the area coverage in reconfig-
urable cleaning robots is reported [6]. Fuzzy inference systems used for enhanced adhesion
awareness in vertical glass wall cleaning robots are reported [7]. An adaptive floor cleaning
strategy by analyzing the human density is detailed in [8]. The research work mentioned
in [9] presents an efficient charging mechanism for cleaning robots using infrared spots
and neural network-based location estimators. A novel functional footprint-based efficient
ship hull cleaning method using evolutionary algorithms is reported in [10]. The preceding
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analysis shows that a significant amount of research has focused on adapting the latest
technologies for enhancing the performance of cleaning. However, a systematic method
for assessing the quality of cleaning delivered by various cleaning methods has not been
studied predominantly.

Dirt analysis is one of the critical elements for cleanliness auditing. The major chal-
lenges in the field of dirt analysis targeting cleaning auditing include the following:

• Even though there are proven AI models that could yield superior accuracy, there
is no comprehensive dataset that the experts can use to train the AI models for dirt
analysis.

• The dirt particles are often detected by typical computer vision-based analysis. How-
ever, capturing the finer features of the dirt is essential for AI-based analysis.

• The domestic dirt has identical visual features, which makes classification challenging
for the AI models, which demands a high-quality dataset highlighting the visually
distinct features of the dirt particles.

This research work presents a novel domestic dirt image dataset for cleaning auditing
application including AI-based dirt analysis and robot-assisted cleaning inspection. Unlike
the conventional vision-based dirt detection algorithms, whose application is limited to
cleaning robots, the proposed method presents a dirt detection and classification strategy
for cleaning auditing, where an audit sensor gathers the dirt samples via adhesive dirt
lifting. As part of this work, a comprehensive dataset consisting of microscope images of
commonly occurring domestic dirt is acquired using the sample audit sensor. To distinguish
the features, each dirt image is analyzed in under 10× magnification. In addition, the
selected dataset’s usability is further analyzed using training and validation accuracy in
different deep-learning architectures that enable deep-learning-based dirt analysis. To the
best of the author’s knowledge, a dataset of microscopic domestic dirt images has not
been reported so far. The proposed research work opens the door toward new fronts for
AI-driven dirt analysis targeting the domain of cleaning auditing. The The general objective
of this research work is subdivided into the following:

1. Gathering of magnified images of domestic dirt particles using adhesive dirt lifting;
2. Analyze the usability of an acquired dataset in training and classifying the domestic

dirt in standard classification models, using a cross-validation technique;
3. Analyze the performance of the proposed scheme in a real-time scenario by rolling

out the trained classification model for real-time dirt composition estimation for an
in-house developed audit robot.

The rest of the article is structured as follows. Section 2 provides a detailed study
on the related works, Section 3 provides a birds-eye view of the adopted methods and
methodology; Section 4 reports a detailed description of our analysis and experiments
conducted in this research effort followed by Section 6, which concludes our findings.

2. Related Works

Despite the importance, cleaning auditing is analyzed in very few domains. For
example, the formation of tests for cleaning quality analysis in the fish processing industry is
reported in [11]. Lewis et al. proposed a modified adenosine triphosphate (ATP) benchmark
for estimating the quality of cleaning for hospital environments [12]. Efforts toward
establishing cleaning standards for the hospital environment are reported [13]. Similarly,
Aziz et al. proposed microbiological monitoring for cleaning analysis targeting hospital
contamination estimation [14]. The state-of-the-art cleaning auditing methods are centered
around microbiological analysis and the ATP bioluminescence method [15]. However, the
analysis method mentioned above is not scalable to most domains, including professional
and domestic floor cleaning. The pioneering effort in cleaning auditing is proposed by
Pathmakumar et al., where cleaning auditing is done with the help of a autonomous mobile
robot and a sample audit sensor [16]. The research work mentioned above uses a cleaning
auditing sensor that extracts the dirt from the floor by adhesive dust lifting followed by
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analysis using computer vision-based techniques. The auditing of a larger area is achieved
with the audit robot using dirt exploration methods [17]. The robot-aided cleaning auditing
is a viable approach for post-cleaning analysis compared to the laborious microbiological
methods, which are limited only to a specific domain. The robot-aided cleaning auditing
executes the cleaning auditing in a fully automated fashion, which bridges the lack of
proper post-cleaning analysis in the domain of automated cleaning. One of the main
challenges in robot-aided cleaning auditing is the development of an effective method for
dirt analysis. Conventionally, visual detection methods are often used for dirt identification.
For instance, Grunauer et al. proposed an unsupervised dirt spot detection where the
problem is addressed as a binary classification problem [18]. Similarly, Bormann et al.
proposed a training-free dirt detection framework in an office environment [19]. The
above-mentioned method is further improved by a multi-class machine learning-based
dirt detection method using a modified YOLOv3 framework [20]. A similar approach is
reported where a cascaded neural network is used for multi-class debris detection for floor
cleaning robots [21]. The current dirt detection algorithms are reported in [18–21]; here,
the dirt detection is targeted at a cleaning robot to perform a selective cleaning. However,
for the concerned scenario of cleaning auditing, a microscopic analysis of domestic dirt
sampled after a dust-lifting process is inevitable. However, the present dirt detection
frameworks are not designed for the above-mentioned application.

3. Methodology

This work adopts our in-house developed cleaning auditing robot (BELUGA) for
dirt dataset collection. In order to classify the domestic dirt, it is essential to build a
comprehensive dataset of domestic dirt. The domestic dirt is referred to as particulate
contaminates (usually measured in microns) that are carried by the airflow and settled
down in undisturbed air. The samples are collected from indoor and semi-indoor regions
by attaching the sensors to the BELUGA robot. The overview of the sample collection
procedures and method for dirt inference is depicted in Figure 1. The sample collection
procedure involves the gathering of different sets of dirt samples from floor surfaces. The
samples can be collected either by using the sample audit sensor in a standalone way or by
using an autonomous robot carrying a auditing sensor payload. The sample audit sensor
gather images using the adhesive dirt lifting principle, which is an established principle
used for forensic trace collection [22,23]. For the analysis part, the images of the adhesive
tape are taken using a microscopic camera with 10× magnification. The images gathered
using the sample audit sensor are stored in a remote database on a cloud server. In case
of limited connectivity to the remote server, the captured images are enhanced and stored
locally onboard the robot. The sample collection is controlled and monitored using a web
application hosted on the local device that serves as an interface for the user to control the
process. In the remote server, the images are stored in a labeled manner.
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Figure 1. Proposed overview for domestic dirt collection using autonomous robot.
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3.1. Robot Architecture

The audit robot is the carrier of a sample audit sensor, and it helps perform the dirt
sample gathering from a vast area of space where the manual sample gathering is not
feasible. The audit robot called BELUGA is an in-house developed autonomous cleaning
audit robot integrated with the sample audit sensor. The Figure 2 shows BELUGA robot
and mounting of sample audit sensor onto the robot. The BELUGA robot is comprised of
a locomotion module, power distribution module, navigation module, audit sensor and
processing module (shown in Figure 3).

2D LiDAR

Depth Camera

Terrain analysis 
camera 

Sample audit sensor 
Drive wheels

(a) (b)

Figure 2. Cleaning audit robot—BELUGA (a); Attaching of sample audit sensor with BELUGA (b).
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Figure 3. The system architecture of the BELUGA robot with the main subsystems.

The locomotion unit of the robot is composed of a pair of brushless DC (BLDC)
motors that form a differential drive wheel configuration. The third point of contact of the
robot is made using a free rotating castor wheel. The BLDC motor drivers established a
closed-loop velocity control for the driving wheels. The velocity feedback is obtained from
the BLDC motor drivers using the incremental encoders associated with the motor. The
velocity feedback from the motors is used for computing the odometry information. The
communication with the drive motors is established using MODBUS-RTU communication.
The robot uses a 24 V DC lithium-ion phosphate battery to power all subsystems. The main
supply from the battery is regulated and distributed further to power-sensitive components.
A 2D LiDAR is the primary perception sensor associated with the robot, which is supported
by a depth camera to add 3D perception capabilities and detect obstacles below the level of
LiDAR. The LiDAR used in the robot is SICK TIM 581 with a range of 20 m in semi-outdoor
conditions. The Intel Real-sense D435i is the depth camera with a resolution of 640 × 480
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and 87◦ × 58◦ angular field of view. Using Kalman filter-based state-estimation techniques,
the wheel odometry information is generated by fusing the wheel velocity feedback from
the motor drivers and the inertial measurement unit (IMU). The IMU used in the BELUGA
robot is VectorNav VN100, which is a nine-axis IMU with built-in noise filtration.

The robot performs autonomous navigation in real time using the input from the
perception sensors and odometry information. The robot possesses an embedded computer
with an Intel core i7 processor and runs with an operating system of Ubuntu 20.04. The
perception and navigation algorithms run alongside the ROS middleware in the embedded
computer. Apart from the navigation sensors, the robot is integrated with the sample audit
sensor. The communication between the sample audit sensor and the embedded PC is
established through USB and RS485 communication. The USB established a communication
link with the digital microscope, and RS485 is used to control the servo motors’ actuation
inside the sensor. On the BELUGA robot, the sensor is attached to a removable sensor bay,
which allows detaching the sensor from the robot.

3.2. Sample Audit Sensor

The major components associated with the sample audit sensor are the adhesive tape,
winding motor, pressing motor, pressing ramp, and a digital microscope. The gathering
of the dirt samples is done by the synchronized motion of winding motors and pressing
motors. The winding motors and pressing motors are digital servos that can be position-
controlled according to the data passed over the RS485 communication protocol. The
winding motor of the sensor rotates an adhesive tape, and the pressing motor actuates
the pressing ram that exerts downward force to press and release the sticking surface of
the tape against the surface. The winding motor displaces the tape surface toward the
field of view of the digital microscope to capture the magnified image of the surface of
the tape. The pressing of the adhesive tape is completed for a 2 cm × 2 cm area; hence,
analysis of the dirt is localized to the same surface area. Every sampling completed by the
BELUGA robot takes 13 to 16 s, which includes 4 s to lower the sensor bay to the floor,
2 s to conduct a pre-sampling winding, 4 s for stamping action, and 3 to 6 s to perform a
post-sampling winding. The post-sampling winding varies from 3 to 6 s since the length to
displace varies as the adhesive tape radius decreases linearly as more and more samples
are taken. The movement of the adhesive tape is guided through silicon idlers so that
the adhesive tape will not become stuck while displacing the stamped area to the field of
view of the microscope. Figure 4 shows the sample collection sensor module. The sensor
consists of the (a) collection mechanism to gather dirt from the floor and pass it to the (b)
microscope camera to capture, transfer and process the sample images.

Adhesive tape

Pressing 
motor  

Winding 
motor 

Silicon 
idler 

Digital 
Microscope

Pressing ram

(a) (b)
Figure 4. The sample audit sensor with major components (a) and the extracted dirt particles under
the view of the microscope (the 10× magnified image captured in the inset) (b).
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4. Experiments and Analysis

This section describes the experimental and analysis procedure of dirt dataset collec-
tion and evaluation methods. The experiment has been performed in four phases. The
first phase involves dataset curation. The second phase validates the collected dirt dataset
through a k-fold cross-validation scheme and converging time of the various image clas-
sification algorithm. The third phase involves validation of the dirt dataset through the
AI-based dirt classifier algorithm. The final phase involves validating the trained dirt
classification models with the BELUGA robot on a real-time field trail.

4.1. Dataset Curation

The BELUGA robot is set to exploration mode, where it explores the region using the
frontier exploration method, and the sample gathering is completed every 10 s. Figure 5
shows sample collection performed at different locations using the BELUGA robot. We
selected a food court (Figure 5a), semi-indoor walkway (Figure 5b), office pantry (Figure 5c),
long corridor (Figure 5d), office space (Figure 5e) and warehouse (Figure 5f) as the sites for
data collection. Once the robot explores 98% of the deployed area, the robot resets its map
and completes the frontier exploration again.

(a) (b) (c)

(d) (e) (f)

Figure 5. The dirt sample collection using the BELUGA robot in different locations such as a food court
(a), semi-indoor walkway (b), office pantry (c), long corridor (d), office space (e), and warehouse (f).

4.2. Dirt Class Identification

The sample collection procedure is repeated for 2 days in each location, and the
composition of dirt is analyzed. The main dust particles lifted by the adhesive tape include
ashes, hair (mostly from walkways and corridors), tiny bits of paper, sand, soil, etc. The
bits of paper are collected from all the six locations taken for the data collection. The traces
of sand and soil particles were also captured from all locations—however, the sand and
soil particle concentration was higher in the walkways and corridors. The traces of food
particles were also identified from every location; however, the most frequent occurrence of
food particles in the collected samples was from the food court and pantry. Paint particles
are captured in the sample collection completed in warehouses often, and it is observed
that more traces are captured when the robot completes sampling near the corners and
walls of the warehouse. Traces of seeds, lint, etc. were also identified from the collected
samples across all locations. From the observations made from the dirt sample collection,
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the specified classes for the dirt data includes ash, hair, sand, soil, paper, paint, food, and
fiber. These classes are finalized for the dirt dataset considering the following:

• Frequent occurrence during sample collection;
• Presence in every location;
• The health and environmental factors associated with identified dirt particles [24–26].

The identified dirt classes for the dataset are provided in the Table 1.

Table 1. The classes of identified domestic dirt.

Class
(Number) Sample Images

Ash

Hair

Sand

Soil

Paper

Paint

Food

Fibre

No-dirt

4.3. Dataset Preparation and Training

Upon identifying the distinct dirt classes, the image captured by the microscope at a
resolution of 1280 × 720 was decimated to 16 image samples, each of size 320 × 120 images.
The dirt samples collected by the robot as well as the samples manually collected were
labeled and formed the dataset for domestic dirt. The samples where the dirt is spread less
than 60% in the image area are discarded. Images overlapping with different classes are
also discarded. After discarding the invalid images, a dataset of 3000 samples from each
class is curated. From every class of labels images, 2500 images are taken for training and
cross-validation, and the remaining 500 are used for offline testing.

4.4. Dirt Dataset Validation

The quality of the dataset is analyzed by inspecting the accuracy of the state-of-the-art
AI-based image classification models trained using it. The quality of the collected dirt
dataset was evaluated through training accuracy with a k-fold cross-validation scheme and
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statistical measure. For analysis, we choose two sets of classification models. The first set is
composed of three less dense neural network architectures, and the second set is composed
of three dense-layer neural networks. For the less dense models, we took VGG-11 [27,28],
VGG-16 [27] and MobileNetV2 [29]. For the second set, for the dense-layer models, we
choose ResNet50 [30,31], ResNet101 [30] and Darknet53 [32].

4.4.1. K-Fold Cross-Validation Method

The k-fold cross-validation is completed by following the procedures given below:

1. Select the fold k = 5.
2. Split the dataset to k groups, which are also known as folds.
3. Select k − 1 folds for training the model and one fold for testing.
4. For every iteration, a new model is trained independent of the previous iteration.
5. Repeat the training and cross-validation k times; in every iteration, the remaining fold

will serve as the test set.
6. The accuracy is determined on the kth iteration as the average of all iterations.

The six-image classifier model was trained with an early stopping condition to avoid
the over-fitting of the model. The models are trained in NVIDIA GeForce 3080 GPU with a
batch size of 32 and a learning rate of 4 × 10−3. Cross-entropy loss is used to estimate the
model’s prediction performance in every forward pass [33]. Comparing the accuracy of
every iteration provides insight into the curated dataset’s reliability and trustworthiness.
However, a k-fold gives a more stable and trustworthy result since training and testing are
performed on multiple combinations of test–train set decimation from the dataset.

Figure 6 reports the convergence profile for the models for the first 30 epochs of
training. All models converged above 90% accuracy in every fold for all the six models.
The average accuracy of every fold of training in VGG-11, VGG-16, and MobleNetV2 is
observed in the first 10 epochs of training. A slightly delayed convergence is observed for
dense-layer models such as ResNet50, ResNet101, and Darknet53. The dense-layer models
took 15–20 epochs to see a consistency in the convergence trend. This trend is attributed
to the relatively complex nature of ResNet50, ResNet101, and Darknet53 compared to the
other models. One of the key indicators that is attributed to the quality of the dataset is the
deviation of accuracy in every fold of training. The average training accuracy for k-fold and
standard deviation in accuracy is tabulated in Table 2. All models show a small standard
deviation in the k-fold training, which indicates a non-biased and balanced dataset. The
variation in accuracy in different folds of training is comparatively less when it comes to
dense-layer models. The minimal deviation is reported by ResNet101 (1.89), and maximum
accuracy in training is reported by ResNet50 (96.58%).

Table 2. Statistical measures for dirt classification.

Model Average
Accuracy (%)

K-Fold
Standard Deviation

VGG-11 94.77 5.82
VGG-16 92.77 3.90
MobileNetV2 94.65 3.44
ResNet50 96.58 2.05
ResNet101 96.54 1.89
Darknet53 95.801 3.06
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The accuracy profile for different classification models trained using curated dirt dataset;
VGG-16 (a), VGG-11 (b), MobileNetV2 (c), Resnet50 (d), Resnet101 (e), Darknet53 (f).

4.4.2. Dirt Dataset Validation Through Statistical Measure

The dirt dataset’s efficiency was validated through a statistical measure function.
Here, the models trained using our dirt dataset classification accuracy were chosen as
the evaluation matrix to assess the dirt dataset quality. Accuracy Equation (1), precision
Equation (2), recall Equation (3) and Fmeasure Equation (4) were used to evaluate the trained
model’s classification accuracy. The confusion matrix function was used to find the variables
tp (true positives), f p (false positives), tn (true negatives) and f n (false negatives) through
which accuracy, precision, recall and Fmeasure were calculated. The evaluation metrics
includes:

Accuracy(Acc) =
tp + tn

tp + f p + tn + f n
(1)

Precision(Prec) =
tp

tp + f p
(2)
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Recall(Rec) =
tp

tp + f n
(3)

Fmeasure(F1) =
2 × precision × recall

precision + recall
(4)

A set of 500 images from each class is used to compute the confusion matrix parameter
(tp (true positives), f p (false positives), tn (true negatives) and f n (false negatives)), and
these images were not used for training the image classifier. Table 3 gives the statistical
measures results computed through the confusion matrix parameter.

Table 3. Statistical measures for dirt classification.

Model Class
Measurements

Precision Recall F1 Accuracy %

VGG-16

Ash 0.9803 0.9970 0.9886 99.70

Food 0.9918 0.9675 0.9795 96.65

Fibre 0.9559 0.9644 0.9601 96.44

Paper 0.8621 0.9336 0.8964 89.64

Paint 0.9689 0.9291 0.9485 92.91

Soil 0.9993 0.9970 0.9981 99.70

Sand 0.9878 0.9943 0.9910 99.43

Hair 0.9897 0.9998 0.9948 99.99

No-dirt 0.9971 0.9941 0.9956 99.41

VGG-11

Ash 0.9900 0.9960 0.9930 99.60

Food 0.9709 0.9787 0.9748 97.87

Fibre 0.9847 0.9555 0.9699 95.55

Paper 0.8482 0.9458 0.8944 94.58

Paint 0.9914 0.9110 0.9495 91.10

Soil 0.9983 0.9985 0.9982 99.85

Sand 0.9906 0.9820 0.9863 98.20

Hair 0.9622 0.9977 0.9796 99.77

No-dirt 0.9798 0.9985 0.9891 99.85

MobileNet
V2

Ash 0.9950 0.9920 0.9935 99.20

Food 0.9907 0.9638 0.9770 96.38

Fibre 0.9700 0.9585 0.9642 95.85

Paper 0.9108 0.9038 0.9073 90.38

Paint 0.9707 0.9516 0.9610 95.16

Soil 0.9963 0.9993 0.9978 99.93

Sand 0.9843 0.9970 0.9906 99.70

Hair 0.9589 0.9954 0.9768 99.54

No-dirt 0.9812 0.9956 0.9883 99.56
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Table 3. Cont.

Model Class
Measurements

Precision Recall F1 Accuracy %

ResNet50

Ash 0.9930 0.9880 0.9905 99.30

Food 0.9956 0.9606 0.9778 96.06

Fibre 0.9761 0.9703 0.9732 97.03

Paper 0.9454 0.9392 0.9423 93.92

Paint 0.9660 0.9758 0.9709 97.58

Soil 0.9991 0.9985 0.9993 99.85

Sand 0.9825 0.9973 0.9899 99.73

Hair 0.9852 0.9965 0.9908 99.65

No-dirt 0.9963 0.9985 0.9974 99.85

ResNet101

Ash 0.9990 0.9970 0.9980 99.70

Food 0.9919 0.9755 0.9836 97.55

Fibre 0.9910 0.9822 0.9866 98.22

Paper 0.9016 0.9624 0.9310 96.24

Paint 0.9889 0.9499 0.9690 94.99

Soil 0.9997 0.9985 0.9993 99.85

Sand 0.9899 0.9970 0.9934 99.70

Hair 0.9730 0.9965 0.9846 99.65

No-dirt 0.9971 0.9985 0.9978 99.85

Darknet53

Ash 0.9979 0.9699 0.9837 96.99

Food 0.9382 0.9307 0.9344 93.07

Fibre 0.9939 0.9614 0.9774 93.07

Paper 0.9001 0.6681 0.7570 66.81

Paint 0.9861 0.9583 0.9720 95.83

Soil 0.9901 0.9993 0.9996 99.93

Sand 0.9568 0.9111 0.9334 91.11

Hair 0.6506 0.9965 0.7872 99.65

No-dirt 0.9728 0.9985 0.9855 99.65

The offline test results show that all the six classification frameworks show an accuracy
above 90%. Among the classes, ash, soil, sand, and hair showed the best classification accu-
racy, since the images were visually distinct in color and texture. The lowest classification
accuracy was reported for the class paper and paint, since a scrap of paint and paper bit
possesses almost the same visual features under 10× magnification by the camera. The
darknet53 model showed the lowest classification accuracy for the class paper with 66.81%.
On the other hand, the no-dirt class representing the samples devoid of dirt, which is a
critical factor in determining the surface’s cleanliness, showed high accuracy in all trained
models. Even though the evaluation is performed on GPU, the ResNet101, Darknet53,
and ResNet50 reported comparatively lower inference time than VGG-16, VGG-11, and
MobileNetV2. The difference in inference time is attributed to the number of operations
within the network. Regarding ResNet50, ResNet101, and Darknet53, there are 23 M,
44.5 M, and 40.5 M parameters, respectively. Whereas in the case of VGG-11, VGG-16, and
MobilenetV2, there were 133 M, 138 M, and 3.4 M parameters trained, respectively. The
statistical measurements reported in the offline test results show that the dataset gathered
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for dirt classification is un-biased between the classes and it can be used alongside the
standard deep-learning models.

4.5. Real-Time Robot-Aided Cleaning Inspection

In addition to the offline test, the usability of the curated dataset is analyzed in a real-
time cleaning inspection use case with the BELUGA robot. We have chosen an environment
for testing which is similar to the chosen regions for data collection. DarkNet53 was used
for rolling out the real-time inference considering the best performance in k-fold cross-
validation and offline testing. Since the BELUGA robot’s embedded computer is devoid
of GPU, the inference is completed by establishing a communication with a remote server
running with GPU. Using the BELUGA robot, the five dirt samples are collected each from
the food court, walkway and indoor office space. For every sample image captured by the
digital microscope after dust lifting, the sample image is divided into 16 images, matching
the training dataset. The models loaded with weights were trained, and the classification of
dirt is completed for every 16 images from the collected sample. Figure 7 shows the images
classified from the dirt sample and the estimated dirt composition.

(c)

(d)

(a) (b)

(e)

Figure 7. The test images collected in real time using the BELUGA robot (a), classified images (b),
histogram of classified dirts from single sample (c), an exmple for wrongly classified image (d), and
overlapping of dirt specks (e).

Comparison with Offline Test Results

Out of the 15 sample images, which were divided into 240 test image samples, 203 sam-
ples reported the right classification with an admissible accuracy of 84.58%. The model’s
real-time accuracy was less than the offline test results. Despite the above-mentioned
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shortcomings, the model trained with the curated dataset showed a good accuracy, which
is acceptable for the dirt composition estimation in cleaning auditing.

5. Discussion

The experiments results conducted showed the prepared dataset’s usability on popular
deep learning models such as VGG-16, VGG-11, MobileNet V2, ResNet50, ResNet101, and
Darknet53. Upon rolling out the trained with the prepared dataset for real-time inference,
an admissible accuracy was observed. During the course of our dataset curation, certain
limitations identified include the narrow field of view of the camera and the overlapping
of multiple dirt classes in the sample image. Moreover, certain dirt particles share similar
textures, making them difficult to be distinguished. Although the data inference is sub-
stantially faster, the dirt data collection is found to be slow, since it involves adhesive dirt
lifting. Unlike the offline test results, false-positive occurrences are reported in the real-time
test results (shown in Figure 7d), which are contributed to the following factors:

• Overlapping of multiple specks of dirt classes in a sample image (shown in Figure 7e);
• The shaking of adhesive tape during the actuation of the sensor may result in blur

images that eventually lead to a wrong classification;
• Encountered dirt specks with very close visual resemblance make it indistinguishable

for the model to classify.

6. Conclusions and Future Works

A dirt image dataset was proposed for AI-based dirt classification for automated
cleaning auditing. Our in-house developed cleaning inspection robot BELUGA was used
to gather the dirt sample images from a semi-indoor environment. We identified nine
visually distinct dirt classes, and 3000 10× magnified microscope images for each class
are gathered for the dataset. The usability of the collected dirt dataset was evaluated
by analyzing the training and evaluation accuracy in six state-of-the-art image classifier
models. The k-fold cross-validation method with a cross-entropy loss function was used to
compute the model’s training accuracy, and the statistical measure function was used to
assess the classification accuracy of models trained using our dirt image dataset. During
the training, a minimal standard deviation for training accuracy for every k-fold cross-
validation iteration is observed, which indicates the unbiased nature of the collected dataset.
The offline test results indicate that all the trained models scored above 90% accuracy for
all classes. The quality of the dataset is further validated by rolling out the trained dataset
for real-time cleaning auditing using an in-house developed BELUGA robot. The accuracy
of real-time testing was comparatively less compared to the offline test results, which is
mainly attributed to the overlapping of multiple specks in the same region of the sample
image. The motion blur was also introduced in the dirt lifting process, which diminished
the accuracy of real-time dirt analysis. In addition, the time taken for overall dirt sample
collection was slower because the adhesive dirt-lifting process was time-consuming. Our
future research will be focused on the following areas:

• Combining microbial and chemical analysis in the process of sample auditing;
• Incorporating novel autonomous algorithms toward dirt exploration;
• A comprehensive study comparing the different algorithms with respect to cleaning

auditing;
• Exploring the usability of the current dataset for instance segmentation of dirt particles;
• Improving the current dataset by expanding the number of dirt classes and open-

sourcing the dataset.
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