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Abstract: The millimeter wave (mmWave) channel is dominated by line-of-sight propagation. There-
fore, the acquisition of angle-of-arrival (AoA) and polarization state of the wave is of great significance
to the receiver. In this paper, we investigate AoA and polarization estimation in a mmWave system
employing dual-polarized antenna arrays. We propose an enhanced AoA estimation method using
a localized hybrid dual-polarized array for a polarized mmWave signal. The use of dual-polarized
arrays greatly improves the calibration of differential signals and the signal-to-noise ratio (SNR) of
the phase offset estimation between adjacent subarrays. Given the estimated phase offset, an initial
AoA estimate can be obtained, and is then used to update the phase offset estimation. This leads
to a recursive estimation with improved accuracy. We further propose an enhanced polarization
estimation method, which uses the power of total received signals at dual-polarized antennas to
compute the cross-correlation-to-power ratio instead of using only one axis dipole. Thus the accuracy
of polarization parameter estimation is improved. We also derive a closed-form expression for mean
square error lower bounds of AoA estimation and present an average SNR analysis for polarization
estimation performance. Simulation results demonstrate the superiority of the enhanced AoA and
polarization parameter estimation methods compared to the state of the art.

Keywords: hybrid dual-polarized array; localized subarrays; angle-of-arrival estimation; polarization
parameter; mmWave communications

1. Introduction

With its large available bandwidth, millimeter wave (mmWave) system is a promising
candidate for future cellular communications. It also plays a crucial role in other applica-
tions such as high-rate connections in vehicular networks [1–5]. In contrast to microwave
channels that are characterized by extensive scattering, the mmWave channels have lim-
ited scattering and diminished diffraction. This enables line-of-sight (LOS) propagation
typically to take dominance compared to non-LOS (NLOS) conditions when the wave
arrives at its destination. Therefore, the acquisition of AoA and polarization state of the
wave is critical for signal reception. On the other hand, as a result of the polarization
mismatch between the receiving antennas and the incoming polarized wave, the use of
single-polarized hybrid arrays often leads to a loss of signal power and thus poor AoA
estimation accuracy. Therefore, hybrid dual-polarized array [6–8] is considered as an
effective method for improving the AoA estimation performance and immunizing the
signal-to-noise (SNR) degradation.

Hybrid antenna array is a new type of array structure for future mmWave high-speed
communications, and it has the advantage that the phase shifting values and digital weights
can be flexibly changed to jointly optimize the performance [4]. Moreover, compared with
full digital array, hybrid antenna array is more applicable to energy saving systems due to
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its low power consumption [9,10]. Typically, a hybrid antenna array consists of multiple
analog subarrays with phase-tunable antenna elements. It is classified into two types of
regular configurations, i.e., localized and interleaved arrays in terms of antenna distribution
in a subarray [11,12]. In view of the complexity of analog hardware implementation,
the localized array can easily form a larger array by combining multiple subarrays into
assembly modules, and thus is more applicable in practice.

AoA estimation using a localized array has been widely studied in [12–17]. All of them
exploit the cross correlations between consecutive subarrays to extract the AoA information,
where the phase ambiguity problem remains to be solved. The phase ambiguity results
from an unknown integer multiple of 2π difference between N times of an AoA information
(i.e., Nu) and the argument of the cross correlations, where N is the number of antennas in
a subarray and u denotes the AoA information parameter. The works in [12–14] leveraged
the same phase shift configuration across different subarrays for constructive accumulation
of cross correlations. In [13], a differential beam searching algorithm was proposed to
search all possible beams and select the estimate with the maximum output power by
iterations, while it introduces a long estimation delay and suffers from a zigzag effect. An
adaptive searching and tracking algorithm was then developed in [12] to speed up the
searching process and mitigate the zigzag effect. To avoid this delay, a frequency-domain
AoA estimation algorithm applied to a wideband array was proposed in [14], whereas the
noise induced by the conjugate product of cross correlations is badly amplified.

In [15], the authors proposed a subarray based variable phase shift configuration that
allows AoA estimation without the phase ambiguity. The proposed approach estimates
Nu by calibrating the signs of cross correlations and combining them in a constructive way.
By suppressing ejmNu in the mth subarray output signal, one can take its inverse discrete
Fourier transform (IDFT), and then calculate the correlations of the Fourier coefficients
to unambiguously estimate u. Furthermore, the authors in [16,17] extended the phase
shift designs of [15] to narrowband and wideband systems respectively, and revealed
that all cross correlations have the same signs except the strongest one. This discovery
improves the calibration accuracy of cross correlations and thus coherent combining for
estimating Nu. Without consideration of the polarization, all of the above works only study
the AoA estimation using single-polarized hybrid arrays. However, the reception of a
polarized wave has a practically significant impact on AoA estimation accuracy due to
polarization mismatch.

The knowledge of the polarization state is important for assisting beam alignment and
combining polarization diversity at the receiver. The polarization parameter estimation
using dual-polarized arrays has received extensive attention recently, and several classi-
cal estimation methods have been proposed and studied in depth. In [18], the authors
used rotational invariance techniques (ESPRIT) to estimate the polarization parameters of
the incoming wave for a uniform linear array, and the methods were then extended to a
two-dimensional array in [19]. A uni-vector-sensor ESPRIT based method was proposed
in [20] to estimate polarization parameters and AoA using one electromagnetic vector
sensor, which measures six electromagnetic field components of the incident wave field.
Although this method has no frequency-AOA ambiguity and eliminates array interelement
calibration, it only allows the use of one independent vector sensor. The ESPRIT method
can achieve high parameter estimation accuracy, but the computational complexity intro-
duced by the covariance matrix and singular value decomposition is proportional to the
cube of the number of antennas. Therefore, it is only suitable for a small number of antenna
arrays [18–20]. We proposed cross-correlation-to-power ratio polarization tracking algo-
rithms in [8] that only require multiplication and addition operations on scalars. Although
they have lower computational complexity than those based on ESPRIT, using only x- or
y-axis dipoles for cross-correlation-to-power ratio calculation causes a loss in estimation
performance. A parallel co-prime polarization sensitive array (PCP-PSA) was proposed to
estimate two-dimensional AoA and polarization parameters in [21]. Compared to the PSA
algorithm, it improves the accuracy of polarization parameter estimation by increasing the
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degrees of freedoms (DOFs). Furthermore, a three-parallel co-prime polarization sensitive
array (TPCP-PSA) in [22] was used to obtain more DOFs for estimation improvement.

In this paper, we study the reception of a polarized mmWave signal using localized
hybrid dual-polarized arrays, and propose novel algorithms for estimating AoA and polar-
ization parameters. Simulation results show that they can achieve significantly improved
performance compared to existing schemes. The main contributions of this paper are
summarized below.

1. We develop an enhanced AoA estimation algorithm for dual-polarized arrays, which
effectively improves the calibration of differential signals and thus the estimate of
phase offset between adjacent subarrays. Given the phase offset, an initial AoA
estimate can be obtained and used to update the phase offset estimation, which
improves the accuracy of AoA estimation.

2. To improve the accuracy of the polarization parameter estimation, based on the
AoA estimation results, we further propose a cross-correlation-to-power ratio based
estimation approach, which exploits the total received power of signals for ratio
calculation instead of only using one axis dipole. Furthermore, the proposed ap-
proach calculates the cross-correlation and power before digital beamforming rather
than after digital beamforming in [8], which can achieve a higher average SNR for
polarization estimation.

3. To evaluate the estimation performance, we derive the mean square error lower
bounds (MSELBs) of AoA estimation, and analyse the average SNRs for polarization
parameter estimation. It is analytically shown that the proposed approach has higher
average SNRs than that in [8].

The rest of this paper is organized as follows. Section 1 introduces the received signal
models for a hybrid dual-polarized array. Sections 2 and 3 present the enhanced AoA
estimation and polarization estimation approaches for a linear array, respectively, and then
for a uniform planar array. Section 4 derives the MSELBs of AoA estimation and analyses
the average SNRs for polarization parameter estimation. In Section 5, numerical and
simulation results are given to demonstrate the performance of the proposed estimation
approaches, before concluding the paper in Section 6.

Notions: mod{·, ·} stands for the modulo operation. (·)T , (·)∗ and |(·)| represent the
transpose, conjugate and absolute value of (·), respectively. arg{·} denotes the argument
of the complex number (·). sign{(·)} denotes taking the sign of (·).

2. System Models
Hybrid Dual-Polarized Array with Localized Subarrays

As shown in Figure 1, we consider a uniform linear hybrid dual-polarized array
with M subarrays, each including N electromagnetic vector sensors (EMVS) [1–4]. Each
EMVS has two orthogonal dipoles collocated along x- and y-directions, called x- and y-axis
dipoles respectively. They are used to measure the components of the incoming electric
field projected onto the directions of x- and y-axes. The signals from the x- and y-axis
dipoles of each subarray are combined after phase shifter to form the subarray output
signals, respectively, followed by analog-to-digital (A/D) conversion. The digital signals
from the x- and y-axes are jointly used to estimate the AoA information and polarization
parameters, and are weighted and summed to form the output signals, respectively. In
Figure 1, the radio frequency and down conversion modules are suppressed for simplicity.
Note that the module named “M y-axis Dipole Analog Beamformers” shares the same
signal processing with the one named “M x-axis Dipole Analog Beamformers” shown in
the red box. Likewise, the module named “y-axis Dipole Digital Beamforemer” has the
same components with “x-axis Dipole Digital Beamforemer” in the green box.
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Figure 1. Illustration of linear localized hybrid dual-polarized antenna arrays.

Suppose the reception of a transverse electromagnetic wave signal s̃(t) with an el-
evation angle of θ and a polarization state of (γ, η) generated by its electric field [23].
γ ∈ [0, π

2 ) and η ∈ [−π, π) represent the auxiliary polarization angle and the polarization
phase difference, respectively, which uniquely determine the polarization state of the wave.
For example, η = 0 refers to linearly-polarized waves, while γ = π

4 and η = ±π
2 refer

to left/right circularly-polarized wave. Therefore, the electric field vector e is expressed
in Cartesian coordinates as: e = exvx + eyvy + ezvz, where v is a unit vector along the
subscript’s coordinate, and [ex, ey, ez] = [sin γ cos θejη , cos γ,− sin γ sin θejη ] denote the
responses of the corresponding subscripts. After down-conversion, the received signal
through the mth subarray (m = 0, 1, . . . , M− 1) can be written as

=[ex, ey]s̃(t)Pm
t (u)ejmNu + [nm

x (t), nm
y (t)], (1)

where sm
x (t) and sm

y (t) are the signals received by the x- and y-axis dipoles, respectively.
In (1), Pm

t (u) denotes the radiation pattern of the mth subarray at time t, and is expressed as

Pm
t (u) =

N−1

∑
n=0

P̌m
t (u)ej(nu+αm

t (n)), (2)

where P̌m
t (u) denotes the radiation pattern of the nth EMVS (n = 0, 1, . . . , N− 1) at the mth

subarray, and we assume P̌m
n (u) = 1 in this paper; αm

t (n) is the phase shift at the nth EMVS
and u = 2π

λ d sin θ; λ is the wavelength of the carrier, and d denotes the spacing between
two adjacent EMVS; and nm

x (t) and nm
y (t) are the zero-mean additive white Gaussian noise

(AWGN) along x- and y-axis dipoles at the mth subarray with the same power σ2
n .

The outputs of analog beamformers, [sm
x (t),sm

y (t)], are then converted into digital
signals, [sm

x [i],sm
y [i]], via A/D converter, where t = iT and T represents the sampling

interval equalling the width of a symbol. As a result, the outputs of digital beamformers
from x- and y-axis dipoles can be obtained by weighted summation as

[sx[i], sy[i]] =
M−1

∑
m=0

wm[sm
x [i], sm

y [i]], (3)
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where wm is the digital weight at the mth subarray for aligning the phase of signals;
[sx[i], sy[i]] are used to produce s[i] with the maximum signal power by exploiting the MRC;
and s[i] can be written as

s[i] = kxsx[i] + kysy[i], (4)

with [kx, ky] denoting the MRC coefficients.

3. Enhanced Aoa Estimation Approach

In this section, we apply the phase shift designs in [16] to hybrid dual-polarized
arrays, and propose an enhanced AoA estimation approach for improving the accuracy
of phase offset estimation between adjacent subarrays. The initial AoA estimate can be
acquired through the estimated phase offset, and is then used for the update of phase offset
estimation. This improves the accuracy of AoA estimation recursively.

3.1. Estimation of Nu

As in [16], the nth (n = 0, 1, . . . , N − 1) phase shift of the mth (m = 0, 1, . . . , M− 1)
subarray at the ith (i = 0, 1, . . . , I − 1) symbol can be expressed as

αm
i (n) = −nαm

i =
−2πn(mod{m, K}I + i)

L
, (5)

where αm
i represents the phase shift difference between any two adjacent EMVS of the mth

subarray at the ith symbol, indicating that each subarray directs at a predefined direction;
and K is the number of different phase shifts for any symbol. Let K ∈ (2, M] and N = QK,
where Q is an integer; L = IK is the overall number of different phase shifts adopted in the
system, where I is the number of reference signals and L is the total numbers of different
phase shifts. In terms of the configuration given by (5), AoA acquisition can be guaranteed
by using at least one of the L beams with high gain, where the L beams sweep L evenly
distributed directions within [−π, π). mod{m, K} implies that the cycle of αm

i occurs every
K subarrays in a symbol.

By substituting (5) to (2) after the A/D converter, we have

Pm
i (u) =

N−1

∑
n=0

ejn(u−αm
i ) = ej(N−1)ωm

i
sin(Nωm

i )

sin(ωm
i )

, (6)

where ωm
i = (u− αm

i )/2. When the first I subarrays are considered, ωm
i can be simplified

as ωm
i = u

2 − π(m
K + i

L ).
Computing the differential signals between the output signals of the mth and (m+ 1)th

subarrays at ith symbol along x- and y-axis generates

[ρm
x [i], ρm

y [i]] =[(sm
x [i])

∗sm+1
x [i], (sm

y [i])
∗sm+1

y [i]]

= [|ex|2, |ey|2] · |s̃[i]|2Gm
i (u)ejNu︸ ︷︷ ︸

signal component

+[zm
x [i], zm

y [i]], (7)

where

Gm
i (u) =(Pm

i (u))∗Pm+1
i (u)

=e
−j(N−1)π

K
sin(Nωm

i ) sin(Nωm+1
i )

sin(ωm
i ) sin(ωm+1

i )

=e
−j(N−1)π

K
(−1)Q sin2(Nωm

i )

sin(ωm
i ) sin(ωm+1

i )
. (8)
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[zm
x [i], zm

y [i]] are approximated as the zero-mean complex Gaussian noises given by

zm
l [i] =(nm

l [i])
∗nm+1

l [i]+e∗l s̃∗[i](Pm
i (u))∗e−jmNunm+1

l [i]

+ el s̃[i]Pm+1
i (u)ej(m+1)Nu(nm

l [i])
∗. l ∈ {x, y}

Note that ρm
x [i] and ρm

y [i] in (7) have an identical phase, Nu, in signal component, and
their coherent summation has individual components added in phase. Therefore, we take
a constructive combination of ρm

x [i] and ρm
y [i] to improve the accuracy of the estimate of

Nu, N̂u. The complex gains of Gm
i (u) ∀m, i in (7) are dependent on u and their signs are

unknown in advance. This requires their signs to be calibrated and consistent for improving
the accuracy of N̂u by constructive combination.

Theorem 1 in [16] stated that for a single-polarized hybrid array at a symbol i, only
Gm′

i (u) 6= 0, with the largest amplitude, has the opposite sign to all the rest of Gm
i (u), where

m, m′ ∈ [0, K − 1] and m 6= m′. As a result, we propose to find m′ which is the index of
ρm

x [i] + ρm
y [i] with the largest amplitude, i.e.,

m′ = argmax
m=0:K−1

{∣∣∣ρm
x [i] + ρm

y [i]
∣∣∣}. (9)

Given m′, the signs of the differential signals can be aligned following

[ρ̃m
x [i], ρ̃m

y [i]] =

{
(−1)Q[ρm

x [i], ρm
y [i]], m 6= m′

(−1)Q+1[ρm′
x [i], ρm′

y [i]], m = m′
(10)

to perform in-phase combination for N̂u. In addition, we combine ρ̃m
x [i] and ρ̃m

y [i] across
all subarrays and symbols constructively to improve the accuracy of N̂u as shown in
Algorithm 1, where l ∈ {x, y}.

Note that Algorithm 1 in [16] is basically similar to Steps 1–10 of our
Algorithm 1. The difference is that the acquisition of m′ in Step 6 and N̂u in Step 10
exploits the coherent combination of the signals from two axes, instead of one axis in
Algorithm 1 of [16]. Therefore, our algorithm can improve the performance of identifying
the correct m′ by coherently merging the differential signals of EMVS, thus effectively
suppressing the noise and indirectly improving the estimation SNR. This will be validated
in simulation results. At Step 10, the aligned differential signals from dual dipoles are also
coherently combined to directly improve the estimation SNR compared to that in [16].

3.2. Estimation of u

Given N̂u, one can calibrate the output signals of subarrays, [sm
x [i], sm

y [i]], by multi-

plying e−jmN̂u, i.e., [sm
x [i], sm

y [i]]e−jmN̂u. Assuming that ejm(Nu−N̂u) ≈ 1, [sm
x [i], sm

y [i]] can be

almost perfectly calibrated. Then taking the K-point IDFTs of [sm
x [i], sm

y [i]]e−jmN̂u from the
adjacent K subarray outputs, we can obtain [S̃k

x[i], S̃k
y[i]], m, k = 0, . . . , K− 1, given by

[S̃k
x[i], S̃k

y[i]] ≈ [ex, ey] · s̃[i]pk
i (u) + [Nk

x [i], Nk
y [i]], (11)

where

pk
i (u) = ej[k(u− 2πi

L )+(N−K)( u
2−

πi
L )]

sin
(

Nu
2 −

Nπi
L

)
sin
(

Ku
2 −

Kπi
L

)
are the Fourier coefficients of Pm

i (u) and [Nk
x [i], Nk

y [i]] are the K-point IDFTs of [nm
x [i], nm

y [i]]

e−jmN̂u.
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Algorithm 1 Enhanced AoA Estimation

Input: [sm
x [i], sm

y [i]], m = 0 : M− 1, i = 0 : I − 1;
Output: û;

1: for i = 0 : I − 1 do
2: Calculate [ρm

x [i], ρm
y [i]] by (7), m = 0 : M− 2;

3: if K = M then
4: ρK−1

l [i]← (sK−1
l [i])∗s0

l [i];
5: end if
6: Determine m′ by (9);
7: ρ̃m

l [i]← (−1)Qρm
l [i], m = 0 : M− 2;

8: ρ̃m
l [i]← −ρ̃m

l [i], m = m′ : K : M− 2;
9: end for

10: N̂u← arg
{

e
j(N−1)π

K
I−1
∑

i=0

M−2
∑

m=0
(ρ̃m

x [i] + ρ̃m
y [i])

}
;

11: for i = 0 : I − 1 do
12: s̃m

l [i]← sm
l [i]e

−jmN̂u, m = 0 : M− 1;
13: for q = 0 : bM/Kc − 1 do
14: s̃q

l [i]←
{

s̃qK
l [i], s̃qK+1

l [i], . . . , s̃(q+1)K−1
l [i]

}
;

15: S̃q
l [i]← IDFT

{
s̃q

l [i]
}

;
16: end for
17: s̃bM/Kc

l [i]←
{

s̃bM/KcK
l [i], . . . , s̃M−1

l [i],

18: s̃M−bM/KcK
l [i], . . . , s̃K−1

l [i]
}

;

19: S̃bM/Kc
l [i]← IDFT

{
s̃bM/Kc

l [i]
}

;
20: end for

21: H[i]←
bM/Kc

∑
q=0

∑
l∈{x,y}

(
S̃q

l [i]
)∗
(1:K−1)

(
S̃q

l [i]
)T

(2:K)
;

22: û← arg
{

I−1
∑

i=0
e

j2πi
L H[i]

}
;

23: N̂u← Nû, and repeat Steps 11–22.

To obtain an unambiguous estimation of u, we compute the cross-correlation between
any two adjacent IDFT outputs, [(S̃k

x[i])∗S̃k+1
x [i], (S̃k

y[i])∗S̃k+1
y [i]]. The differential signals,

denoted by [dk
x[i], dk

y[i]], k = 0, . . . , K− 2, can be written as

[dk
x[i], dk

y[i]]= [|ex|2,|ey|2]|s̃[i]|2
∣∣∣∣∣∣
sin
(

Nu
2 −

Nπi
L

)
sin
(

Ku
2 −

Kπi
L

)
∣∣∣∣∣∣
2

ej(u−2πi
L )

︸ ︷︷ ︸
signal components

+[Ñk
x [i], Ñk

y [i]], (12)

where

Ñk
l [i] = (Nk

l [i])
∗Nk+1

l [i] + e∗l s̃∗[i](pk
i (u))

∗Nk+1
l [i] + el s̃[i]pk+1

i (u)(Nk
l [i])

∗

can be approximated as complex Gaussian noises with zero means, and noise powers
σ2

Ñl
= 2|el |2|s̃[i]|2|pk

i (u)|2σ2
Nl

when ignoring the higher-order term of Nk
l [i]N

k+1
l [i]. Here,

σ2
Nl

denotes noise power of Nk
l [i] (l ∈ {x, y}) given by σ2

Nl
= σ2

n/K. It is seen from (12)

that the estimate of u, û, can be unambiguously obtained by û = arg
{
(dk

x[i] + dk
y[i])e

j2πi
L

}
.

Similarly, [dk
x[i], dk

y[i]] over all subarrays and symbols can be constructively combined to
improve the accuracy of û.

Note that Algorithm 2 in [16] is basically similar to Steps 11–22 in our Algorithm 1.
The difference is that in Step 23, we further propose to use û to update N̂u, i.e., N̂u← Nû,
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and in turn to re-estimate û. As a result, the estimation accuracy of u is improved after one
iteration due to the upgraded N̂u. The improved MSE performance of N̂u and the resulting
û will be shown in the simulation results. The enhanced AoA estimation algorithm is
summarized in Algorithm 1, where

(
S̃q

l [i]
)
(k1 :k2)

denotes the vector consisting of the k1th

to k2th elements of S̃q
l [i].

3.3. Extension to Uniform Planar Array

The proposed algorithm can be readily extended from uniform linear arrays to planar
arrays. When ignoring the noise at the receiver, the received signals after A/D converter at
the (mx, my)th analog subarray (mx = 0, 1, . . . , Mx − 1; my = 0, 1, . . . , My − 1), where Mx
and My are the numbers of subarrays along x- and y-axis directions, can be expressed as

[s
mx ,my
x [i], s

mx ,my
y [i]] = [ex, ey]s̃[i]P

mx ,my
i (ux, uy)× ej(mx Nxux+my Nyuy), (13)

where ux = 2π
λ d sin θ cos φ, uy = 2π

λ d sin θ sin φ, and φ represents the azimuth angle
of the received signal. The estimates of (θ, φ) is equivalent to those of (ux, uy), i.e.,

θ = sign{ux}sin−1( λ
2π

√
u2

x+u2
y

Nd ) and φ = tan−1(
uy
ux
).

Let Nx and Ny be the numbers of EMVS in a subarray along the two directions.
Extended from (5), the (nx, ny)th (nx = 0, 1, . . . , Nx − 1, ny = 0, 1, . . . , Ny − 1) phase shift
of the (mx, my)th subarray at the ith symbol is given by

α
mx ,my
i (nx, ny) =− 2πnx(mod{mx, Kx}/Kx + i/Lx)

− 2πny(mod{my, Ky}/Ky + i/Ly), (14)

where (Kx, Ky) and (Lx, Ly) are two-dimensional extensions of K and L along x- and y-
axes, respectively.

The associated radiation pattern P
mx ,my
i (ux, uy) is derived by

P
mx ,my
i (ux, uy) = ej(Nx−1)wmx

x,i
sin(Nxwmx

x,i )

sin(wmx
x,i )

· ej(Ny−1)w
my
y,i

sin(Nyw
my
y,i )

sin(w
my
y,i )

, (15)

where wmx
x,i = ux

2 − π( mx
Mx

+ i
Lx
) and w

my
y,i =

uy
2 − π(

my
My

+ i
Ly
) assuming Kx = Mx and

Ky = My.
Calculating the differential signals between the output signals of the (mx, my)th and

(mx + 1, my)th subarray at the ith symbol, [ρmx
x [i], ρ

my
x [i]], we have the corresponding

Gmx
i (ux, uy) in (8), given by

Gmx
i (ux, uy) = (P

mx ,my
i (ux, uy))

∗P
mx+1,my
i (ux, uy)

= e−j (Nx−1)π
Kx

(−1)Qx sin2(Nxwmx
x,i )

sin(wmx
x,i ) sin(wmx+1

x,i )
·

∣∣∣∣∣∣
sin(Nyw

my
y,i )

sin(w
my
y,i )

∣∣∣∣∣∣
2

, (16)

where Qx is the extension of Q along the x-axis direction. It can be seen from (16) that since∣∣∣∣ sin(Nyω
my
y,i )

sin(ω
my
y,i )

∣∣∣∣2 > 0 assuming
sin(Nyω

my
y,i )

sin(ω
my
y,i )
6=0, the extension of (9) is still applicable here, i.e.,

m′x = argmax
m=0:K−1


∣∣∣∣∣∣

My−1

∑
my=0

(
ρmx

x [i] + ρmx
y [i]

)∣∣∣∣∣∣
. (17)
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We constructively combine the outputs of all subarrays along y-axis directions to
find m

′
x in order to improve the SNR of the differential signals. Given m

′
x, the signs of

[ρmx
x [i], ρmx

y [i]] are aligned following (10) as [ρ̃m
x [i], ρ̃m

y [i]]. Therefore, N̂xux can be obtained by

N̂xux =arg

e
j(Nx−1)π

Kx

I−1

∑
i=0

My−1

∑
my=0

Mx−2

∑
mx=0

(ρ̃mx
x [i] + ρ̃mx

y [i])

.

Likewise, we can obtain N̂yuy by identifying m
′
y. In a similar way to estimating u in

Algorithm 1, we can unambiguously estimate ux and uy given N̂xux and N̂yuy.

4. Enhanced Polarization State Estimation Approach

In this section, we propose an enhanced polarization parameter estimation approach to
improve the accuracy of polarization state estimation, where the cross-correlation-to-power
ratio is employed to estimate polarization state, and the total received power of signals on
x- and y-axes is used for the ratio calculation instead of that on only one axis in [8].

4.1. Estimation of Polarization State

Given û, we allow the main beam of each subarray to be directed towards the estimated
direction of incoming signals by adjusting subarray radiation pattern. This enables the
maximum received signals power to improve the accuracy of polarization parameter
estimation. Therefore, [sm

x [i], sm
y [i]] in (1) can be rewritten as

[s′x,m[i], s′y,m[i]] = [ex, ey]s̃[i]Ps(u)ejmNu + [nm
x [i], nm

y [i]], (18)

where

Ps(u) =
N−1

∑
n=0

ej(nu+β(n)) =
sin N(u−û)

2

sin u−û
2

(19)

denotes the subarray radiation pattern when the phase shift in each subarray is chosen as
β(n) = −nû.

It is shown from (18) that the polarization state, (γ, η), is contained in [ex, ey], thus we
propose to extract the polarization parameters by exploiting the relative values between the
output signals from two axes dipoles. Firstly, computing the differential signals between
s′x,m[i] and s′y,m[i], we have

qm
xy[i] = s′x,m[i](s

′
y,m[i])

∗ = exe∗y |s̃[i]|2|Ps(u)|2︸ ︷︷ ︸
signal component

+nm
xy[i], (20)

where

nm
xy[i] = nm

x [i](n
m
y [i])

∗ + nm
x [i]e

∗
y s̃∗[i](Ps(u))∗e−jmNu + (nm

y [i])
∗ex s̃[i]Ps(u)ejmNu

is approximately zero-mean complex AWGN. The associated instaneous powers of s′x,m[i]
and s′y,m[i] are given by

[pm
x [i], pm

y [i]] =[|s′x,m[i]|2, |s′y,m[i]|2]

= [|ex|2,|ey|2]|s̃[i]|2|Ps(u)|2︸ ︷︷ ︸
signal component

+[nm
xx[i], nm

yy[i]] + [|nm
x [i]|2, |nm

y [i]|2], (21)

where [[nm
xx[i], nm

yy[i]] are also the zero-mean complex AWGNs.
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In the absence of noise component, the ratio of qm
xy[i] to pm

x [i] + pm
y [i], denoted by

U + jV, can be expressed as

U + jV =
exe∗y

|ex|2 + |ey|2
=

sin γ cos θejη cos γ

sin2 γ cos2 θ + cos2 γ
=

tan γ cos θejη

tan2 γ cos2 θ + 1
, (22)

which leads to the polarization state given byγ = arctan

{
cos−1 θ · 1±

√
1− 4(U2 + V2)

2
√

U2 + V2

}
η = arg{U + jV}

, (23)

where cos θ =

√
1−

(
λu

2πd

)2
.

In the presence of noise component, since qm
xy[i] and pm

x [i] + pm
y [i] over all subarrays

and symbols have in-phase signal component respectively, the ratio U + jV can be estimated
by coherently combining qm

xy[i] and pm
x [i] + pm

y [i] over them, i.e.,

U + jV =
∑I
′−1

i=0 ∑M−1
m=0 qm

xy[i]

∑I′−1
i=0 ∑M−1

m=0 (pm
x [i] + pm

y [i])− 2MI ′σ2
n

, (24)

to improve the SNR of estimation, where 2MI
′
σ2

n is the expectation of ∑I
′−1

i=0 ∑M−1
m=0 (|nm

x [i]|2 +
|nm

y [i]|2), and I
′
is the number of reference signals used for combination. Unlike in [8] where

the calculations of cross-correlation and power are performed after digital beamforming,
we compute the ratio of cross-correlation to power before digital beamforming, which can
lead to a higher SNR of polarization estimation, as will be illustrated in Section 5.2.

Note that from (24), we calculate the total power of signals on x- and y-axis dipoles
in the denominator, instead of the power calculation on only one axis in [8], which can
enhance the noise immunity and improve the estimation performance. However, it is seen
from (23) that there are two possible solutions for γ, denoted by γc (c = 1, 2). Therefore,
an identification is needed to find the real estimate. As the maximum power of the com-
bined signals from all subarrays’ outputs can be produced only when the real polarization
state estimate is used to configure the MRC coefficients, we determine the real polariza-
tion estimate by comparing the MRC power. Given û, γ̂ and η̂, we can obtain the MRC
coefficients by

[κx,c, κy,c] =
[vx,c, vy,c]√
|vx,c|2 + |vy,c|2

, (25)

where

[vx,c, vy,c] = [sin γ̂c cos θ̂e−jη̂ , cos γ̂c].

s[i] in (4) can be rewritten as

sc[i] =
I
′−1

∑
i=0

M−1

∑
m=0

wm(κx,cs′x,m[i] + κy,cs′y,m[i]) (26)

where wm = 1
M e−jmû for aligning the array. As a result, we determine the real γ̂ using

γ̂ = argmax
γ̂c ,c=1,2

{
|sc[i]|2

}
. (27)
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The enhanced polarization parameter estimation algorithm is summarized in
Algorithm 2.

Algorithm 2 Enhanced Polarization Estimation

Input: [s′x,m[i], s′y,m[i]], m = 0 : M− 1, i = 0 : I
′ − 1;

Output: γ̂, η̂;
1: for i = 0 : I

′ − 1 do
2: Calculate qm

x,y[i] by (20) and [pm
x [i], pm

y [i]] by (21),
m = 0, . . . , M− 1;

3: end for
4: Compute U + jV by (24);
5: Determine (γ̂, η̂) by (23),
6: Calculate sc[i] by (26);
7: Determine the real estimate γ̂ by (27).

4.2. Extension to Planar Arrays

The proposed polarization state estimation approach can also be readily extended to a
planar array. Assuming that (θ̂, φ̂) is obtained as shown in Section 3.3, we can rewrite (23)
in two dimensions as

γ = arctan
{

A cos−1 θ̂
}

η = sign{V} arccos
{

2U+sin (2φ̂)

2A cos (2φ̂)
+

A(2U−sin (2φ̂))

2 cos (2φ̂)

} (28)

where

A =

√
1− 4U2 + (1− 4V2) cos2 (2φ̂)± 2

√
1− 4(U2 + V2) cos (2φ̂)

(2U − sin (2φ̂))2 + (2V cos(2φ̂))2 .

cos θ̂, cos(2φ̂) and sin(2φ̂) can be obtained from ûx and ûy, respectively as
cos θ̂ =

√
1−

(
λ

2πd

)2
(û2

x + û2
y)

cos(2φ̂) =(û2
x − û2

y)/(û
2
x + û2

y)

sin(2φ̂) =2ûxûy/(û2
x + û2

y).

(29)

Similarly, the real polarization state can be determined by

(γ̂, η̂) = argmax
(γ̂c ,η̂c),c=1,2

{
|sc[i]|2

}
. (30)

4.3. Extension to EMVS with z-Axis Dipole

To collect extra power, an EMVS can be equipped with an additional z-axis dipole
that is orthogonally collocated with the x/y-axes. ez = − sin γ sin θejη gives the associated
response in an electric field. We use the received signal on the z-axis dipole to compute the
differential signals between the z-axis and x/y-axes dipoles as

[qm
yz[i], qm

zx[i]] =[s′y,m[i](s
′
z,m[i])

∗, s′z,m[i](s
′
x,m[i])

∗]

=[eye∗z , eze∗x]|s̃[i]|2|Ps(u)|2 + [nm
yz[i], nm

zx[i]], (31)

and the instaneous power on z-axis dipole as
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pm
z [i] = |s′z,m[i]|2 = |ez|2|s̃[i]|2|Ps(u)|2+nm

zz[i]+|nm
z [i]|2.

In noiseless circumstances, the ratio of the sum of differential signals to the sum of
instaneous power can be derived as

U + jV =
exe∗y + eye∗z + eze∗x
|ex|2 + |ey|2 + |ez|2

= exe∗y + eye∗z + eze∗x,

which results in the polarization state represented by U and V. Similar to (24), U + jV can
be estimated by

∑I
′−1

i=0 ∑M−1
m=0 (q

m
xy[i] + qm

yz[i] + qm
zx[i])

∑I′−1
i=0 ∑M−1

m=0 (pm
x [i] + pm

y [i] + pm
z [i])− 3MI ′σ2

n

.

Equation (27) is still applicable to determining the real one.

5. Estimation Performance Evaluation

In this section, we derive the closed-form MSELBs for the enhanced AoA estimation
approach and present an analysis of the proposed polarization parameter estimation.

5.1. The MSELBs of AoA Estimation

We evaluate the AoA estimation performance of the proposed algorithm using the MSE
of û, and derive its closed-form MSELBs. If N̂u = Nu, i.e., ejm(Nu−N̂u) = 1, all subarray
output signals can be perfectly aligned. From (12) and Step 22 of Algorithm 1, the estimation
of u is formulated as the phase estimation of the accumulation of dqK+k

x [i] + dqK+k
y [i] over all

k, q and i (denoted by D), given s̃(t), u, γ and η (collectively denoted by c). For convenience
of analysis, we consider M = K, and hence D is complex Gaussian distributed with
conditional mean

mD = (|ex|2 + |ey|2)
I−1

∑
i=0

K−2

∑
k=0
|s̃[i]|2|pk

i (u)|2ej(u− 2πi
L ) (32)

and conditional variance

σ2
D =

I−1

∑
i=0

K−2

∑
k=0

(σ2
Ñx

+ σ2
Ñy
) =

2(|ex|2 + |ey|2)σ2
n

K

I−1

∑
i=0

K−2

∑
k=0
|s̃[i]|2|pk

i (u)|2. (33)

As a result, the conditional SNR of D given c, is given by

γc =
|mD|2

σ2
D

=
K(|ex|2 + |ey|2)

2σ2
n

I−1

∑
i=0

K−2

∑
k=0
|s̃[i]|2|pk

i (u)|2. (34)

Taking the expectation of γc over c and assuming d = λ/2, we have the average SNR
of D, γ̄, as
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γ̄ =
Kγs

2

I−1

∑
i=0

K−2

∑
k=0

Eu,γ

{
|pk

i (u)|2(sin2γ(1−u2/π2)+cos2γ)
}

=
Kγs

2

I−1

∑
i=0

K−2

∑
k=0

Eu

{
|pk

i (u)|2
}
− Kγs

2π2

I−1

∑
i=0

K−2

∑
k=0

Eγ

{
sin2 γ

}
·Eu

{
|upk

i (u)|2
}

(a)
=

NI(K− 1)γs

2
− K(K− 1)γs

8π3 ·
I−1

∑
i=0

∫ π

−π

∣∣∣∣∣∣
u sin

(
Nu
2 −

Nπi
L

)
sin
(

Ku
2 −

Kπi
L

)
∣∣∣∣∣∣
2

du, (35)

where γs = E
{
|s̃[i]|2

σ2
n

}
, and γ is assumed to be uniformly distributed within (0, π/2),

denoted by γ ∼ U(0, π/2). (a) holds because

Eu{|pk
i (u)|2} =

1
2π

∫ π

−π

∣∣∣∣∣∣
sin
(

Nu
2 −

Nπi
L

)
sin
(

Ku
2 −

Kπi
L

)
∣∣∣∣∣∣
2

du = N/K (36)

assuming u ∼ U(−π, π).
Denote the probability density function (pdf) of û as fû(û). Assuming that |s̃[i]| is

Rayleigh distributed, we have fû(û) = f1(û, γ̄). At high SNRs, f1(û, γ̄) is approximated
as [13]

f1(û, γ̄) ≈
√

γ̄π2 + 1
2π(γ̄û2 + 1)3/2 , −π ≤ û < π. (37)

f1(û, γ̄) is the true pdf of û if |pk
i (u)| reaches the maximum value Q. However, there will

be an SNR reduction since |pk
i (u)| ≤ Q, ∀k, i, u. Furthermore, our derivation is based on

the assumption of N̂u = Nu. Therefore, the actual MSE, σ2
û , will always be higher than that

calculated using f1(û, γ̄), i.e.,

σ2
û ≥

∫ π

−π
û2 f1(û, γ̄)dû =

√
γ̄π2 + 1
πγ̄3/2 sinh−1(

√
γ̄π)− 1

γ̄
= MSELB. (38)

As I and K increase, the MSELB is asymptotically tight. Similarly, when the signal
reception is performed by a single-polarized hybrid array, the average SNRs of D using x- or
y-axis dipoles only are given by γ̄x = γ̄− γ̄y and γ̄y = NI(K−1)γs

4 , respectively. Substituting
them into (38), it can be verified that the MSELB in [16] is a special case of our results.

5.2. Analysis of Polarization Estimation Performance

Since the polarization state information is included in exe∗y and |ex|2 + |ey|2 of (22),
they are considered as the wanted components of the numerator and denominator in (24),
respectively, which are subject to scaling and additive noise.

The average SNR of ∑I
′−1

i=0 ∑M−1
m=0 (pm

x [i] + pm
y [i])− 2MI

′
σ2

n for the estimation of |ex|2 +
|ey|2 in (24) is given by
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E



∣∣∣∣∣(|ex|2 + |ey|2)
I
′−1
∑

i=0

M−1
∑

m=0
|s̃[i]|2|Ps(u)|2

∣∣∣∣∣
2

2(|ex|2 + |ey|2)
I′−1
∑

i=0

M−1
∑

m=0
|s̃[i]|2|Ps(u)|2σ2

n


=
|ex|2 + |ey|2

2
MI

′
γsE{|Ps(u)|2}, (39)

while the average SNR of ∑I
′−1

i=0 ∑M−1
m=0 pm

x [i]−MI
′
σ2

n that uses x-axis dipole only to calculate
the power as shown in [8], is given by

E



∣∣∣∣∣|ex|2
I
′−1
∑

i=0

M−1
∑

m=0
|s̃[i]|2|Ps(u)|2

∣∣∣∣∣
2

2|ex|2
I′−1
∑

i=0

M−1
∑

m=0
|s̃[i]|2|Ps(u)|2σ2

n


=
|ex|2

2
MI

′
γsE{|Ps(u)|2}. (40)

It can be seen from (39) and (40) that our proposed approach has higher average
SNR for the polarization parameter estimation than that using one axis dipole for power
calculation, thus improving the estimation accuracy.

On the other hand, when the calculations of cross-correlation and power in (24) are

performed before digital beamforming, the average SNR of ∑I
′−1

i=0 ∑M−1
m=0 qm

xy[i] in (24) is
given by

E


∣∣∣∣exe∗y ∑I

′−1
i=0 ∑M−1

m=0 |s[i]|2|Ps(u)|2
∣∣∣∣2

(|ex|2 + |ey|2)∑I′−1
i=0 ∑M−1

m=0 |s[i]|2|Ps(u)|2σ2
n


=
|ex|2|ey|2

|ex|2 + |ey|2
MI

′
γsE{|Ps(u)|2}. (41)

When the calculations of cross-correlation and power are performed after digital
beamforming as shown in [8], i.e., the outputs of the digital beamformers of x- and y-axis
dipoles are used for calculation, the average SNRs of the cross-correlation and power are
given by

E


∣∣∣∣exe∗y ∑I

′−1
i=0 |s[i]|

2|Ps(u)|2|Pc(û)|2
∣∣∣∣2

(|ex|2 + |ey|2)∑I′−1
i=0 |s[i]|2|Ps(u)|2|Pc(û)|2Mσ2

n


=
|ex|2|ey|2

|ex|2 + |ey|2
· I
′

M
γsE{|Ps(u)|2}E{|Pc(û)|2} (42)
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and

E



∣∣∣∣∣(|ex|2 + |ey|2)
I
′−1
∑

i=0
|s̃[i]|2|Ps(u)|2|Pc(û)|2

∣∣∣∣∣
2

2(|ex|2 + |ey|2)
I′−1
∑

i=0
|s̃[i]|2|Ps(u)|2|Pc(û)|2Mσ2

n


=
|ex|2 + |ey|2

2
· I
′

M
γsE{|Ps(u)|2}E{|Pc(û)|2}, (43)

respectively, where Pc(û) =
M−1
∑

m=0
ejmû = sin Mû/2

sin û/2 . By comparing (39) and (41) to (42)

and (43), we can see that our proposed approach that calculates the cross-correlation and
power before digital beamforming outperforms that after digital beamforming in terms of
the average SNR for polarization estimation since |Pc(û)|2 ≤ M2.

6. Numerical and Simulation Results

In this section, we present the numerical and simulation results of AoA and polariza-
tion parameter estimation to evaluate the proposed approaches using hybrid dual-polarized
arrays. The state of the art [16] using hybrid single-polarized arrays is also simulated for
comparison. Denote the average SNR per EMVS as γa, which is given by γa = Nγs. The ref-
erence signal, s̃(t), is generated following complex Gaussian distributions. Considering the
reception of polarized signals following u ∼ U(−π, π), γ ∼ U(0, π/2) and η ∼ U(−π, π),
simulation results are obtained by averaging over 50,000 independent trials.

Figure 2 compares the detection probability of m′, Pd, versus γa using dual-polarized
and single-polarized (x-axis dipoles) arrays, where the number of EMVSs in each subarray,
N, is fixed to be 12 and the number of reference signals, I, is set to be 8. We define the
probability of finding the index m′ of differential signals with the largest amplitude as
Pd. As shown in the figure, the dual-polarized array with EMVS is superior to the single-
polarized array in [16] that only uses one axis dipoles in terms of Pd. It indicates that the
use of dual-polarized arrays has a better calibration capability, and thus improving the
accuracy of N̂u. Moreover, using more subarrays leads to higher detection probability
with the increase of γa. Given the number of antennas in a subarray, N, as the number of
subarrays, M, increases, more beams will achieve higher SNR for cross correlations and
thus more accurate m′. Because the number of N determines the width of each beam, the
boundary of M depends on N. The increasing N generally results in a larger M.

The MSEs of the estimates are shown as a function of γa in Figure 3, where M = K = 4
and N = I = 8. It can be seen that the MSEs of ejN̂u (refer to Step 10 in Algorithm 1) using
dual-polarized arrays are lower than those using single-polarized arrays in [16], which is
in line with the results in Figure 2. The MSE performance is also greatly enhanced from
ejN̂u to ejNû, e.g., a 4 dB improvement at the MSE of 0.1. The MSEs of ejN̂u without noise is
also plotted as a comparison.

Figure 4 shows the MSEs of û versus γa. It is seen that the MSEs of û (refer to Step 22
in Algorithm 1) with dual-polarized arrays are lower than those of single-polarized arrays
in [16]. The MSE performance of û1 is improved after one iteration due to the enhanced
N̂u (refer to the updated estimate at step 23), while the MSE performance of û2 after
two iterations has no further improvement. The MSEs of û are displayed for comparison
assuming N̂u = Nu, which means that the signals from all subarrays’ outputs are perfectly
aligned. The MSELBs exhibit far better performance due to assuming |pk

i (u)| = Q, ∀k, i.
However, only few of them can be close to Q and even some ones are far less than Q in
terms of the phase shift designs in this paper. Therefore, there is a certain gap between the
MSE performance of the proposed AoA estimation approach and the MSELBs.
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Figure 2. Detection probability of m′, Pd versus γa, where N = 12 and I = 8.
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Figure 3. The MSEs of ejN̂u versus γa.
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Figure 4. The MSEs of û versus γa.

Figure 5 shows the MSEs of polarization parameters versus γa, where N = 8 and
M = 6. It can be seen that the MSEs of γ̂ and η̂ using Algorithm 2 for power calculation
are lower than those using only one axis dipoles for power calculation in [8], which is
consistent with the performance analysis in Section 5.2.
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Figure 5. The MSEs of (γ̂,η̂) versus γa.

Figure 6 shows the SNRs of the combined signal defined in (4) with MRC, and of
the signals only using x- or y- dipoles without MRC. The circle marker denotes the out-
put SNRs with MRC using the total received power of signals on x- and y-axis dipoles
for the cross-correlation-to-power ratio calculation, while the diamond or cross marker
denotes those with MRC using x- or y-axis dipole for ratio calculation. It is seen that
the former achieves higher output SNRs than the latters due to the improved accuracy
of polarization parameter estimation, i.e., more accurate MRC coefficients. The hybrid
dual-polarized array with MRC produces far higher output SNRs than the single-polarized
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array with one axis dipoles without MRC. Note that the simulated output SNR using x-
and y-axis dipoles with MRC at γa = 10 dB is given by 26.4 dB. It is close to the SNR that is
achieved by the arrays perfectly aligned with the real AoA and polarization state, given by
10 + 10 lg(6 × 8) = 26.8 dB.
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Figure 6. The output SNRs versus the γa, where N = 8 and M = 6.

7. Conclusions

In this paper, we have developed enhanced AoA and polarization parameter esti-
mation approaches for localized mmWave hybrid dual-polarized arrays. Employing the
polarization diversity, dual-polarized antennas can effectively enhance the calibration capa-
bility of the signs of differential signals, and thus the SNR for AoA estimation. Based on the
enhanced AoA estimate, the proposed cross-correlation-and-power ratio based approach
exploiting the total power of EMVS can greatly improve the accuracy of polarization esti-
mation. Furthermore, we have provided the closed-form MSELBs for the enhanced AoA
estimation and analytical performance evaluation of the enhanced polarization estimation
approach. Simulation results show that the output SNRs of the MRC signals can be effec-
tively improved with the enhanced AoA and polarization parameter estimation. In future
work, the proposed algorithms have potentials to be extended to the frequency domain for
estimation accuracy improvement.
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