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Abstract: Detection and manipulation of radially polarized terahertz (THz) radiation is essential for
many applications. A new measurement scheme is proposed for the diagnosis of radially polarized
THz radiation from a longitudinal dc-biased plasma filament, by introducing a movable metal mask.
The amplitude and spectrum of the radially polarized THz beam was measured with a <110>-cut
ZnTe crystal, where the THz beam pattern was modulated by the mask. Based on this measurement
scheme, it was demonstrated that the amplitude and spectrum of the radially polarized THz radiation
from the longitudinal dc-biased filament could be manipulated by controlling the strength and the
location of the dc-biased field.

Keywords: terahertz radiation; laser plasmas; radial polarization; longitudinal dc-biased electric field

1. Introduction

Radially polarized terahertz (THz) radiation is a special THz vector beam whose
polarization direction is along the radial direction in the beam cross section [1]. Longitudinal
THz electric fields can be formed by tightly focusing radially polarized terahertz radiation,
which have important applications in electron acceleration [2], optical tweezers [3], THz
imaging [4], etc. In recent years, many research groups have proposed a variety of methods
to generate radially polarized THz radiation. Ryo et al. generated radially and azimuthally
polarized THz beams by piecing together nonlinear crystals [5]. Cliffe et al. used a radially
biased photoconductive antenna to generate a longitudinal THz electric field up to 2 kV/cm
after focusing [6]. Using segmented waveplates, linearly polarized THz radiation can be
converted to radially polarized THz radiation [2,7]. Additionally, strong radially polarized
broadband THz radiation can be generated in accelerator-based light sources through
coherent diffraction and transition radiation [8,9]. D’Amico et al. generated radially
polarized THz radiation from laser plasmas [10]. Later, Liu et al. increased the intensity of
this THz radiation by an order of magnitude by introducing an external electric field to
laser plasmas [11].

Recently, THz radiation from laser plasmas has attracted broad interest due to its high
damage threshold and ultrabroad spectral bandwidth, compared with other methods [12–18].
However, effective characterization of the radially polarized THz radiation from laser
plasmas is still challenging. Heterodyne detectors have been used for the measurement
of radially polarized THz at specific frequencies [10,11,18]. Rizaev et al. discussed the
spectral distributions of radially polarized THz radiation from DC-biased laser plasmas by
using a bolometer with THz filters [16]. Fukuda et al. measured the angular distribution of
radially polarized THz by calibrated diode detectors with sensitive bands at 0.14 THz to
0.33 THz [14]. The above methods can obtain the intensity and spatial distribution of the
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radially polarized terahertz wave, but the electric field and the corresponding spectrum of
this THz signal cannot be obtained. The waveform of the longitudinal THz electric field
formed by focusing the radially polarized THz emission has been demonstrated by using
<100>-cut GaP or ZnTe crystal [16,19], whose signal-to-noise ratio is much lower than the
measurement of the linearly polarized THz signal with a <110>-cut ZnTe crystal. Following
this, some research groups divided the emitted radially polarized THz beam into four
pieces with a sectorial mask, and measured the waveform of this THz signal piece-by-piece
with a <110>-cut ZnTe crystal [19,20]. However, with this method, alignment is not easy
because the resultant THz signal is very sensitive to the transverse position of the sectorial
mask with respect to the THz beam profile.

In this paper, a new method is proposed for the measurement of radially polarized THz
radiation from a plasma filament with a longitudinally oriented external electric field. The
waveform and corresponding spectrum of the radially polarized THz pulse from a plasma
filament can be distinguished and obtained by electro–optic (EO) sampling technique with
a <110>-cut ZnTe crystal, by modulating the THz beam pattern with a movable metal
mask. Based on this measurement scheme, it will be demonstrated that the amplitude and
spectrum of the radially polarized THz radiation from a longitudinally dc-biased filament
can be manipulated by control of the amplitude and the location of the external electric field,
respectively. This paper is organized as follows. In Section 2, the detection method for the
radially polarized THz radiation is presented. In Section 3, the experimental result based
on the measurement scheme is shown. Based on the experimental result, the THz spatial
distribution is analyzed by the transition-Cherenkov radiation principle. In Section 4, the
radially polarized THz radiation is manipulated by adjusting the external electric field.
Finally, a summary is given in Section 5.

2. Detection Methods

THz radiation from plasma filaments with an external electric field can be either
radially polarized (with a longitudinally oriented dc-bias) [11] or linearly polarized (with a
transversely-oriented dc-bias) [21]. When the THz radiation is collected and focused, the
polarization of the radially polarized THz components will become longitudinal at the focal
plane (Figure 1a), while the polarization of the linearly polarized THz components is in the
transverse direction at the focal plane (Figure 1b). Detection of the linearly polarized THz
radiation often uses an electro–optic sampling technique with a <110>-cut ZnTe crystal [22].
For a longitudinal THz electric field, however, it will not change the refractive index of the
ZnTe crystal in the (110) plane. Therefore, the longitudinal THz components at the focal
plane (as Ez in Figure 1a), which originated from the radially polarized THz components,
cannot be directly measured by electro–optic sampling with a <110>-cut ZnTe crystal, for
normal incidence.
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To measure the waveforms of the radially polarized and linearly polarized THz
radiation from plasma filaments at the same time, we introduced a rectangular metal plate
in front of the focusing optics as a mask to block part of the THz radiation, as shown in
Figure 2. As the lower edge of the mask moves from the top to the bottom of the THz
beam pattern, the residual THz radiation with radial polarization will occur transversely
polarized THz components, Ey, at the focal plane (as Ey in Figure 2a) while the residual
THz radiation with linear polarization retains its polarization. Thus, the waveforms of the
radially polarized THz radiation can be obtained by measuring the THz components, Ey, at
the focal plane with a metal mask and a <110>-cut ZnTe crystal.
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Figure 2. Side view (a), and front view (b), of the schematic diagram for beam shielding with a
rectangular metal mask.

To determine the spatial distribution of the THz radiation from plasma filaments, we
first placed the metal mask so as to completely block the THz beam pattern. Then the mask
was moved upwards along the y-axis until the THz signal started to appear. This particular
location of the lower edge of the mask was defined as y = 0, corresponding to a lower edge
of the THz beam pattern, as shown in Figure 3a. As the mask was moved further upwards,
the distance between the lower edge of the mask and the location y = 0 was defined as d,
which had close correlation to the THz signal arriving at the detector. When the THz signal
remained constant while the mask was moved upwards, the location of the lower edge
of the mask was defined as y = L (corresponding to upper edge of the THz beam pattern).
Thus, we could roughly determine the boundary of the THz beam pattern by scanning
the metal mask across the whole THz beam profile in y direction. In the measurement, we
could obtain the horizontally polarized and the vertically polarized THz electric fields at
the focal plane by rotating the angles of a half-wave plate (HWP) and a ZnTe crystal in the
electro–optic sampling system [21,23]. Here, we defined the horizontally and vertically
polarized THz signals as Elower

x and Elower
y (Figure 3a), respectively. When d was changed

from 0 to L, the horizontal and the vertical components of the linearly polarized THz signal
became larger with the increase in d. For the radially polarized THz beam, however, its
vertical components increased from zero to a maximum, when d changed from 0 to L/2.
For d larger than L/2, the THz signals from the upper half of the radially polarized THz
beam (with inversed polarization) canceled the THz signals from the lower half, leading to
a decrease in total THz vertical components at the focal plane. Meanwhile, the horizontal
THz components from a radially polarized THz beam remained at zero when moving
the mask vertically (along the y-axis) because the horizontal THz components from the
left half and the right half of this THz beam canceled each other at the focal plane. In
order to improve the accuracy of our experiment, being certain that radially polarized
THz radiation had been measured, we also measured the THz radiation by moving the
metal mask in the opposite direction, as shown in Figure 3b. After blocking the whole
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THz beam pattern with the mask, we slowly moved the mask downwards. In the same
way, the boundary of the THz beam pattern could be decided when the upper edge of the
mask was located at z = L (corresponding to upper edge of the THz beam pattern) and z = 0
(corresponding to lower edge of the THz beam pattern). In this case, d was defined as the
distance between the upper edge of the THz beam pattern and the upper edge of the mask,
while the horizontally polarized and the vertically polarized THz signals were defined as
Eupper

x and Eupper
y , respectively.
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3. Results

The experimental setup for the generation and the detection of the THz radiation from
laser-induced air plasmas is sketched in Figure 4. An 800 nm, 40 fs, 2 mJ laser was divided
by a beam splitter (BS) into a pump beam and a probe beam. The pump beam was focused
by a convex lens with 50 cm focal length to produce a 1 cm long laser filament in air. Two
copper electrodes (with a hole in the center of each copper plate) with a diameter of 5 cm
were set on both sides of the filament, forming a longitudinally oriented external electric
field along the filament. The distance between the two copper plates was around 1 cm and
the voltage applied to the plates could be varied from 0 to 10 kV. Thereafter, THz radiation
from the longitudinally dc-biased filament was collected by two off-axis parabolic mirrors
(OAP) with focal length of 10 cm and measured by electro–optic sampling technique with a
<110>-cut ZnTe crystal. The diameters of the off-axis parabolic mirrors were both 50 mm,
and they could collect THz radiation at an angle of up to 15 degrees from axis z. A silicon
wafer was placed between the two off-axis parabolic mirrors to separate the THz beam from
the pump beam. A rectangular metal mask, which could be moved along the y-axis, was
placed just after the silicon wafer to control the THz beam pattern that reached the detector.

Figure 5 shows the evolution of the measured THz waveforms when scanning the
metal mask upwards (along the y-axis). Elower

x and Elower
y correspond to the measured THz

waveforms of the horizontally polarized THz components and the vertically polarized
THz components when moving the metal mask downwards (Figure 5a,b), respectively.
Each vertical line relates to a THz waveform obtained at a specified d. The signals with
d = 0 were obtained when the THz radiation was completely blocked by the metal mask.
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The radially polarized THz beam was centrosymmetric about the center of the THz beam
pattern, so the left half and the right half of the THz beam canceled each other in the
horizontal polarization at the focal plane when the mask was moved along the vertical
direction (parallel to the y-axis). As a result, the radially polarized THz radiation did
not contribute to the measured horizontally polarized THz components, Elower

x . As the
external electric field along the filament was not perfectly longitudinally oriented, the
measured Elower

x corresponded to the horizontal components of the linearly polarized THz
radiation from the filament with a transversely oriented external electric field [21]. In this
case, the measured Elower

x increased with an increase in d, as shown in Figure 5a. As for
the vertically polarized THz components, Elower

y , however, the measured waveforms were
contributed by both the radially polarized THz radiation and the linearly polarized THz
radiation. As the polarity of the radially polarized THz beam was opposite between the
upper and lower halves, the measured vertically polarized THz components, Elower

y , had a
decreasing tendency at d > 25 mm, as shown in Figure 5b. When the mask was completely
removed (d = 50 mm in Figure 5b), the measured Elower

y only corresponded to the vertical
components of the linearly polarized THz radiation from the filament with a transversely
oriented external electric field, because the THz signals from the upper half of the radially
polarized THz beam canceled those from the lower half.
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As mentioned above, not only a radially polarized THz beam, but also a linearly
polarized THz beam were generated in our experiment when applying a longitudinally
oriented dc-bias to the filament. This was due to a slight deviation in the direction the dc-
bias with respect to the propagation direction of the laser beam, which induced a transverse
component of the external electric field to the plasma filament responsible for the generation
of the linearly polarized THz beam [22]. We will now discuss how to distinguish the THz
signals for the radially polarized THz beam from those for the linearly polarized THz beam.
In Figure 5b, the measured THz signal Elower

y involves vertical components from both a
linearly polarized THz beam and a radially polarized THz beam. In order to obtain the
radially polarized THz signal, we need to subtract the linearly polarized THz component
from Elower

y . The measured THz signal Elower
x only involves horizontal components from

a linearly polarized THz beam. Thus, from the measured horizontal THz components in
Figure 5a, we can obtain the ratio between the THz electric field obtained with the mask
located at d Elower

x (d) and the THz electric field obtained without the mask (located at
L = 50 mm) Elower

x (L) as:
αlower(d) = Elower

x (d)/Elower
x (L). (1)

For the linearly polarized THz beam, the vertical THz components should have the
same relation to the mask location d. Therefore, it can be derived that:

αlower(d) = Elower
lin (d)/Elower

lin (L), (2)

where Elower
lin (d) is the electric field of the linearly polarized THz beam when the mask is

located at position d. In Figure 5b, the measured THz signal Elower
y (L) only corresponds to

the vertical components of the linearly polarized THz beam, as the vertical components
from the upper half and lower half of the radially polarized THz beam cancel each other.
Thus, the vertical components of the linearly polarized THz beam with the mask located at
d, denoted as Elower

y,lin (d), can be derived as:

Elower
y,lin (d) = Elower

y (L)·αlower(d). (3)

and then, the vertical components of the radially polarized THz beam, denoted as Elower
y,rad (d),

can be derived as:
Elower

y,rad (d) = Elower
y (d)− Elower

y,lin (d)
= Elower

y (d)− Elower
y (L)·Elower

x (d)/Elower
x (L).

(4)

In this way, we can obtain the waveform and the one dimensional spatial distribution
of the vertical components of the radially polarized THz beam. In the same way, the radially
polarized THz signal can be obtained by scanning the mask downwards as:

Eupper
y,rad (d) = Eupper

y (d)− Eupper
y (L)·Eupper

x (d)/Eupper
x (L). (5)

Based on Equations (1)–(5), the vertical components of the radially polarized THz beam
when scanning the mask upwards and downwards, are shown in Figure 6a,b, respectively.
The measured radially polarized THz signal reaches its maximum when the mask blocks
exactly half of the THz beam pattern (Elower

y,rad (L/2) and Eupper
y,rad (L/2)), while it goes back to

zero when the mask is completely removed (Elower
y,rad (L) and Eupper

y,rad (L)). The waveform of the

vertical components from the upper half of the radially polarized THz beam Eupper
y,rad (L/2)

has opposite polarity compared with that from the lower half of the radially polarized THz
beam Elower

y,rad (L/2) (as shown in Figure 6c) while their corresponding spectra remain the
same (as shown in Figure 6d). All these behaviors match well with the characteristic of a
radially polarized THz beam. Therefore, based on our method, the signal for a radially
polarized THz beam can be well distinguished from the measured THz signals with other
polarizations (a linear polarization in this experiment).
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y,rad (d)) (a), and downwards (Eupper
y,rad (d)) (b); (c,d) are, respectively, the waveforms and the

corresponding spectra of Elower
y,rad (L/2) and Eupper

y,rad (L/2).

Based on the measurement, we can also analyze the spatial distribution of the radially
polarized THz radiation from the longitudinally dc-biased filament. A focused femtosec-
ond laser will induce plasmas in air and form a long laser filament due to an interplay
between the Kerr-focusing effect and the plasma-defocusing effect. Inside the filament,
the laser-induced ponderomotive force will drive the electrons to produce longitudinal
oscillations, which can be regarded as a dipole-like charge current, jwz (ω), oriented along
the filament [10]. When the filament is applied by an external electric field, Eext, with its
orientation parallel to the filament, the electrons ionized by the laser will also be driven by
the external electric field to form a current, je

z(ω), which is proportional to the amplitude of
the external electric field [11]. Consequently, the total longitudinal electron current can be
expressed as jz(ω) = jwz (ω) + je

z(ω). The dipole moving at the light velocity will generate
a Cherenkov-like THz radiation with the spatial distribution of its energy spectral density
denoted as [18]:

d2W
dωdΩ

=
|jz(ω)|2

4πε0c
ρ4

0 sin2 θ

(1− cosθ)2 sin2
[

Lω

2c
(1− cosθ)

]
, (6)

where ω is the frequency of the radiation, θ is the radiation angle with respect to the laser
propagation axis, ε0 and c are the dielectric constant and the speed of the light in vacuum,
respectively, and ρ0 and L are the radius and length of the filament, respectively. Based on
Equation (6), considering the Fourier spectrum of the measured Elower

y,rad (L/2) as jz(ω), the
energy distribution of the observed radially polarized THz radiation from a longitudinally
dc-biased filament can be simulated, as shown in Figure 7a. The corresponding spatial
distribution of the THz amplitude and its vertical components are shown in Figures 7b
and 7c, respectively. The diameters of the off-axis parabolic mirrors used in the experiment
were 50 mm, so we only considered the THz signals within the spatial limit of these mirrors
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in the simulation. The red and blue colors in the THz beam pattern in Figure 7c represent
the upper and the lower halves of the vertical components of the radially polarized THz
radiation possessing opposite polarities. If we introduce the mask method to this simulated
beam pattern, we could obtain the THz amplitude as a function of d (defined in Figure 3),
as the solid curve in Figure 7d. It is notable that the simulated result well agrees with the
experimental observations.
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4. Manipulation of the Radially Polarized THz Radiation

Based on the above mask method, the amplitude of the radially polarized THz radia-
tion can be manipulated by adjusting the amplitude of the longitudinal external electric
field. Figure 8 shows the measured waveforms and the corresponding Fourier spectra
of the radially polarized THz radiation from the longitudinally dc-biased filament as the
external electric field changes. When the amplitude of the external electric field increased
from 2 kV/cm to 10 kV/cm, the amplitude of the radially polarized THz radiation in-
creased linearly with respect to the amplitude of the external electric field, while the peak
frequency of the THz spectrum was almost fixed around 0.2 THz. The THz peak frequency
from the dc-biased filament was lower than the peak frequency of THz radiation from
the filament without external electric field (0 kV/cm) because the external electric field
can only influence electrons in the outer layer of the filament with a thin thickness due
to the Debye shielding effect. When there is no external electric field, however, the THz
signal emits from the whole filament, including the central region of the filament with
relatively higher plasma density compared with the outer layer. Therefore, the frequency
of the THz radiation without the external electric field was much higher, according to

the relation for plasma frequency ωp =
√

nee2

meε0
, where ne is the plasma density, e is the

charge of the electron, me is the electron mass, and ε0 is the dielectric constant in vacuum,
respectively [11].
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Figure 8. (a) Measured waveforms, and (b) corresponding spectra, of the radially polarized THz
radiations when the external electric field changes from 0 to 10 kV/cm.

With this longitudinally dc-biased filament, we could also slightly manipulate the
peak frequency of the radially polarized THz radiation, except for its amplitude. In a long
plasma filament, the plasma density along the filament is not homogeneous. We extended
the length of the filament to 2 cm by increasing the laser energy to 4 mJ. Figure 9 shows the
spectra of the radially polarized THz radiation when moving the electrodes longitudinally
along the filament. The THz spectrum marked with dz = 0 mm was measured when the
location of the left piece of the electrodes was at the beginning of the filament, while the
THz spectrum marked with dz = 10 mm was measured when the location of the electrodes
was changed by 10 mm towards the tailing of the filament. It was notable that the radially
polarized THz radiation from the beginning of the filament was comparably lower than
that from the tailing of the filament. This could be interpreted by the fact that the plasma
density was a little bit higher at the location of the geometric focus. By this technique, we
could smoothly tune the peak frequency of the radially polarized THz signal from 0.17 THz
to 0.21 THz.
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Figure 9. Normalized spectra of radially polarized THz radiation from a dc-biased filament when
the location of the electrodes moves from the beginning to the tailing of the filament. The external
electric field is 10 kV/cm. The distance from the beginning of the filament to the electrodes is defined
as dz, as shown in the figure.
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5. Conclusions

We demonstrated the diagnosis of the radially polarized THz radiation from a longitu-
dinal dc-biased laser plasma filament by introducing a movable metal mask. The amplitude
and spectrum of the radially polarized THz beam was measured with a <110>-cut ZnTe
crystal by modulating the THz beam pattern with the mask. Meanwhile, the linearly
polarized components of the THz radiation from this dc-biased filament could be well
distinguished from the THz pulses withradial polarization. The measured 1-D spatial distri-
bution of the radially polarized THz radiation matched well with the simulation, according
to the transition-Cherenkov model. Based on the mask method, the amplitude, as well as
the spectrum of the radially polarized THz radiation, was manipulated by adjusting the
amplitude and location of the external electric field, respectively. This work provides a
new method of simultaneously measuring radially polarized and linearly polarized THz
radiation, which has wide relevance in THz applications.

Author Contributions: B.H. and Y.C. conceived the idea and designed the experiments; B.H., T.X.,
L.W. and C.W. conducted the experiments; B.H. and Y.C. wrote the paper; Z.S. generally supported
the project. All authors have read and agreed to the published version of the manuscript.
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