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Abstract: Sensors with a higher sampling rate produce higher-quality data. However, for more
extended periods of data acquisition, as in the continuous monitoring of patients, the handling of the
generated big data becomes increasingly complicated. This study aimed to determine the validity
and reliability of low-sampling-frequency accelerometer (SENS) measurements in patients with knee
osteoarthritis. Data were collected simultaneously using SENS and a previously validated sensor
(Xsens) during two repetitions of overground walking. The processed acceleration signals were
compared with respect to different coordinate axes to determine the test–retest reliability and the
agreement between the two systems in the time and frequency domains. In total, 44 participants
were included. With respect to different axes, the interclass correlation coefficient for the repeatability
of SENS measurements was [0.93–0.96]. The concordance correlation coefficients for the two systems’
agreement were [0.81–0.91] in the time domain and [0.43–0.99] in the frequency domain. The absolute
biases estimated by the Bland–Altman method were [0.0005–0.008] in the time domain and [0–0.008]
in the frequency domain. Low-sampling-frequency accelerometers can provide relatively valid data
for measuring the gait accelerations in patients with knee osteoarthritis and can be used in the future
for remote patient monitoring.

Keywords: inertial measurement units; wearable motion-tracking sensors; low-sampling-frequency
accelerometers; knee osteoarthritis; SENS sensors; remote monitoring of patients; gait accelerations;
time-domain comparison; frequency-domain comparison; test–retest reliability

1. Introduction

Knee osteoarthritis (OA) is a prevalent musculoskeletal condition affecting the older
population, characterized by articular-cartilage degeneration and joint-space narrowing.
Pain and walking problems associated with knee OA affect patients’ quality of life and
impose a considerable economic burden on the health care system [1]. A timely follow-up
of patients with knee OA is required to monitor the outcome of the applied treatment and
provide patients with appropriate rehabilitation programs, exercises, and education [2,3].
However, frequent outpatient visits can be associated with lower patient satisfaction [4,5].
Furthermore, considerable costs and inherent difficulties with transport and situations such
as the COVID-19 pandemic impel follow-up visits to shift from routine clinical visits to the
remote home monitoring of patients.

In addition to questionnaires and patient-reported outcome measures (PROMs), wear-
able motion-tracking sensors, such as Inertial Measurement Units (IMUs), have recently
been introduced in telemedicine programs. These wearable sensors provide a practical and
cost-effective solution for obtaining objective functional measures regarding the characteris-
tics of movements and physical activities [6–8]. Commercially available IMUs have a wide
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range of technical specifications based on their usage, such as the range of sensitivity, the
number of axes, electrical characteristics, the interface, and the included sensor types. One
of the most critical features of wearable sensors for patient monitoring is battery lifetime.
Long battery life without recharging in a small sensor would usually require the IMU to
comprise only passive accelerometers (as opposed to active gyroscopes) and to operate
at a low sampling frequency. Most modern IMUs in human-motion-capture technology
sample at frequencies between 10 and 200 Hz [9]. Different sampling rates have been
recommended for capturing daily life activities depending on the type of activities and
the type of analysis required [10]. Previous investigations of the SENS sensor [11,12] have
focused on activity classification. Still, we could not find a study evaluating the accuracy
and precision of the measurements and how a low sampling frequency might compromise
them. The ultimate goal of studies of IMUs in gait analysis is to examine their clinical
applicability; however, the usefulness of a measure in a clinical setting depends on the
extent to which clinicians can rely on the data being accurate and precise [13].

The main aim of our study was to validate the measurements performed by a commer-
cially available sensor (SENS Motion®; Copenhagen, Denmark) designed for measuring
physical activities in the healthcare sector and for research projects. We investigated
whether the accelerations measured with small low-frequency accelerometers in patients
with knee OA were valid representations of the true accelerations for kinematic gait as-
sessment. We compared the accelerations measured with SENS sensors at ~12.5 Hz with a
standard inertial-sensor-based motion-capture system as the gold standard to determine the
criterion validity of accelerometers with low sampling frequencies. We also evaluated the
test–retest reliability of the measurements obtained with low-sampling-frequency sensors.

The key contributions of this study can be summarized as follows:

• The accuracy and precision of the measurements of low-sampling-frequency ac-
celerometers were determined to evaluate the performance of these sensors in the time
and frequency domains and with respect to different coordinate axes;

• By employing musculoskeletal modeling, we could compare the accelerations of two
systems at an exact location. We could compare the accelerations in close-to-real-life
situations and without needing sophisticated motion and gait laboratories;

• In addition, we evaluated the test–retest repeatability of the accelerations measured
with these sensors and compared them with the criterion system.

2. Materials and Methods
2.1. Participants

The study participants consisted of patients at different stages of unilateral knee OA
referred to Aalborg University Hospital, Denmark, between December 2021 and March
2022 and diagnosed by specialists in orthopedic surgery. We also included asymptomatic
individuals of over 50 years of age at stage 0 of knee OA. Participants complaining of
pain and discomfort in the spine and other lower-limb joints, and patients with high BMIs
(>35 kg/m2), a recent history of operations in the lower limbs, neurological movement
disorders, and inflammatory arthritis were excluded from the study. The study was
approved by Regional Committee on Health Research Ethics (journal number 2021-000438).

2.2. Equipment

Two sensors were used in this study (Table 1). Figure 1A simultaneously demonstrates
the application of both sensors.
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Table 1. Technical specifications of the two types of sensors used in the study.

SENS Xsens

Dimension 47 × 22 × 4.5 mm 47 × 30 × 13 mm
Weight 7 gr 16 gr
Sampling frequency 12.5 Hz 60 Hz
3D accelerometer ±4 G ±16 G
Battery life 15 weeks 6 h
Attachment 3 M patches Velcro straps
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Figure 1. (A) Simultaneous application of SENS and Xsens sensors (Xsens sensors are shown on top
of clothing for illustrative purposes). (B) Placement of a SENS sensor on the distal lateral side of the
thigh. (C) Coordinate axes of the SENS sensor.

2.2.1. Xsens

The Xsens sensors (Xsens, Enschede, The Netherlands) formed the MVN Awinda
wireless full-body MoCap system. They consisted of 17 IMUs, which comprised a 3D
gyroscope, a 3D accelerometer, and a 3D magnetometer combined with sensor fusion
algorithms. The sensors were placed on the head, shoulders, upper arms, forearms, sternum,
pelvis, upper and lower legs, and feet (Figure 1A) for full-body motion capture. This system
has been repeatedly studied against optical motion-capture systems for gait analysis.
Fair–excellent inter-rate and intra-rate reliability and excellent system validity have been
demonstrated [14–19]. The Xsens system’s bias rate is comparable to the gold-standard
camera-based motion-capture gait analysis [19]. The high inter-rater reliability of the Xsens
system, supporting its stability and independence of the rater, and its high validity against
gold-standard gait-analysis methods made it a good choice for the criterion method in
our study.

2.2.2. SENS

SENS sensors (SENS Motion®, Copenhagen, Denmark) only contain a 3D accelerome-
ter. These sensors are medically approved devices designed for the long-term monitoring
of patients’ physical activities. In addition, they have an internal memory for storing up
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to 14 days of data and cloud connectivity via a mobile telephone. Following the manufac-
turer’s instructions, we attached two SENS sensors on the lateral distal side of each thigh
about 10 cm above the lateral femoral epicondyle (Figure 1B).

2.3. Data Collection

The experiment process was explained to the eligible participants, and informed
consent was obtained before inclusion. Afterward, the subjects’ basic information was regis-
tered, including their age, sex, weight, height, and the severity of knee OA according to the
Kellgren–Lawrence classification [20]. The Knee injury and Osteoarthritis Outcome Score
(KOOS) [21] was also obtained as a subjective score of the patient’s problems regarding
knee OA.

Gait data from SENS and Xsens sensors were simultaneously recorded by having
patients perform two overground walking trials at a self-selected speed. Since patients
with knee OA might demonstrate asymmetries in knee biomechanics during walking [22],
we used two SENS sensors for each participant (one on each thigh) to separately compare
each side. The time interval between the two trials was 2–5 min long. Each walking trial
consisted of a walk in a straight line across the outpatient clinic (approximately 15 m). Data
from Xsens sensors were recorded on a local computer with MVN Analyze Software. Data
from the SENS sensors were saved in the onboard memories of the sensors and transferred
to a cloud storage system, from which we downloaded and processed the data.

2.4. Data Processing

The gait data from the Xsens sensors were processed with MVN Analyze software
(version 2021.2; Xsens, Enschede, The Netherlands). Afterward, the processed data were
used as inputs for AnyBody Modeling System (version 7.3.4; AnyBody Technology, Aalborg,
Denmark). AnyBody is musculoskeletal modeling software that enables the simulation
and analysis of the kinematics and kinetics of human movements to be performed. Xsens
relies on the sensor fusion of a multitude of channels to recover positional information,
and the AnyBody Modeling System further processes the signals by taking the kinematic
constraints into account before returning the local accelerations. This pipeline, to some
extent, compensates for the influence of soft-tissue artifacts on the local accelerations.

A musculoskeletal model for each participant was created, and two virtual representa-
tions of the accelerometers (VirtualSENS) were defined in each model on the right and left
thighs at the locations of the two SENS sensors. The model accepted the processed data
from MVN Analyze as inputs. The outputs consisted of the 3D linear accelerations offset by
gravity in the local coordinate systems of the VirtualSENS sensors, which we employed as
the criterion to validate the SENS signals. For convenience, we refer to the signals obtained
with VirtualSENS as Criterion signals in this article.

The gait data obtained from the SENS and VirtualSENS sensors consisted of compara-
ble linear accelerations accx, accy, and accz along the three perpendicular local axes, x, y,
and z, respectively (Figure 1C). In addition, the length of the acceleration vector, n, was
also calculated.

Each patient generated 16 Criterion and 16 SENS signals during the two trials, consid-
ering two sides (left and right sensors) and four axes (x, y, z, and n).

We inspected the frequency contents of both signals to determine a cutoff frequency
and performed a residual analysis of the difference between filtered and unfiltered signals
over a wide range of cutoff frequencies [23]. A fourth-order zero-lag low-pass Butterworth
filter with a cutoff frequency of 4 Hz was used.

AnyBody interpolated the high-frequency data from Xsens, resulting in a continuous
Criterion signal that can be resampled at any frequency. The Fourier method was used to
reconstruct a continuous interpolation of the SENS signals drawing upon their periodic
nature to improve the bridging between samples (Figure 2).
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Figure 2. Reconstruction of continuous SENS signal using the Fourier method. The gray dots show
the accelerations recorded by the SENS sensors along the x-axis as an example of one gait cycle. The
blue line shows the continuous signal reconstructed using the Fourier method.

With the SENS system measuring continuously, there was no simple way to establish
a mutual time stamp for the SENS and Xsens signals. Given that the participants were
elderly and suffering from knee pain, they could not be required to perform a fast move or a
jump to synchronize the two systems. Cross-correlation was, therefore, used to synchronize
a sequence of five gait cycles within the two signals in the middle of the trial, and this
appeared to be reliable, given the inevitable deviations between the steps in a sequence.
The acceleration signals in the vertical direction (x-axis) were used as the reference axis for
synchronization. The resulting time stamps were employed for the signals along the other
axes. The five synchronized cycles were subsequently segmented into five individual cycles
using autocorrelation as described by Yang et al. [24]. An average cycle was computed
and linearly normalized to the percent gait cycle. Signal processing was conducted with
Python (Python Software Foundation; Python Language Reference; version 3.10; available
at http://www.python.org (accessed on 15 January 2022)).

2.5. Statistical Analysis

Descriptive statistics were used to quantify the characteristics of the participants.
Anthropometric data and gait cadence were presented as means and standard deviations,
age was described with median and range, and knee OA scores were reported as median
and interquartile range. To compare the continuous Criterion and SENS signals, we
discretized the signals of the average gait cycles by resampling them at the rate of 60 Hz.
Kolmogorov–Smirnov tests were applied to check for the assumption of normal distribution
(p < 0.05). For the statistical analyses, we used the R statistical package, version 4.1.0
(RStudio Team (2021); RStudio: Integrated Development for R. RStudio, PBC, Boston, MA,
USA; URL http://www.rstudio.com/ (accessed on 8 May 2022)).

2.5.1. Test–Retest Reliability

Interclass correlation coefficient (ICC) estimates and 95% confidence intervals were
calculated for the measured accelerations in the averaged gait cycles between the first and
second trials with respect to different coordinate axes and the vector magnitude. The ICCs
for both SENS and Criterion signals were calculated by employing two-way mixed effects,
absolute agreement, and the single-rater model.

2.5.2. Time-Domain Comparison

The synchronized SENS and Criterion time series were visually assessed to deter-
mine the agreement between the signals in the time domain. The scatterplots for the
correlations between the SENS and Criterion measurements were generated. The concor-
dance correlation coefficient (CCC) introduced by Lin [25] was employed to evaluate the
agreement between the SENS and Criterion accelerations measured at each time point

http://www.python.org
http://www.rstudio.com/
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of the averaged gait cycle with respect to different coordinate axes. Since Kolmogorov–
Smirnov tests showed skewness and long tails in the distribution of the measurements, the
non-parametric estimation of the CCC was applied [26].

Regarding the absolute agreement, the method described by Bland and Altman [27]
was employed to calculate the limits of agreement (LoAs) between the SENS and Criterion
measurements. Due to the non-normal distribution of the acceleration differences, the
LoA was defined as the interval containing 95% of the differences; the lower and upper
LoAs corresponded to the 2.5th and 97.5th percentiles, respectively [28]. The deviation of
the median of the differences (50th percentiles) from zero was considered the bias in the
measurement. The 95% confidence intervals for the upper and lower LoAs and the bias
were estimated with bootstrapping. Spearman’s rho (rs) was calculated for the correlations
between the differences and Criterion to demonstrate the stability of the bias across the
range of Criterion values.

The dynamic time warping (DTW) algorithm [29] was used to find the alignment
between two signals (SENS and Criterion averaged gait cycles). A normalized similarity
index (NSI) [30] was then calculated using the following equation:

NSI =
M(Criterion)− d(Criterion, SENS)

M(Criterion)

where d(Criterion, SENS) is the distance between the SENS and Criterion signals, measured
with the DTW method, and M (Criterion) is calculated by multiplying the number of the
samples in the Criterion signals by the range of the acceleration values of Criterion (Maxacc
– minacc).

2.5.3. Frequency-Domain Comparison

To compare the signals in the frequency domain, we performed the Fast Fourier Trans-
form and evaluated the frequency contents of the signals. After generating the signals’
power spectral densities (PSDs), the frequencies of the peaks and the powers corresponding
to those frequencies were compared between the SENS and Criterion signals. Scatterplots
and Bland–Altman plots were sketched, and non-parametric LoAs and CCCs were cal-
culated to evaluate the agreement between the SENS and Criterion signals regarding the
frequencies and the powers of the PSD peaks.

Subsequently, the Fourier series representation of the signals was generated using the
following equations as described by Skejø et al. [31]:

y(t) = a0 + ∑n
i=1 ai cos(iωt) + ∑n

i=1 bi sin(iωt)

a0 =
1
T

∫
f (t)dt

ai =
2
T

∫ T

0
f (t) cos(ωit)dt

bi =
2
T

∫ T

0
f (t) sin(ωit)dt

where a0, ai, and bi are Fourier coefficients, n is the number of Fourier-coefficient pairs, ω is
the angular stride frequency, and T is the cycle time computed as T = 2π

ω . The first ten
pairs of Fourier coefficients (a0, a1, b1, . . . , a10, b10) of the SENS and Criterion signals were
compared, and non-parametric Bland–Altman LoAs and CCCs were calculated.

An overview of the experimental protocol used in this study is depicted in Figure 3.
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Figure 3. An overview of the signal processing protocol used in this study: (A) Simultaneous
recording of the gait signals obtained with SENS and Xsens during two overground gait trials.
(B) Inspection of the PSD (power spectral density) of the signals and filtering of the signals after
determining a cutoff frequency of 4 Hz using a fourth-order zero-lag low-pass Butterworth filter.
(C) Temporal matching of the signals using the cross-correlation method. (D) Segmentation of the
gait into five individual gait cycles. (E) Averaging and normalization of the gait cycles into gait cycle
percentages with respect to different coordinate axes and the magnitude vector.

3. Results
3.1. Participants

We included 44 participants (25 females) at different stages of unilateral knee OA
(stages 0–IV). The characteristics of the subjects are demonstrated in Table 2. Overall, we
evaluated 880 gait cycles of right and left legs.
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Table 2. Characteristics of the study participants.

Variable Value

Sex (n (%))
Female 25 (57)
Male 19 (43)

Median age (years) [range] 65.6 [48.1–85.4]
Height (cm) 172.8 ± 8.7
Weight (kg) 80.9 ± 14.3
BMI (kg/m2) 27.0 ± 3.7
Gait cadence (steps/min) 110 ± 11
Painful knee (n (%))

Left 15 (34)
Right 17 (39)
No 12 (27)

Severity of knee OA 1 (n (%))
0 12 (27.3)
I 4 (9.1)
II 9 (20.5)
III 13 (29.5)
IV 6 (13.6)

KOOS 2 Score
Pain 62.5 [47.2–97.9]
Symptoms 67.9 [52.7–91.1]
ADL 3 69.1 [55.5–97.4]
Sport/Rec 4 32.5 [13.8–86.3]
QOL 5 40.6 [31.3–89.1]

1 Based on Kellgren–Lawrence classification. 2 Knee injury and Osteoarthritis Outcome Score. 3 Function in daily
living. 4 Function in sports and recreation. 5 Knee-related quality of life.

3.2. Test–Retest Reliability

The result of the test–retest reliability evaluation showed an excellent repeatability of
the acceleration measurements obtained with SENS between the first and the second trials.
The calculated ICCs for SENS were comparable with those for Criterion (Table 3).

Table 3. ICC values and 95% confidence intervals for test–retest reliability of the measured accelera-
tions obtained with SENS and Criterion.

Variable SENS Criterion

accx 0.94 [0.93–0.94] 0.97 [096–0.97]
accy 0.93 [0.93–0.94] 0.96 [0.95–0.96]
accz 0.96 [0.95–0.96] 0.98 [0.98–0.98]

n 0.94 [0.93–0.94] 0.97 [0.97–0.97]

3.3. Time-Domain Comparison

The scatterplots of the accelerations measured with SENS and Criterion demonstrated
a high correlation between the measurements. However, a slight gradual drift from the line
of equality was observed as the accelerations increased or decreased from −1 on the x-axis
and 0 on the y- and z-axes (Figure 4). Furthermore, with respect to the magnitude of the
measured accelerations (n), a relative widening of the SENS accelerations was observed for
higher Criterion accelerations.
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Figure 4. (Left column): scatterplots demonstrating the correlation between the SENS and Criterion
accelerations with respect to different axes. The black line depicts the line of equality (SENS acc =
Criterion acc). (Right column): Bland–Altman plots demonstrating the agreement between the SENS
and Criterion accelerations. The upper and lower LoAs (limits of agreement) are shown as the upper
and lower dashed lines corresponding to the 2.5th and 97.5th percentiles of the differences. (Data
from the right-side sensor are marked in blue, and those from the left-side sensor is marked in red).

The corresponding Bland–Altman plots for the agreement between the measured
accelerations obtained with SENS and Criterion demonstrated that the differences between
the measurements altered with the changes in the Criterion accelerations and confirmed the
above-mentioned findings. The correlations between the Criterion–SENS acceleration dif-
ferences and Criterion, as estimated by Spearman’s rank correlation, were 0.13, 0.34, −0.14,
and 0.07 with respect to the x-, y-, and z-axes, and the vector magnitude (n), respectively
(Figure 4).
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The calculation of the CCC demonstrated a higher agreement between SENS and
Criterion with respect to the x- and y-axes and the magnitude of the accelerations (n)
than with respect to the z-axis (Table 4). The result of the NSI showed a slightly higher
similarity with respect to the y-axis. The results of the right and left sides were not
significantly different.

Table 4. Correlation and similarity-analysis results between SENS and Criterion signals in the
time domain.

Variable Side CCC 1 NSI 2

accx
Right 0.90 [0.87–0.92] 0.94 [0.92–0.96]
Left 0.91 [0.88–0.93] 0.94 [0.93–0.95]

accy
Right 0.89 [0.88–0.90] 0.96 [0.94–0.97]
Left 0.90 [0.89–0.92] 0.96 [0.95–0.97]

accz
Right 0.81 [0.80–0.83] 0.84 [0.73–0.89]
Left 0.83 [0.82–0.84] 0.80 [0.72–0.86]

n Right 0.90 [0.89–0.91] 0.95 [0.93–0.96]
Left 0.90 [0.90–0.91] 0.96 [0.94–0.97]

1 Concordance correlation coefficient. 2 Normalized similarity index.

The absolute differences in the accelerations obtained with SENS and Criterion were
more evident with respect to the y-axis, as demonstrated by the range of the LoAs being
broader than that with respect to the other axes (Table 5). However, the calculated bias with
respect to all axes was trivial. Similar results for the right and left sides were observed.

Table 5. Bland–Altman LoAs and biases for SENS measurements compared with Criterion (95%
confidence intervals are provided in square brackets).

Variable Side Lower LoA 1 Upper LoA 2 Bias

accx
Right −0.18 [−0.20–−0.17] 0.22 [0.21–0.23] −0.007 [−0.01–−0.003]

Left −0.17 [−0.18–−0.16] 0.21 [0.19–0.23] −0.004 [−0.007–−0.0006]

accy
Right −0.34 [−0.37–−0.32] 0.34 [0.31–0.37] −0.008 [−0.01–−0.003]

Left −0.32 [−0.35–−0.30] 0.32 [0.31–0.34] 0.001 [−0.003–0.007]

accz
Right −0.21 [−0.22–−0.19] 0.24 [0.22–0.28] −0.005 [−0.009–−0.002]

Left −0.21 [−0.22–−0.19] 0.24 [0.23–0.27] −wew0.005 [−0.006–0.004]

n
Right −0.23 [−0.25–−0.22] 0.21 [0.20–0.22] 0.008 [0.004–0.012]

Left −0.23 [−0.24–−0.21] 0.22 [0.20–0.23] 0.007 [0.004–0.009]
1 Lower limit of agreement. 2 Upper limit of agreement.

3.4. Frequency-Domain Comparison

A high correlation was found in the scatterplots between the frequencies of the PSD
peaks of the SENS and Criterion signals (Figure 5). The Bland–Altman plots also demon-
strated good agreement, especially at lower frequencies, as the differences increased at
higher frequencies. Spearman’s correlations between Criterion–SENS frequency differences
and the Criterion frequency for both sides were 0.16, 0.14, 0.09, and 0.25 with respect to the
x-, y-, and z-axes, and the vector magnitude (n), respectively (Figure 5).
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Figure 5. (Left column): scatterplots demonstrating the correlation between the frequencies of the
peaks of the PSDs of SENS and Criterion with respect to different axes. The solid black line depicts
the line of equality (SENSFreq == CriterionFreq). (Right column): corresponding Bland–Altman plots
demonstrating the agreement between the frequencies of the peaks of the PSDs of SENS and Criterion.
The upper and lower LoAs are shown as the upper and lower dashed lines corresponding to the 2.5th
and 97.5th percentiles of the differences. (Data from the right-side sensor are marked in blue, and
those from the left-side sensor are marked in red).

The correlation and the agreement observed in the scatterplots between the powers
of the PSD peaks of the SENS and Criterion signals were inferior compared with the peak
frequencies, especially with respect to the z-axis (Figure 6).
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Figure 6. (Left column): scatterplots demonstrating the correlation between the powers of the peaks
of the PSDs of SENS and Criterion with respect to different axes. The solid black line depicts the
line of equality (SENSpower == Criterionpower). (Right column): corresponding Bland–Altman plots
demonstrating the agreement between the powers of the peaks of the PSDs of SENS and Criterion.
The upper and lower LoAs are shown as the upper and lower dashed lines corresponding to the 2.5th
and 97.5th percentiles of the differences. (Data from the right-side sensor are marked in blue, and
those from the left-side sensor are marked in red).

The scatterplots and Bland–Altman plots in Figure 7 indicated high correlation and
agreement between the Fourier coefficients of SENS and Criterion with respect to the three
coordinate axes and the magnitude of the accelerations (n). Both sides’ rs were −0.07,
0.15, 0.23, and 0.06 with respect to the x-, y-, and z-axes, and the accelerations’ magnitude
(n), respectively.
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value of the frequencies of the PSDs and the Fourier coefficients; however, it was more 
variable among the different axes with respect to the powers of peaks of the PSDs (Table 
6). 

Figure 7. (Left column): scatterplots demonstrating the correlation between the Fourier coefficients
of SENS and Criterion with respect to different axes. The solid black line depicts the line of equality
(SENS coefficients == Criterion coefficients). (Right column): corresponding Bland–Altman plots
demonstrating the agreement between the Fourier coefficients of the peaks of the PSDs of SENS and
Criterion. The upper and lower LoAs are shown as the upper and lower dashed lines corresponding
to the 2.5th and 97.5th percentiles of the differences. (Data from the right-side sensor are marked in
blue, and those from the left-side sensor are marked in red).

The CCC of the agreement between SENS and Criterion was excellent regarding the
value of the frequencies of the PSDs and the Fourier coefficients; however, it was more
variable among the different axes with respect to the powers of peaks of the PSDs (Table 6).
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Table 6. Correlations of the frequencies and powers of the peaks of the PSDs and the Fourier
coefficients between SENS and Criterion measured by concordance correlation coefficients (CCCs).

Variable Axis CCC 1

Frequency of PSD peaks

x 0.99 [0.99–0.99]
y 0.98 [0.97–0.98]
z 0.99 [0.98–0.99]
n 0.99 [0.99–0.99]

Power of PSD peaks

x 0.91 [0.90–0.93]
y 0.87 [0.84–0.89]
z 0.43 [0.34–0.52]
n 0.87 [0.85–0.89]

Fourier coefficient

x 0.98 [0.98–0.99]
y 0.92 [0.91–0.93]
z 0.86 [0.85–0.87]
n 0.99 [0.99–0.99]

1 Concordance correlation coefficient.

The absolute agreement of the frequencies and powers of the PSD peaks, and the
Fourier coefficients of SENS and Criterion are provided in Table 7 by with the upper and
lower LoAs and the bias estimated with the Bland–Altman method.

Table 7. Correlation and agreement of the frequencies and powers of the PSD peaks and the Fourier
coefficients between SENS and Criterion.

Axis Lower LoA 1 Upper LoA 2 Bias

Frequency of PSD peaks

x 0.00 [−0.06–0.00] 0.17 [0.00–0.35] 0.00 [0.00–0.00]
y −0.13 [−0.59–0.00] 0.61 [0.27–0.84] 0.00 [0.00–0.00]
z −0.23 [−0.46–−0.08] 0.36 [0.00–0.70] 0.00 [0.00–0.00]
n 0.00 [−0.29–0.00] 0.28 [0.17–0.35] 0.00 [0.00–0.00]

Power of PSD peaks

x −0.20 [−0.22–−0.17] 0.25 [0.19–0.29] 0.005 [−0.004–0.02]
y −0.19 [−0.23–−0.15] 0.33 [0.22–0.38] 0.008 [0.001–0.02]
z −0.41 [−0.48–−0.31] 0.45 [0.38–0.53] 0.002 [−0.02–0.02]
n −0.21 [−0.22–−0.20] 0.34 [0.28–0.40] −0.004 [−0.02–0.005]

Fourier coefficient

x −0.05 [−0.06–−0.05] 0.05 [0.05–0.06] −0.002 [−0.003–−0.001]
y −0.08 [−0.09–−0.07] 0.07 [0.06–0.08] 0.0002 [−0.0007–0.001]
z −0.06 [−0.06–−0.05] 0.05 [0.04–0.06] −0.0005 [−0.001–0.0005]
n −0.06 [−0.06–−0.05] 0.05 [0.04–0.05] −0.001 [−0.003–−0.0003]

1 Lower limit of agreement. 2 Upper limit of agreement.

4. Discussion

This study evaluated the validity and reliability of the linear accelerations measured
with low-sampling-frequency (~12.5 Hz) accelerometers in elderly individuals with and
without knee OA during simple overground walking. The results demonstrate that in this
group of patients, after the same signal processing, the measurements obtained with these
accelerometers were highly correlated with previously validated inertial-based motion-
capture gait analysis in both the time and frequency domains. In addition, the high
repeatability of the measurements of these accelerometers was demonstrated.

IMUs with a wide range of characteristics are used for human movement analysis,
and one of the most determining characteristics of an IMU is its sampling rate. A higher
sampling frequency creates higher-quality data but comes at a price. As the rate of sampling
increases, more data must be handled, stored, and transferred, which would challenge
the continuous monitoring of patients for more extended periods. Moreover, a higher
sampling frequency results in higher energy consumption and shorter battery lifetime and
requires more expensive, complex, and bulky sensors. Accordingly, several AI algorithms
have recently been proposed to increase the accuracy of the low sampling frequency of
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IMUs [32,33]. It has been demonstrated by previous studies that 98% of the walking
signal’s power is below 10 Hz [34] and significantly below 5 Hz [35]. In contrast with
physical activities such as sports and dancing, which might require higher sampling
frequencies, simple gait in the elderly is relatively slow and contains lower frequencies that
theoretically enable the capturing of data to be conducted with more simplistic sensors.
However, there is a lack of evidence on whether IMUs with low sampling rates can provide
accurate and precise data for evaluating human movements, especially activities containing
lower frequencies.

Measurements are never entirely free from errors. Random errors or noise can affect
the precision of the measurements or how reproducible the exact measurement is under
similar circumstances, and systematic errors or biases affect the accuracy of measurements
or how close the observed value is to the actual value. In this study, we evaluated the
accuracy and precision of the measurements performed by a low-sampling-frequency
accelerometer (SENS) by comparing the accelerations in the time and frequency domains
against an IMU system that has been proved to have high reliability and validity in motion
analysis. Our findings show that the accelerometer with a sampling frequency of ~12.5 Hz
could adequately capture the gait acceleration signals, even though the cadence of the gait
in our study participants was not low (110 ± 11 steps per minute).

In this study, we determined the test–retest reliability to evaluate the consistency of
the measurements across time and based on the guidelines for reporting ICCs in reliability
research [36]; the test–retest results indicated excellent reliability between the first and
second trials of the acceleration measurements obtained by the SENS sensors. The results
were comparable with Criterion and also with previous studies [37,38]. We examined the
test–retest reliability of the SENS sensor in the same session with a few-minute interval
to avoid the influence of pain and fatigue on the stability of the gait pattern. In addition,
given the high between-days variability in gait pattern and speed, especially in subjects
with knee OA, we decided to capture the data on the same day [39].

In the time-domain comparison, the highest correlations were found with respect to the
x- and y-axes (vertical and anteroposterior axes). The correlation with respect to the z-axis
(mediolateral axis) was relatively lower. The magnitudes of the SENS and Criterion signals’
vectors demonstrated a relatively high correlation. DTW and correlation capture different
aspects of similarity between two time series; nonetheless, the DTW method to calculate
the distance between the compared signals was also in agreement with the correlation
analysis. The lower correlation with respect to the mediolateral axis might be due to the
higher frequency and lower amplitude of the movements on this axis, which might lead to
an inferior performance of the sensors. Although the accelerations in the anteroposterior
and vertical directions have higher magnitudes, there could also be essential data in the
mediolateral direction, especially in pathologic gaits, and it should not be overlooked.

The results of the absolute agreement between the measurements based on the Bland–
Altman method demonstrated a slight bias in all directions. Several studies have provided
information regarding the differences in the accelerations measured by inertial sensors at-
tached to the thighs among patients with knee OA and asymptomatic control groups [40,41],
and according to our analysis, these values with respect to different axes were within the
range of 90% LoAs for SENS and Criterion. Other key findings of the analysis of the Bland–
Altman plots of the acceleration measurements in the time domain were the narrower range
of the LoAs and the lower variability of the differences in the magnitude of the SENS ac-
celerations’ vector compared with the other three axes (x, y, and z), which implies that the
magnitude of the accelerations might be more accurate and reliable than each of the individual
perpendicular axes.

Comparing the frequencies of the signals also demonstrated near-perfect concordance
between the frequencies of the peaks of the signals, which signifies that these sensors
could reliably measure the periodicity and harmonics of the gait. However, as expected,
due to the limits of SENS, the differences in the measured frequencies increased at higher
frequencies. Regarding the powers of the peaks of the PSDs, the broader LoAs and the
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weak correlation coefficients with respect to the z-axis compared with the other axes
suggest a higher noise content and an inferior capability of the sensors of capturing data
entirely along the mediolateral axis. The comparison of the Fourier coefficients, however,
demonstrated higher correlations, lower biases, smaller ranges of the LoAs, and more
stable performances with respect to all coordinate axes, which suggests that it could be
a more appropriate and reliable method for further signal analysis of data recorded with
these low-sampling-frequency sensors.

Previous studies reporting the performance of low-sampling-frequency accelerometers
have mainly focused on the sensors’ capability of performing physical-activity measure-
ment and classification. To our knowledge, this is the first study evaluating the accuracy and
precision of the acceleration measurements obtained with small low-sampling-frequency
wearable sensors in the elderly population with and without knee OA. In addition, the
assessment of the signals in both the time and frequency domains provides a basis for
further studies of the capabilities of these sensors in kinematic gait analysis. The most
prominent strength of our study was that by applying musculoskeletal modeling to process
the Criterion signals, we could compare the linear accelerations at the exact location of the
sensors, which allowed us to favorably compare the acceleration signals in an ordinary
outpatient clinic environment, without using sophisticated gait laboratories. The most
important limitation of our study was that we could not synchronize the signals during
data recording. Since the participants were elderly and suffered from knee OA, we could
not ask them to perform a fast move or a jump. Instead, we had to synchronize the signals
during postprocessing using the cross-correlation method.

The sensors’ sampling frequency of 12.5 Hz is insufficient for a comprehensive gait
analysis but may suffice to detect abnormal gait and grade gait deviation. The essential pre-
requisite in this regard would be the capability of the sensors to measure the accelerations
as accurately and reliably as allowed by the limitations of current technology, which was
this study’s primary objective. The path is now open to exploring the capability of these
sensors in remote gait-quality assessment in telemedicine.

A detailed comparison of the signals in the time and frequency domains helps us to
identify the most reliable and beneficial features of machine learning algorithms and inter-
pret the data from wearable sensors in remote patient monitoring, similar to myoelectric
biomarkers, which have been proposed in post-stroke gait [42]. This study demonstrated
that, despite the low sampling frequency, SENS sensors could accurately measure lower-
limb accelerations in elderly patients with and without knee OA, especially with respect
to the anteroposterior and vertical axes. Furthermore, the measurements’ accuracy and
precision were higher with respect to the Fourier coefficients of the signals. This finding
indicates the usefulness of Fourier coefficients in the interpretation of data obtained with
low-sampling-frequency sensors. Considering the underlying kinematic variations in knee
OA patients [43–45], we could demonstrate that low-sampling-frequency accelerometers
are capable of reliably measuring the accelerations in this population. Nevertheless, further
studies are required to answer whether these sensors with low sampling frequencies can
distinguish between normal and abnormal gaits due to knee OA and how accurate and
trustworthy they can be.

5. Conclusions

In elderly patients with and without knee OA performing overground walking, low-
sampling-frequency accelerometers can provide measurements with relatively high ac-
curacy and precision, especially with respect to the anteroposterior and vertical axes.
Furthermore, the validity and reliability of the measurements, especially with respect to
the Fourier coefficients of the signals, indicate their applicability in telemedicine for the
remote monitoring of patients. However, further studies are required to demonstrate their
practicality for this purpose.
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