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Abstract: As a prospective key technology for the next-generation wireless communications, recon-
figurable intelligent surfaces (RISs) have gained tremendous research interest in both the academia
and industry in recent years. Only limited knowledge, however, has been obtained about the channel
eigenvalue characteristics and spatial degrees of freedom (DoF) of systems containing RISs, especially
when mutual coupling (MC) is present between the array elements. In this paper, we focus on the
small-scale spatial correlation and eigenvalue properties excluding and including MC effects, for
RISs with a quasi-continuous aperture (i.e., holographic RISs). Specifically, asymptotic behaviors of
far-field and near-field eigenvalues of the spatial correlation matrix of holographic RISs without MC
are first investigated, where the counter-intuitive observation of a lower DoF with more elements
is explained by leveraging the power spectrum of the spatial correlation function. Second, a novel
metric is proposed to quantify the inter-element correlation or coupling strength in RISs and ordinary
antenna arrays. Furthermore, in-depth analysis is performed regarding the MC effects on array gain,
effective spatial correlation, and eigenvalue architectures for a variety of element intervals when a
holographic RIS works in the radiation and reception mode, respectively. The analysis and numerical
results demonstrate that a considerable amount of the eigenvalues of the spatial correlation matrix
correspond to evanescent waves that are promising for near-field communication and sensing. More
importantly, holographic RISs can potentially reach an array gain conspicuously larger than conven-
tional arrays by exploiting MC, and MC has discrepant impacts on the effective spatial correlation
and eigenvalue structures at the transmitter and receiver.

Keywords: reconfigurable intelligent surface (RIS); spatial correlation; eigenvalue; spatial degrees of
freedom; mutual coupling; holographic communications

1. Introduction

The sixth-generation (6G) communication networks is envisioned to embrace nu-
merous new use cases and challenging requirements [1]. Among the emerging candidate
physical-layer technologies for 6G, reconfigurable intelligent surfaces (RISs), sometimes
also named large intelligent surfaces [2] and holographic multiple-input multiple-output
(MIMO) [3], shows promising foreground in capacity and coverage enhancement, re-
configurable environment construction, intelligent sensing and control, and holographic
communications [2–9]. We utilize holographic RIS [7,10] herein as an umbrella term for the
two-dimensional (2D) architectures with an element spacing equal to or smaller than half a
wavelength of the carrier frequency, which can be perceived as an extension of massive
MIMO [11] with the ultimate form of (approximately) spatially-continuous electromag-
netic (EM) aperture [12]. Holographic RISs can be employed at the base station (BS), user
equipment (UE), and/or interacting objects in the propagation medium, and is likely to
bring immense advantages in not only spectral efficiency, energy efficiency, and system
scalability inherited from massive MIMO [13–15], but also the manipulation of EM waves
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via anomalous reflection, refraction, polarization transformation, and so on [3], reminiscent
of metasurfaces in the optical regime [16,17]. In order to unleash the full potentials of
holographic RISs, it is necessary to understand its fundamental properties, such as channel
eigenvalues and spatial degrees of freedom (DoF).

1.1. Related Work

The use of dense antenna arrays for wireless communications was in fact explored over
two decades ago (e.g., [18–20]), and has resurged recently as a promising 6G technology [2,3,12].
Due to the limited element spacing and 2D (as opposed to one-dimensional) structure of a
dense array, the spatial correlation between array elements is not always non-zero even
under isotropic scattering [12,21,22]. Among the early work involving antenna spatial
correlation, the authors in [23] have considered spatial correlation among multi-element
antennas, and derived upper and lower capacity bounds taking into account antenna
correlation. Fading correlation has also been studied in [24] to examine the capacity growth
with respect to the number of antenna elements. The impact of antenna correlation on capacity
has been examined for diverse signal inputs and correlation architectures in [25]. Nevertheless,
the antenna element spacing is of half-wavelength or larger in [23–25]. The capacity of spatially
dense multiple antenna systems has been pioneered in [18], which showed that the capacity
of such a system approaches a finite limit. Spatially dense MIMO arrays have also been
studied in [19], where the array-gain normalized capacity has been analyzed and the
performance of small wavelength-like MIMO arrays has been shown to be similar to that
of arrays with larger apertures. The asymptotic capacity associated with antenna arrays of
fixed length has been analyzed in [20] for uniform linear antenna arrays, revealing that the
asymptotic mutual information converges almost surely as the number of antenna elements
approaches infinity due to the convergence of the eigenvalues. The aforementioned work,
however, focused mainly on the capacity and did not explicitly consider the spatial DoF
that the arrays can offer.

The spatial DoF for holographic RISs in line-of-sight (LoS) environments have been
investigated in [26], which has revealed that the DoF can be larger than one even in
strong LoS channel conditions, favorable for spatial multiplexing. In [2,12], the asymptotic
spatial DoF for sufficiently dense and large holographic RISs have been derived from the
perspectives of channel capacity and Fourier plane-wave series expansion, respectively.
The achievable DoF for more common cases with finite element spacing and aperture areas
has been investigated in [22], where it has been discovered that the spatial DoF decreases
as the number of elements grows which seems counter-intuitive, but the underlying causes
have not been identified.

Due to the close proximity of neighboring elements in a holographic RIS, mutual
coupling (MC) naturally arises. Broadly speaking, MC refers to EM interaction among the
array elements and can occur because of three mechanisms: direct space coupling between
array elements, indirect coupling caused by near-by scatterers, and coupling through feed
network [27,28]. In this paper, we mainly refer to MC stemming from the first mechanism.
MC between array elements can be characterized by a conventional multi-port circuit
model, such as an impedance matrix, an admittance matrix, or a scattering matrix. Theoret-
ically, the type of matrix used to represent the array network is not important since matrix
transforms can be applied to change the type of matrix representation. There is abundant
early research work on MC in antenna arrays (e.g., [28–36] and references therein), which
considered linear arrays only or did not fix the array aperture while varying the element
spacing. Aiming at exploring the physical characteristics of the emerging holographic RISs
or similar structures for 6G communications, the authors in [37] have proposed an LoS
communication model incorporating MC in the form of mutual impedance, and studied
the associated optimal beamforming strategies. The model has then been extended in [38]
to account for superdirectivity and MC effects as well as near-field propagation. An end-to-
end MC-aware communication model based on mutual impedances has been propounded
in [39], which is also EM-compliant and unit cell aware. In [40], a circuit-based MIMO
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channel model considering antenna MC, size-related antenna equivalent circuit, and chan-
nel small-scale fading has been proposed, and statistical properties including temporal
autocorrelation function and spatial cross-correlation function, along with the effects of
MC and size-related antenna equivalent circuit on them have been revealed. The authors
in [41] have derived a beamforming vector of superdirective arrays based on a coupling
matrix-enabled method, and proposed an approach to obtain the coupling matrix via
spherical wave expansion.

1.2. Contributions

Despite the aforementioned extensive research work, study on small-scale spatial
characteristics, the associated MC effects, and the mechanism behind some unique phe-
nomena for holographic RISs are still in the infancy. In this paper, therefore, we carry out
thorough investigation on the aspects above. Specifically, the small-scale spatial correlation,
eigenvalue behavior, and spatial DoF for holographic RISs excluding and including MC are
explored. The major novelty and contributions of this article lie in the following aspects:

• First, leveraging the block-Toeplitz with Toeplitz block (BTTB) matrix theory, we
relate the eigenvalues of the spatial correlation matrix of the holographic RIS to the
power spectrum of the spatial correlation function, and explain the counter-intuitive
phenomenon of seemingly lower spatial DoF with growing numbers of elements in
a holographic RIS observed in our prior work [22], which has not been addressed in
the literature to our best knowledge. This analysis also helps with distinguishing the
spatial DoF corresponding to the far field and near field of a holographic RIS.

• Second, we incorporate MC into the array response and spatial correlation matrix
of the holographic RIS considering realistic element sizes, and demonstrate the po-
tential of holographic RISs to reach an extraordinary array gain that is significantly
higher than conventional antenna arrays with concrete examples. The results indicate
that, different from the common belief that MC is always deleterious and should
be avoided or compensated for, MC can be beneficial in boosting the array gain of
holographic RISs even without sophisticated manipulation of excitation coefficients
for the array elements.

• Furthermore, in-depth analysis and comparisons are performed regarding the MC
effects on spatial correlation and the corresponding eigenvalue distributions for holo-
graphic RISs working in the transmitting (Tx) and receiving (Rx) modes, respectively,
and with various element intervals as well as source and load impedance values.
A metric named inter-element correlation/coupling strength indicator (ICSI) is proposed
to measure the amount of inter-element correlation/coupling within an array. Results
show that the effects of MC are quite discrepant for Tx and Rx arrays, and are also
dependent upon element spacing, source and load impedance, among other factors,
necessitating comprehensive design and implementation considerations.

Isotropic scattering is considered in this paper, since it is a typical type of environment
involved in an enormous amount of theoretical research work, and also encountered by
low-frequency bands (e.g., sub-1 GHz) which are still crucial even in 6G to guarantee wide
coverage and high reliability [42], and the corresponding results can serve as theoretical
upper bounds for non-isotropic scattering scenarios. The contributions in this paper unveil
some fundamental channel eigenvalue features and practical spatial DoF of holographic
RISs, and provide valuable hints on channel estimation and beamforming strategies for
holographic RISs [38,41,43].

1.3. Article Outline and Notation

The remainder of this paper is organized as follows: in Section 2, we describe the sys-
tem model, and formulate array responses and spatial correlation excluding and including
MC for holographic RISs. Analyses of asymptotic eigenvalue distributions of the spatial
correlation matrix without and with MC are provided in Sections 3 and 4, respectively.
Conclusions are drawn in Section 5.
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The following notations will be utilized throughout the paper: A for matrix, a for
column vector, [A]i,j for the (i, j)th entry of A; AT, A∗, and AH for the transpose, conjugate,
and Hermitian of A, respectively; det(A) for determinant of the square matrix A, tr(A) for
the trace of A, IN for the N × N identity matrix, while dae and bac for the ceiling and floor
of the scalar a, respectively.

2. System Model

We consider a holographic RIS in a wireless communication system where the holo-
graphic RIS can be employed at the BS, UE, and/or interacting objects that can radiate,
receive, reflect, or refract wireless signals, as illustrated in Figure 1. The horizontal and
vertical lengths of the holographic RIS are Lx and Lz, with element spacing of dx and dz,
respectively. Each element in the holographic RIS is modeled as a cylindrical thin wire
of perfectly conducting material, and is connected to a tunable load, where the load can
be a positive-intrinsic-negative diode whose inductance and capacitance are adaptable to
reconfigure the response of each element [39].

Figure 1. System model and orientation of the holographic reconfigurable intelligent surface (RIS)
with respect to the associated coordinate system. The horizontal and vertical lengths of the holo-
graphic RIS are Lx and Lz, with element spacing of dx and dz, respectively. The azimuth and zenith
angles are denoted by φ and θ, respectively, and the three irregular blocks in the channel represent
random scatterers.

The signal sent from or impinging on the holographic RIS is generally composed of a
superposition of multipath components which can be regarded as a continuum of plane
waves, hence the channel capturing small-scale fading can be expressed as [44]

h =
∫ π

0

∫ π

0
s̃(φ, θ)a(φ, θ)dφdθ (1)

where s̃(φ, θ) denotes the angular distribution function that contains the channel gain and
phase shift corresponding to the direction (φ, θ) with φ and θ representing the azimuth
and zenith angles, respectively, while a(φ, θ) is the array response vector. The correlation
function is given by

R = E
{

hhH
}
=
∫ π

0

∫ π

0
s(φ, θ)a(φ, θ)aH(φ, θ)dφdθ (2)

where s(φ, θ) denotes the normalized spatial scattering function satisfying

E
{

s̃(φ, θ)s̃∗(φ′, θ′)
}
= s(φ, θ)δ(φ− φ′)δ(θ − θ′) (3)
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and
∫ π

0

∫ π
0 s(φ, θ)dφdθ = 1. Physically, the presence of spatial correlation means that

the signal strengths at different elements do not vary independently, but may rise or
fade simultaneously.

2.1. Array Response and Spatial Correlation Excluding MC

For an array with N elements, where each element has the same pattern function of
p(φ, θ) (Strictly speaking, if MC exists, the central elements and the ones near the array
edges may not maintain the same element pattern when embedded in an array, even if
their isolated element patterns are identical [27]. Nevertheless, it is possible to compensate
for the pattern distortion via predetermined illumination, and here we assume the same
embedded element pattern for all the elements in an array. The element pattern variation
owing to MC is another topic and is deferred to future work), the far-field radiation pattern
of the array is expressed as

f (φ, θ) =
N

∑
n=1

wn p(φ, θ)ejκd̂·dn (4)

where wn denotes the complex excitation coefficient proportional to the current on the n-th
element, κ = 2π/λ is the wavenumber with λ being the carrier wavelength, d̂ represents
the unit vector of the far-field direction (φ, θ) in the spherical coordinate system, and dn is
the position vector of the n-th element. (4) holds if there is no MC among the array elements,
which is usually the case when the spacing between adjacent elements is sufficiently large
(e.g., more than a couple of wavelengths). Accordingly, the conventional MC-unaware
array response vector is defined as

a0 =
[
ejκd̂·d1 , . . . , ejκd̂·dn , . . . , ejκd̂·dN

]T
. (5)

Then, the correlation matrix R0 excluding the MC effects is given by

R0 =
∫ π

0

∫ π

0
s(φ, θ)a0(φ, θ)aH

0 (φ, θ)dφdθ. (6)

The concrete expression and properties of R0 will be provided in Section 3 to investi-
gate the characteristics of its eigenvalues.

2.2. Array Response and Spatial Correlation Including MC

In a holographic RIS, the elements are densely arranged so that MC is usually non-
negligible. The element pattern considering MC can be formulated as [32]

p̃(φ, θ) = p(φ, θ)
N

∑
m=1

cmnejκd̂·dm (7)

where cmn represents the coupling coefficient between the m-th and the n-th elements.
Namely, the pattern of the n-th element can be modeled as the original element pattern
p(φ, θ) times a weighted sum of impact from all the other elements. Thus, the radiation
pattern of the array incorporating MC follows

f̃ (φ, θ) =
N

∑
n=1

N

∑
m=1

wn p(φ, θ)cmnejκd̂·dm . (8)
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The coupling matrix collecting the MC coefficients is written as

C =


c11 c12 · · · c1N
c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 · · · cNN

. (9)

When there is no MC among the elements, C reverts to an identity matrix. It can be
derived from (5), (7) and (9) that the effective array response vector a involving MC is
given by

a = CTa0 (10)

in which a0 stands for the original MC-unaware array response vector in (5).
Now, let us look at a crucial metric relevant to the array response—array gain, which

is defined herein as the increase in radiation power of an array compared with that of
a single element under the same total excitation power. It is well known in the antenna
literature [45–47] that the array gain of an array with closely-spaced elements can grow
with the square of the number of elements, and rigorous proof for a linear array was
provided in [46] with optimal beamforming in the end-fire direction. For an arbitrary
pointing direction (φ, θ), the array gain Garray incorporating MC can be formulated based
on (8) as

Garray(φ, θ) =

∣∣∣∑N
n=1 ∑N

m=1 wn p(φ, θ)cmnejκd̂·dm
∣∣∣2

|w0 p(φ, θ)|2

=

∣∣∣∑N
n=1 ∑N

m=1 wncmnejκd̂·dm
∣∣∣2

|w0|2

=

∣∣aTw
∣∣2

|w0|2
, s.t. ||w||2 = |w0|

(11)

where w0 stands for the complex excitation coefficient for a single element such that |w0|2
represents the total excitation power, a is given in (10), and w denotes the beamforming
column vector consisting of the complex excitation coefficients wn for an array. Note that w
is inherently a function of the pointing direction (φ, θ) due to a. Consequently, the optimal
beamforming vector maximizing Garray(φ, θ) is

wopt = ζa∗ = ζCHa∗0 (12)

in which ζ is a normalization factor equal to |w0|
||CHa∗0 ||2

to satisfy the power constraint.

Plugging (12) into (11) produces the maximum array gain at the direction (φ, θ)

Garray(φ, θ)max =
∣∣∣aT

0 CCHa∗0
∣∣∣. (13)

It is straightforward to observe from (13) that, when excluding MC, i.e., when C
is an identity matrix, the maximum array gain is

∣∣aT
0 a∗0
∣∣ = N for an arbitrary direction.

When taking MC into account, the maximum array gain becomes
∣∣aT

0 CCHa∗0
∣∣ which is

usually larger than N as will be shown later by simulations, and varies with pointing
angles. The array gain in (13) of a holographic RIS is highly promising, since it indicates
that, compared with a traditional array with N elements, the received signal-to-noise

ratio (SNR) can be enhanced by up to

∣∣aT
0 CCHa∗0

∣∣
N fold for a fixed transmit power using a
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holographic RIS with the same number of elements; or, equivalently, the transmit power
can be scaled down by up to a factor of N∣∣aT

0 CCHa∗0
∣∣ without compromising the received SNR.

The disadvantages of the proposed method in (12) are that the coupling matrix C needs to
be known (e.g., through rigorous theoretical analysis or measurements) before conducting
the beamforming, and that the achievable array gain in (13) might be smaller than N in
some corner cases (as will be shown later via simulations) depending on the properties of
the coupling matrix C and target pointing angles.

Based upon the array response vector incorporating MC in (10), the effective spatial
correlation matrix R in (2) is expanded as

R = E
{

hhH
}

=
∫ π

0

∫ π

0
s(φ, θ)CTa0aH

0 (φ, θ)C∗dφdθ

= CT
(∫ π

0

∫ π

0
s(φ, θ)a0aH

0 (φ, θ)dφdθ

)
C∗

= CTR0C∗

(14)

which implies that each entry in the effective spatial correlation matrix R is determined by
the collective effects of all the entries in the original spatial correlation matrix R0 weighted
by the relevant entries in the coupling matrix C. The theoretical analysis in (12)–(14) will
be applied in Section 4 to study the performance of the proposed beamforming approach
and the influence of MC on the effective spatial correlation of holographic RISs.

3. Eigenvalue Distributions Without MC

Denote the number of elements in a holographic RIS along the x and z directions as
Nx and Nz, respectively, i.e., the total number of elements N = Nx Nz. For the isotropic
scattering environment, the spatial scattering function in (2) is [22]

s(φ, θ) =
sinθ

2π
, φ ∈

[
0, π

]
, θ ∈

[
0, π

]
. (15)

Substituting (15) into (6) in Section 2.1 yields the spatial correlation matrix R0 of the
holographic RIS under isotropic scattering. As proven in [21,22], R0 can be characterized
by a sinc function as follows:

[R0]n1,n2 = sinc
(

2||dn1 − dn2 ||2
λ

)
, n1, n2 = 1, . . . , N (16)

where sinc(x) , sin(πx)
πx is the sinc function, dn1 and dn2 denote the coordinates of the

n1-th and n2-th elements in the holographic RIS, respectively. The behavior of small-
scale spatial correlation is depicted in Figure 2 for element spacing up to three times the
wavelength λ. It is observed from (16) and Figure 2 that the spatial correlation is minimal
only for some element spacing, instead of between any two elements, thus the classical
independent and identically distributed (i.i.d.) Rayleigh fading model is not applicable in
such a system [12,21,22].

Figure 3 portrays the eigenvalues of R0/N in non-increasing order for various N,
or equivalently various element spacing, with Lx = Lz = 12λ. In addition, the dotted
vertical line represents the asymptotic spatial DoF dπLx Lz

λ2 e for min(Lx, Lz)/λ→ ∞ [48,49].
A few key remarks can be drawn from Figure 3: First, while the popular i.i.d. Rayleigh
fading channel has almost identical eigenvalues whose amount equals the number of
antenna elements deployed, the correlated channel herein has uneven and fewer dominant
eigenvalues (those larger than the ones highlighted by the dark circles in the inset of
Figure 3) and smaller rank. Second, the accuracy of the spatial DoF dπLx Lz

λ2 e increases with
the element density. More importantly, the number of dominant eigenvalues, highlighted
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by the dark circles in the inset of Figure 3, declines as the total number of elements N
increases, which seems counter-intuitive. Therefore, in the following subsections, we will
dig into the underlying causes of the aforementioned uncommon phenomenon of seemingly
reduced spatial DoF with an increased number of elements in a holographic RIS.

Figure 2. Spatial correlation among the holographic RIS elements under isotropic scattering, where λ

denotes the carrier wavelength. Note that the element spacing in x and z directions are expressed in
terms of the wavelength λ, which is directly labeled on the abscissa and ordinate, while the spatial
correlation is dimensionless.
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Figure 3. Eigenvalue versus eigenvalue index of R0/N in non-increasing order for various element
spacing dx and dz with Lx = Lz = 12λ. In addition, the asymptotic spatial degrees of freedom (DoF)
dπLx Lz

λ2 e derived in [48] are depicted for min(Lx, Lz)/λ → ∞. Note that both the eigenvalue and
its index are dimensionless. Each dark circle in the inset represents the inflection point where the
eigenvalues start to drop rapidly.
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3.1. Relationship between Eigenvalues and Power Spectrum

Note that the spatial correlation matrix R0 of the 2D holographic RIS in (16) can be
formulated as

R0 =


B0 B1 B2 · · · BNz−1

B−1 B0 B1 · · · BNz−2
B−2 B−1 B0 · · · BNz−3

...
...

...
. . .

...
B1−Nz B2−Nz B3−Nz · · · B0

 (17)

where each block Bm ∈ CNx×Nx , |m| < Nz, is a symmetric Toeplitz matrix by itself,
and B−m = BT

m, i.e., the entire matrix R0 is symmetric as well. Moreover, the matrix
blocks Bm’s along each diagonal of R0 are identical. Therefore, the spatial correlation
matrix R0 has a symmetric BTTB structure under isotropic scattering, thus we resort to the
relevant theory of the asymptotic distribution of eigenvalues of BTTB forms to investigate
the properties of the eigenvalues of R0/N.

Denote the (u, v)th entry of Bm by bl,m = bu−v,m, u, v = 1, . . . , Nx, and define the function

g(∆x, ∆z) = sinc

(
2
√

∆2
x + ∆2

z
λ

)
(18)

where ∆x and ∆z are the spacing along the x- and z-axes, respectively, between a pair of
spatial points of interest in the xoz plane. {bl,m} can thus be regarded as a finite truncated
bi-sequence generated from g(∆x, ∆z), and more precisely,

bl,m = sinc

2

√(
lLx
Nx

)2
+
(

mLz
Nz

)2

λ

. (19)

Let G(ωx, ωz) be the 2D Fourier transform of {bl,m} given by

G(ωx, ωz) =
1
N

Nx−1

∑
l=−(Nx−1)

Nz−1

∑
m=−(Nz−1)

bl,me−j(lωx+mωz),

ωx = − (Nx − 1)π
Nx

,− (Nx − 3)π
Nx

, . . . ,
(Nx − 1)π

Nx
,

ωz = −
(Nz − 1)π

Nz
,− (Nz − 3)π

Nz
, . . . ,

(Nz − 1)π
Nz

.

(20)

Since the double-index sequence {bl,m} consists of spatial samples of the continuous
sinc function g(∆x, ∆z) in (18), G(ωx, ωz) in (20) can be looked upon as the power spectrum
of the discretized and truncated spatial correlation function. According to the properties of
BTTB matrices, the eigenvalues of R0/N behave asymptotically the same as the spectral
sampling points of G(ωx, ωz) as N → ∞, if the double-index sequence formed by bl,m is
absolutely summable [50,51], i.e.,

lim
Nx ,Nz→∞

Nx−1

∑
l=−(Nx−1)

Nz−1

∑
m=−(Nz−1)

∣∣bl,m
∣∣ ≤ Constant < ∞. (21)
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The condition in (21) is indeed satisfied as shown by (22),

lim
Nx ,Nz→∞

Nx−1

∑
l=−(Nx−1)

Nz−1

∑
m=−(Nz−1)

∣∣bl,m
∣∣

= lim
Nx ,Nz→∞

Nx−1

∑
l=−(Nx−1)

Nz−1

∑
m=−(Nz−1)

∣∣∣∣∣∣∣∣sinc

2

√(
lLx
Nx

)2
+
(

mLz
Nz

)2

λ


∣∣∣∣∣∣∣∣

=
∫ 1

−1

∫ 1

−1

∣∣∣∣∣∣sinc

2
√
(vLx)

2 + (ςLz)
2

λ

∣∣∣∣∣∣dvdς

≤
∫ 1

−1

∫ 1

−1
1dvdς = 4 < ∞

(22)

hence the eigenvalues of R0/N and the spectral sampling points of G(ωx, ωz) in (20) are
asymptotically equally distributed. Consequently, insights on the eigenvalues of R0/N can
be drawn via the investigation of G(ωx, ωz). In what follows, we explore how the power
spectrum G(ωx, ωz) changes with the element spacing of the holographic RIS, or equiva-
lently, the spatial sampling frequency, in order to explain the unconventional observation
of seemingly lower spatial DoF with growing numbers of elements in a holographic RIS as
manifest in Figure 3.

3.2. Analysis on Eigenvalues via Power Spectrum

When the element spacing in a holographic RIS is ηxλ and ηzλ (ηx, ηz > 0) along
the x and z directions, respectively, and Lx = βxλ, Lz = βzλ (βx, βz > 0), we obtain
Nx = βx/ηx + 1, Nz = βz/ηz + 1. The power spectrum G(ωx, ωz) in (20) can be recast
as (23),

G(κx, κz) =
1
N

βx
ηx

∑
l=− βx

ηx

βz
ηz

∑
m=− βz

ηz

sinc

2

√(
lηx(Nx − 1)

Nx

)2

+

(
mηz(Nz − 1)

Nz

)2
e−jλ(lηxκx+mηzκz),

κx = − (Nx − 1)κ
2Nxηx

,− (Nx − 3)κ
2Nxηx

, . . . ,
(Nx − 1)κ

2Nxηx
,

κz = −
(Nz − 1)κ

2Nzηz
,− (Nz − 3)κ

2Nzηz
, . . . ,

(Nz − 1)κ
2Nzηz

(23)

in which κ = 2π/λ denotes the wavenumber; κx and κz represent the wavenumber along
the x and z directions, respectively. The wavenumber along the positive y direction in
Figure 1 is defined as

κ(κx, κz) =
√

κ2 − (κ2
x + κ2

z) (24)

and the wave vector is
κ = κx x̂ +κ(κx, κz)ŷ + κzẑ (25)

where x̂, ŷ, and ẑ denote the unit vector along the x-, y-, and z-axis, respectively. It is
noteworthy that a real-valued κ(κx, κz) corresponds to a wave propagating along the y-
direction, while an imaginary-valued κ(κx, κz) indicates an evanescent wave that usually
exists around the surface of an object and decays exponentially in space [12,17].

The formulation in (23) allows us to study the power spectrum G(κx, κz) as a function
of the wavenumbers κx and κz, so as to gain more insight on the influence of the spatial
sampling frequency on G(κx, κz), and, equivalently, on the eigenvalues of the normalized
spatial correlation matrix R0/N, thanks to the time-frequency and space-wavenumber
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duality [48]. For a continuous and infinitely large holographic RIS aperture, G(κx, κz)
in (23) approaches the following distribution [52]:

G(∞)(κx, κz) =

Π
(√

κ2
x+κ2

z
2κ

)
κ

2π

√
κ2 − (κ2

x + κ2
z)

(26)

where Π(·) is the rectangle function. As implied by (26), G(∞)(κx, κz) assumes a bowl-like
shape for a given κ, which increases monotonically with

√
κ2

x + κ2
z inside the region

D(κ) =
{
(κx, κz) ∈ R2 : κ2

x + κ2
z ≤ κ2

}
(27)

achieving the maximum value when
√

κ2
x + κ2

z = κ, and then transits abruptly to zero
outside D(κ). In practical implementations, however, a holographic RIS often has a finite
aperture size and is composed of discrete elements, which is equivalent to spatially truncat-
ing and sampling an originally infinite and continuous holographic RIS aperture. Truncating
can be thought of as applying a windowing function to an originally infinitely-long signal in
the spatial domain, which will cause the signal to appear outside D(κ) in the wavenumber
domain after performing the Fourier transform, as displayed in Figure 4. Regarding spatial
sampling, it is known from time-frequency-domain signal processing that a finer sampling
granularity in the time domain yields a higher resolution in the (traditional) frequency
domain. Analogously, for a holographic RIS, a smaller spatial sampling interval, which
entails a smaller element spacing, gives rise to a higher resolution in the spatial frequency
(i.e., wavenumber) domain. Accordingly, taking the x direction as an example, the highest
absolute value of the resolvable wavenumber κx, namely (Nx−1)κ

2Nxηx
, is inversely proportional

to the element spacing ηx in (23). Specifically, if Nx � 1, for the most common element
spacing of half a wavelength (i.e., ηx = 1/2), the highest resolvable wavenumber is κ as
expected, and it increases to κ

2ηx
as ηx decreases.

Figure 4. Fourier transform G(κx, κz) in (23) of the truncated and discretized spatial correlation
function g(∆x, ∆z) in (18) with Lx = Lz = 12λ and dx = dz = λ/3. Note that κx and κz are expressed
in terms of the wavenumber κ, which is directly labeled on the abscissa and ordinate, while G(κx, κz)

is dimensionless since g(∆x, ∆z) is dimensionless.

To examine the impact of the spatial sampling interval on the power spectrum
G(κx, κz), we perform numerical simulations with a series of ηx and ηz values, and the
corresponding results are shown in Figure 5. Figures 5a,c,e illustrate the power spectrum
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G(κx, κz) evaluated at ηx = ηz = 1/2, ηx = ηz = 1/4, and ηx = ηz = 1/8, respectively.
For fair comparison, κx and κz range from −4κ to 4κ in all of the three subfigures, while the
actual wavenumber regime that the corresponding holographic RIS can resolve is within
the white dashed frame in each of the three subfigures. Figures 5b,d,f are the zoom-in
views of Figures 5a,c,e, respectively, where |κx| ≤ κ and |κz| ≤ κ. Since bl,m in (19) can be
treated as an aperiodic discrete-space signal, its Fourier transform (i.e., spectrum in the
wavenumber domain) G(κx, κz) in (23) is periodic with periodicities of κx/ηx and κz/ηz
along the x- and z-directions, respectively, as demonstrated in Figures 5a,c,e. Therefore,
the spectrum in the wavenumber domain is actually superpositions of the original spec-
trum and its replicas, and the smaller the element spacing, the more serious the aliasing
is. Due to the presence of spectrum leakage outside the region D(κ) in (27) as shown
by Figure 4, the spectrum aliasing magnifies some of the spectrum values around the
periphery of D(κ), and this magnification is more evident for smaller element spacing,
as evidenced in Figures 5b,d,f. Recall that the eigenvalues of R0/N are asymptotically
equally distributed with the corresponding power spectrum G(κx, κz), hence the number
of significant eigenvalues appears larger for smaller element spacing, which explains the
observation highlighted by the dark circles in Figure 3. In other words, the number of
eigenvalues lying in the far-field propagating wave region D(κ) in (27) actually does not
change with the element spacing, the specious more dominant eigenvalues and hence
higher spatial DoF for a smaller number of elements are contributed by evanescent waves
outside the region D(κ).

0 2 4

0

2

4

0

1

2

3

4
10

-3

(a) dx = dz = λ/2

0

0

0

1

2

3

4
10

-3

(b) dx = dz = λ/2

0 2 4

0

2

4

0

1

2

3

4
10

-3

(c) dx = dz = λ/4

0

0

0

1

2

3

4
10

-3

(d) dx = dz = λ/4

Figure 5. Cont.
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Figure 5. Overview (a,c,e) and zoom-in views (b,d,f) of the Fourier transform G(κx, κz) in (23) of
the truncated and discretized spatial correlation function g(∆x, ∆z) in (18). The colorbars represent
the values of G(κx, κz), and the white dashed frames in (a,c,e) outline the regions within which
the wavenumbers are resolvable for the corresponding holographic RIS. Note that κx and κz are
expressed in terms of the wavenumber κ which is directly labeled on the abscissa and ordinate in
each subfigure.

Evanescent waves are usually localized in the reactive near field of an array. They
contain the high-spatial-frequency components of an object, and normally do not contribute
to the far-field channel capacity, but have a huge potential in near-field communication,
sensing, and power transfer [53,54]. Moreover, diverse approaches have been put for-
ward to convert evanescent waves to propagating waves that can be radiated to the far
field, e.g., via simple metal strip gratings, metasurfaces, or randomly distributed metal
wires [55–57]. Overall, holographic RISs, along with the associated propagating and evanes-
cent waves, can find expansive potential applications in future communications, sensing,
and related realms.

4. Eigenvalue Distributions with MC

In this section, we investigate eigenvalue distributions taking into account MC in
holographic RISs.

4.1. Coupling Matrix

The impedance matrix Z of an antenna array can be expressed as

Z =


zA z12 · · · z1N
z21 zA · · · z2N

...
...

. . .
...

zN1 zN2 · · · zA

 (28)

with zA denoting the antenna impedance, and zmn the mutual impedance between the m-th
and n-th elements. Given Z, the (unnormalized) coupling matrix of the array at the Tx side
can be calculated based on circuit theory as [30,34]

C′T = Z
(
Z + zSIN

)−1 (29)

where zS is the source impedance. If there is no MC between the Tx elements, then Z is
diagonal with entries zA, hence C′T is diagonal as well with entries [C′T]nn = zA/(zA + zS).
Consequently, we normalize the coupling matrix by zA/(zA + zS) to obtain

CT = (1 + zS/zA)Z
(
Z + zSIN

)−1. (30)
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On the other hand, the (unnormalized) coupling matrix of the array at the Rx side is
given by [30,34]

C′R = zLIN
(
Z + zLIN

)−1 (31)

where zL is the load or termination impedance. Analogous to the Tx side, if no MC exists
between the Rx elements, then C′R is diagonal with entries [C′R]nn = zL/(zA + zL), such
that the normalized coupling matrix is

CR = (zA + zL)
(
Z + zLIN

)−1. (32)

Given the coupling matrix, the effective spatial correlation matrix R for a holographic
RIS can now be computed by applying the theoretical analysis in Section 2. The steps for
deriving R are summarized below:

• Step 1: Calculate the conventional (i.e., MC-unaware) array response vector a0 in (5)
based on the geometry and element topology of the RIS;

• Step 2: Obtain the spatial scattering function s(φ, θ) in (3) based on theoretical analysis
or measurements;

• Step 3: Calculate the spatial correlation matrix R0 that excludes MC according to (6);
• Step 4: Obtain the impedance matrix Z in (28) for the elements in a holographic RIS

based on theoretical analysis or measurements;
• Step 5: Calculate the coupling matrix at the Tx and Rx, CT and CR, according to (30)

and (32), respectively;
• Step 6: Calculate the effective spatial correlation matrix R according to (14) using R0

from Step 3 and CT (CR) from Step 5 for the Tx (Rx).

4.2. Inter-Element Correlation/Coupling Strength Indicator

To facilitate the quantitative description of the physical MC or correlation strength
represented by a coupling or correlation matrix Q ∈ CN×N , we propound a new metric
called ICSI defined as

ICSI =
1
N

N

∑
n=1

1
N−1 ∑N

m=1,m 6=n
∣∣[Q]n,m

∣∣∣∣[Q]n,n
∣∣

=
1

N(N − 1)

N

∑
n=1

N

∑
m=1,m 6=n

∣∣[Q]n,m
∣∣∣∣[Q]n,n
∣∣

(33)

where

∣∣[Q]n,m

∣∣∣∣[Q]n,n

∣∣ represents the inter-element correlation/coupling strength between the n-th

and m-th (m 6= n) elements normalized by the self-correlation/coupling magnitude of
the n-th element to ease the comparison between different matrices, then the normalized
inter-element correlation/coupling magnitude is averaged over all pairs of distinct array
elements to arrive at the mean normalized inter-element correlation/coupling strength,
i.e., the ICSI. The value of ICSI lies between 0 and 1, which indicate no MC/correlation and
maximum MC/correlation between different array elements, and roughly correspond to
the highest and lowest level of orthogonality among the columns/rows of the correlation or
coupling matrix Q, respectively. A large value of ICSI entails intense correlation/coupling
between distinct array elements on average, which is likely to happen when the correla-
tion/coupling between some pairs of elements is quite strong and/or a large amount of
elements are mutually coupled or correlated, and this usually gives rise to unevenly dis-
tributed eigenvalues of the coupling/correlation matrix, as will be shown by the numerical
results in the subsection below.

4.3. Numerical Simulations Including MC

Due to the complexity of the MC phenomenon, it is impossible to show generic
formulas or curves for the impedance matrix or coupling matrix that apply to all types
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of elements or arrays. For ease of exposition, we adopt the analytical equations for MC
between identical small dipoles as an example. Although the expressions are derived
based on two dipoles, they may be applied to any pair of elements in a linear or planar
array with or without a ground plane [58]. When the elements are small and resonant,
such as dipoles, the first-order result of MC is to alter the impedance of each of the array
elements [27]. Thus, the coupling can be described in terms of mutual impedance between
elements (when higher order effects can be neglected), which is also a common practice in
plenty of previous research work (e.g., [35,37,39]). The mutual impedance and MC models
in this paper are intended to be illustrative; for arrays composed of dipoles with other
layouts or a different type of elements, it is necessary to employ more suitable mutual
impedance/MC models, or to measure these parameters in the actual array, which is
deferred to future work. In this paper, we employ the impedance matrix of half-wave
dipole elements in a parallel-in-echelon configuration as an example, as illustrated in
Figure 6, where zA ≈ 73.1 + j42.5 Ω [27,59]. In the simulations, Lx = 4λ and the number of
half-wavelength dipoles along the z-axis is set to eight. The spacing between the upper end
of a dipole and the lower end of the adjacent one above it along the z-axis is set to λ/50,
which is negligibly small compared with λ so that dz ≈ λ/2 and Lz ≈ 4λ.

Figure 6. Dipole topology on the xoz plane with element spacing of dx and dz, and array lengths of
Lx and Lz on the x- and z-axes, respectively. Each dipole element is of length l = λ/2.

As mentioned in Section 2.2, one of the distinctive features of a holographic RIS is
that its array gain may be significantly larger than a conventional array; thus, let us first
investigate the array gain of holographic RISs. As an instance, Figure 7 depicts the Tx array
gain as a function of the azimuth angle φ (see Figure 1) for both without and with MC
cases. The zenith angle θ (see Figure 1) is set to 90◦. dx, w, C, and a0 denote the element
spacing along the x-axis, beamforming vector, coupling matrix in (30), and MC-unaware
array response vector in (5), respectively. The element spacing along the x-axis dx is set
to λ/2 and λ/8, respectively, and four MC plus beamforming schemes are considered
for each dx. (Scheme 1): MC is included, and the proposed beamforming vector w in (12)
is adopted. (Scheme 2): MC is included, and the ordinary conjugate beamforming a∗0
(followed by power normalization) is employed. (Scheme 3): MC is included, and the
existing beamforming method in [37] is utilized which maximizes the directivity of the RIS
and is equivalent to C−1a∗0 (followed by power normalization). (Scheme 4): MC is excluded,
and the optimal conjugate beamforming a∗0 (followed by power normalization) is applied.
The following remarks can be drawn from Figure 7: First, comparing the cases without and
with MC, the array gain grows significantly in most cases when MC is included, even with
the ordinary MC-unaware conjugate beamforming, except for some angles with the half-
wavelength spacing. For example, the maximum achievable array gain using the proposed
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beamforming method is over 2.8 times that without MC for dx = λ/8, and the gap is
likely to expand as the RIS becomes denser, which is promising for SNR enhancement,
coverage extension, and energy-efficient transmission for green communications. Second,
when excluding MC, the array gain ratio between dx = λ/8 and dx = λ/2 equals the
ratio of the corresponding number of elements (264/72 ≈ 3.7 herein) as expected, while
this ratio reaches 8.8 when MC is included, indicating that the array gain incorporating
MC increases more rapidly with the number of elements than the without MC scenario.
Third, the proposed MC-aware beamforming approach outperforms its two counterparts
including the one in [37]. The reason may lie in that the beamforming method in [37] is
aimed to maximize the directivity of the RIS, which represents the radiation power for
a certain pointing direction against that over all pointing directions, while the proposed
beamforming vector maximizes the radiation power of an array against that of a single
element, i.e., their optimization objects are slightly different. In general, the performance
gaps among the three beamforming schemes increase with the element density and the
proximity to the end-fire direction.
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Figure 7. Transmit (Tx) array gain as a function of the azimuth angle for both without and with mutual
coupling (MC) cases. The RIS size is 4λ× 4λ, the vertical element spacing is about λ/2, and the
zenith angle is set to 90◦. dx, w, C, and a0 denote the element spacing along the x-axis, beamforming
vector, coupling matrix in (30), and MC-unaware array response vector in (5), respectively.

Now, we inspect the eigenvalue behaviors of the effective spatial correlation matrix
in (14) at the Tx and Rx, respectively, for different element intervals with a fixed holographic
RIS size. Figure 8 depicts the eigenvalue magnitude of the effective Tx spatial correlation
matrix for both without and with MC cases. Ideally, the source impedance would be the
conjugate of the element impedance, i.e., zS = z∗A, but this is difficult to realize in practice.
We thereby consider both perfect and imperfect impedance match by setting zL to z∗A and a
common value of 50 Ω to examine the influence of different impedance matching. Table 1
lists the associated ICSI calculated using (33), which includes another very large source
impedance of 300 Ω for comparison purposes. The following main remarks can be drawn
from Figure 8 and Table 1:
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• When excluding MC, the most prominent inflection point of the eigenvalues in Figure 8
shifts to the left, i.e., the number of dominant eigenvalues decreases, as the element
spacing shrinks, which is consistent with the observations for the larger holographic
RIS aperture in Figure 3 and is well explained by the analysis in Section 3.

• In most cases, MC increases the effective spatial correlation at Tx, as indicated by the
more rapidly-decaying eigenvalues compared with the no MC case in Figure 8 as well
as the ICSI values in Table 1, and also elevates the largest eigenvalues for all element
spacings studied. Furthermore, the correlation enhancement by MC diminishes as the
array becomes denser, and MC may even have a decorrelation effect for sufficiently
dense RISs. The reason lies in the fact that the product term Z

(
Z + zSIN

)−1 in (30)
approaches an identity matrix when zS → 0; meanwhile, for non-zero zS, it becomes a
banded symmetric block-Toeplitz matrix that is sparse with non-zero entries confined
to a diagonal band, and the off-diagonal entries are significantly smaller than the
diagonal ones. In addition, the sparsity becomes more pronounced as the number of
elements increases. Consequently, the behavior of CT in (30) gradually resembles that
of a diagonal matrix as the element spacing dwindles, such that the effective spatial
correlation becomes weaker for smaller element spacing when including MC.

• Different source impedance values exert a noticeable effect on the eigenvalue struc-
ture. Specifically, the effective spatial correlation is enhanced more substantially by
perfect impedance match zS = z∗A in contrast to zS = 50 Ω, as demonstrated by the
corresponding eigenvalue trends in Figure 8 and ICSI values in Table 1. This can be
explained by similar reasons stated above: the properties of CT in (30) are farther apart
from those of a diagonal matrix with a larger zS (i.e., 73.1− j42.5 Ω, as opposed to
50 Ω), thus higher correlation is induced. This is further verified by the ICSI for an
even greater zS of 300 Ω in Table 1.

• In general, the eigenvalue magnitude increases with the density of the holographic
RIS, which is consistent with the array gain enhancement shown by Figure 7.
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Figure 8. Eigenvalue magnitude versus eigenvalue index of the effective Tx spatial correlation matrix
for horizontal element spacings of λ/2, λ/4, and λ/8 with a holographic RIS size of 4λ× 4λ, for both
without and with MC cases. zS denotes the source impedance. Note that both the eigenvalue index
and eigenvalue magnitude are dimensionless.
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Table 1. Inter-element correlation/coupling strength indicator (ICSI) in (33) for Tx spatial correlation
matrix without and with MC under various element spacing.

ICSI in (33)

Tx Spatial
Correlation

Matrix without
MC

Tx Spatial
Correlation
Matrix with

MC, zS = z∗A

Tx Spatial
Correlation
Matrix with

MC, zS = 50 Ω

Tx Spatial
Correlation
Matrix with

MC, zS = 300 Ω

dx = λ/2 0.0495 0.0927 0.0752 0.1500
dx = λ/4 0.0646 0.0750 0.0665 0.0974
dx = λ/8 0.0702 0.0705 0.0671 0.0851

The eigenvalue magnitude of the effective spatial correlation matrix at the Rx side is
depicted in Figure 9 under the same simulation settings as in Figure 8, and the correspond-
ing ICSI values are provided in Table 2. Some interesting phenomena are observed and
described below.
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Figure 9. Eigenvalue magnitude versus eigenvalue index of the effective receive (Rx) spatial corre-
lation matrix for horizontal element spacings of λ/2, λ/4, and λ/8 with a holographic RIS size of
4λ× 4λ, for both without and with MC cases. zL denotes the load impedance. Note that both the
eigenvalue index and eigenvalue magnitude are dimensionless.

Table 2. ICSI in (33) for Rx spatial correlation matrix without and with MC under various ele-
ment spacing.

ICSI in (33)

Rx Spatial
Correlation

Matrix without
MC

Rx Spatial
Correlation
Matrix with

MC, zL = z∗A

Rx Spatial
Correlation
Matrix with

MC, zL = 50 Ω

Rx Spatial
Correlation
Matrix with

MC, zL = 300 Ω

dx = λ/2 0.0495 0.0682 0.0787 0.0550
dx = λ/4 0.0646 0.0867 0.1001 0.0698
dx = λ/8 0.0702 0.1045 0.1213 0.0828

• MC at the Rx reduces the magnitude of eigenvalues in most cases (except for the first
few largest eigenvalues). Compared with the Tx coupling matrix CT in (30), the Rx
coupling matrix CR in (32) is mainly different by a term zAZ−1, which causes the
reduction of the eigenvalue magnitude after multiplying with the original spatial
correlation matrix.
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• As seen in Table 2, MC increases the effective spatial correlation at the Rx, which is
similar to the Tx side. However, contrary to the observation for the Tx side, MC with
a larger load impedance tends to have less correlation enhancement effect at Rx in
general, as shown by Figure 9 and Table 2, since a larger load impedance renders the
term zLIN more dominant in (Z + zLIN)

−1 in (32) so that the coupling matrix is more
like a diagonal matrix with smaller off-diagonal entries and hence weaker correlation.

• Rx MC increases the effective spatial DoF for element spacings less than half a wave-
length, as implied by the most prominent inflection point of the eigenvalues which
shifts to the right when considering MC. This is beneficial for spatial diversity and
multistreaming.

To analyze and compare the MC effects of different element types, we also look at the
element with an isotropic radiation pattern which is commonly assumed in the existing
work. The real part of the impedance matrix of isotropic elements is [47]

[R{Ziso}]n1,n2 = risosinc
(

2||dn1 − dn2 ||2
λ

)
, n1, n2 = 1, . . . , N (34)

where riso denotes the radiation resistance of an isotropic element, and the definitions of
sinc(x), dn1 , and dn2 are aligned with those in (16). By applying appropriate matching
techniques, the imaginary part of the impedance matrix can be removed while the real
part remains [47], thus we only need to consider the real part. The Rx coupling matrix for
isotropic elements is obtained by plugging (34) into (32) and setting zL = riso. Figure 10
displays the eigenvalue magnitude versus eigenvalue index of the effective Rx spatial
correlation matrix for half-wavelength dipoles and isotropic elements, which shows that
the effective spatial correlation for isotropic elements is obviously lower than that for half-
wavelength dipoles, as manifest from the more evenly distributed eigenvalue magnitude
for isotropic elements. This is because the MC is zero whenever the spacing between two
isotropic elements is multiples of half a wavelength, as indicated by (34), while the MC is
all non-zero for the dipoles herein, hence the overall MC is lower for isotropic elements.
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Figure 10. Eigenvalue magnitude versus eigenvalue index of the effective Rx spatial correlation
matrix for half-wavelength dipoles and isotropic elements. The element spacing along the x-axis is
set to λ/2, λ/4, and λ/8, respectively, with a holographic RIS size of 4λ× 4λ, for both without and
with MC cases. The load impedance zL = z∗A. Note that both the eigenvalue index and eigenvalue
magnitude are dimensionless.
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5. Conclusions

In this paper, we have investigated the array response and small-scale spatial corre-
lation for holographic RISs excluding and including MC. In-depth analysis is conducted
on the asymptotic eigenvalue distribution and spatial DoF for the spatial correlation ma-
trix under isotropic scattering, by linking the eigenvalues to the power spectrum of the
spatial correlation function based on the BTTB matrix theory. It is demonstrated that the
specious more dominant eigenvalues for fewer elements in holographic RISs are due to the
spectrum aliasing in the wavenumber domain which enhances the near-field evanescent
waves, thus the far-field spatial DoF actually does not increase. Furthermore, an MC-aware
beamforming scheme is proposed which is aimed to maximize the array gain, and is shown
to outperform existing methods. In addition, it is found that MC exerts discrepant effects
on Tx and Rx modes: For the Tx, MC increases the eigenvalue magnitude and effective
spatial correlation in most cases, while Rx MC often reduces the eigenvalue magnitude
while increasing the spatial DoF, especially for dense RISs. The array gain and channel
eigenvalue enhancement by Tx MC is beneficial to SNR elevation, coverage extension,
and energy saving, and the growing spatial DoF caused by Rx MC indicates that efficient
spatial multiplexing is possible even with compact arrays.
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