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Abstract: Although camera and sensor noise are often disregarded, assumed negligible or dealt
with in the context of denoising, in this paper we show that significant information can actually be
deduced from camera noise about the captured scene and the objects within it. Specifically, we deal
with depth cameras and their noise patterns. We show that from sensor noise alone, the object’s
depth and location in the scene can be deduced. Sensor noise can indicate the source camera type,
and within a camera type the specific device used to acquire the images. Furthermore, we show
that noise distribution on surfaces provides information about the light direction within the scene as
well as allows to distinguish between real and masked faces. Finally, we show that the size of depth
shadows (missing depth data) is a function of the object’s distance from the background, its distance
from the camera and the object’s size. Hence, can be used to authenticate objects location in the scene.
This paper provides tools and insights into what can be learned from depth camera sensor noise.

Keywords: depth camera; depth sensors; noise

1. Introduction

Depth cameras capture scene structure by evaluating the distance between points in
the scene and the camera. Recent years have seen the release of consumer level depth
cameras such as Microsoft Kinect depth cameras, Intel Realsense, StereoLabs ZED camera
and others. These cameras have been used extensively for human body tracking, pose
estimation, action recognition as well as for structure reconstruction, modeling, and many
other uses. The capabilities, performance and especially the limits of these cameras have
been studied and compared [1–5].

In this paper, we study depth cameras and specifically their noise properties. Although
camera and sensor noise are often disregarded, assumed negligible or attempted to be
removed in the context of denoising, in this paper we show that significant information
can actually be deduced from depth camera noise about the captured scene and the objects
within it. From sensor noise alone, object location in the scene can be deduce, consequently,
3D motion paths of can be constructed from noise alone. Sensor noise can indicate the
source camera type, and even the specific camera unit that was used. Distribution of sensor
noise on objects in the scene can indicate the light source direction and noise patterns can
distinguish between real and masked individuals. Finally we show that missing depth data
(shadows) in the scene impose a relationship between object distance from background,
object distance from camera and object size. These insights and knowledge of the scene
collected through the depth sensor noise have a direct implementation as indicators for
depth image tampering. Thus, inconsistencies between measurements derived from the
camera noise, and the actual values in the depth image, are strong indications that the
image has been manipulated. Light source direction can provide estimates of the time of
image capture and distinguishing between real and masked faces can assist in detection
of spoofing attacks. Although a plethora of depth cameras are available, We restrict our
analysis to consumer, low-cost and readily available cameras.
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2. Background
2.1. Depth Imaging

Depth cameras use sensing technology to infer the distance (or depth) of points in
the scene from the camera. They output image sequences in which each frame is a depth
image where pixel values represent the distance from the camera (see Figure 1). Depth
camera components include optics, sensors and the imaging pipeline [6]. Additionally
these cameras incorporate components, unique to depth sensing such as IR projectors IR
sensors, phase detectors and more.

(a) (b)

Figure 1. (a) RGB image. (b) Depth image—darker pixels indicate distances closer to the camera.
(Intel RealSense D435).

Different technologies are used by depth cameras: (Figure 2):

• Stereo imaging [7,8]—Cameras using this technology consist of at least two cameras
that capture standard 2D RGB images. They are positioned in parallel along a baseline
and are activated simultaneously to capture multiple views of the same scene. Corre-
spondences between points in the two views are determined and triangulation is used
to compute the distance from camera of the 3D scene points.

• Structured light (Projected-light sensors) [9–11]—This active sensing technology,
projects patterns of IR light onto the scene. The projected pattern of IR light is captured
by the camera’s IR sensor. The patterns of light are designed to easily determine
correspondences between the original light pattern that was projected and the pattern
of light reflected from the scene. As in stereo imaging, triangulation is then used to
compute the depth of the 3D scene points.

• Time of flight (ToF) [12,13]—Cameras with this sensing technology project an IR light
wave which is reflected from objects in the scene and captured back by the camera’s
IR sensor. The shift between the projected light and the captured reflected light allows
to estimate the distance from the camera to the scene object. Two types of ToF cameras
are used: Continuous wave modulation [14] in which the frequency of the projected
IR wave is varied and the phase delay is measured to evaluate depth. Pulse light
modulation [15] in which a very short pulse of light is projected and the time till its
return is measured. This approach avoids dealing with phase and thus overcomes
issues of phase ambiguity.

Figure 2. Depth Sensing technologies. (a) Passive stereo. (b) Structured light. (c) Time of Flight.
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2.2. Depth Camera Sensor Noise

Similar to most acquisition systems, noise is also inherent in depth camera sensors and
in the resulting depth-images. It arises from several sources. Camera build and technical
specs such as focal length, field of view, quality of lenses, all affect image quality and
consequently the noise in the resulting depth image. In active acquisition systems, the
quality of the projected IR light, including its intensity and collimation, affect image noise
(Figure 3). In ToF cameras, the quality of the IR signal modulation is a significant factor
affecting noise levels. Camera build parameters such as the baseline distance between
cameras for stereo based systems and the camera to projector distance in structured light
based systems also strongly affect image depth quality [9–11,16,17].

(a) (b) (c)

Figure 3. Noise is dependent on camera laser power. (a) RGB. (b) Low laser power. (c) High
laser power.

Noise in depth images is strongly dependent on the method of depth acquisition.
Stereo and structured light systems compute depth based on point correspondences across
multiple views. Interpolation is performed between these points which introduces depth
errors [9–11]. ToF methods based on phase are susceptible to phase ambiguity and demod-
ulation errors [13] which produce incorrect depth estimates.

In addition to the noise introduced by the camera, scene layout and objects within the
scene affect noise levels in depth images. Object color, brightness and material affect depth
estimation [13,18] (Figure 4). This is most likely due to the variations in IR absorption across
different materials [2]. At the extreme, specular surfaces and transparent objects introduce
large depth errors [2,19]. The layout of objects within a scene can strongly affect depth
noise, specifically depth evaluation of an object may be strongly affected by inter-reflection
and light scatter from surrounding objects [18,20]. When object (or camera) motion occurs,
motion blur in depth cameras result in overestimation or underestimation of depth near
depth edges [21–23].

(a) (b) (c)

Figure 4. The effect of color in Kinect V2 camera. (a) RGB image. (b) IR image. (c) Depth image.

Finally, scene illumination is a major source of noise in depth images. Depth cameras
do not perform well under strong illumination, specifically under natural outdoor lighting
(see Figure 5). This is largely due to the IR components in natural light that tend to confuse
the IR sensors of the depth camera. High intensity lighting may also introduce depth errors
as it may dominate over the relatively low intensity IR light projected by the camera [5,24].

Noise in depth images show distinct characteristics and patterns. It increases along
strong depth edges, due to difficulty in triangulation (passive stereo systems) or due to
inconsistency in the reflected light (structured light and ToF systems) [2,19,25,26]. Addi-
tionally, IR light projection from the camera may be blocked by occluding objects within
the scene, thus producing depth shadows in the image [2,19] (see Section 7).
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Figure 5. Strong sun light results in burned out pixels on the left side of the face.

Across the sequence of depth images produced by the depth-cameras, noise is ex-
pressed as inaccuracy and inconsistency of the estimated depth. It can be considered as
either varying spatially or varying temporally at a pixel. Axial noise is the temporal fluctu-
ation of depth values at a pixel across multiple frames (see Figure 6). It has been shown
to increase quadratically with the distance of objects from the camera [2–4,18,27–30] (see
Figure 7). The source of this behavior may be the decrease in amplitude of the projected
IR light in ToF cameras or the dependency between disparity and depth in the stereo and
structured light cameras.

(a) (b)

Figure 6. (a) Depth response at a pixel acquired over 50 frames by a KinectV2 [31]. (b) Histogram
of noise at the pixel. Noise magnitude is defined as the variance of depth values and noise variance
is defined as the variance of the absolute deviation values. In this example, noise magnitude is
µ = 0.094 cm, and noise variance is σ2 = 0.036 cm.

Figure 7. Noise magnitude as a function of horizontal position (X pos) (left) and depth (Z-pos)
(right). Noise increases with horizontal distance from center and increases with depth (distance from
camera).

Spatially varying depth inconsistencies, termed Lateral Noise, increases linearly from
image center, in both the horizontal and vertical directions (see Figure 7). It tends to increase
significantly at the edge of the depth image, possibly due to camera lens distortion [2,4,27–30].
Older cameras, show additional noise patterns such as a vertical stripe pattern or a radial
ripple-like pattern of noise [2,4,27,30].
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We define noise at a pixel as the deviation of depth values from the mean depth across
a given number of frames. Noise magnitude is defined as the variance of the depth values
and noise variance is defined as the variance of the absolute of deviation values:

noiseMagnitude =
1
K ∑

i
(di − d̄)2 (1)

noiseVariance = var(|di − d̄|) (2)

where di is the depth value in frame i and d̄ the mean across K frames. Figure 6a plots the
depth values at a pixel captured by a Kinect depth camera [31] across 50 frames. Figure 6b
plots the histogram of deviations from the mean depth value. The noise magnitude is
µ = 0.094 cm, and noise variance is σ2 = 0.036 cm.

3. Determining Object Position from Sensor Noise

In [32], sensor noise was exploited for forgery detection. The outcome of that study
implies that position of objects in the scene can be determined from sensor noise alone.
Sensor noise as defined in Equations (1) and (2), has a distinct pattern as a function of
distance from the camera and as a function of deviation from the center of the camera’s field
of view. Figure 7 shows noise magnitude as a function of depth (Z) and horizontal deviation
(X) from the camera center as captured by a Kinect camera. A similar pattern is obtained for
vertical deviation (Y) but for simplicity we restrict discussion to the horizontal direction. As
can be seen, noise increases with depth as well as with horizontal deviation. This pattern
allows to estimate the position of an object in the scene from the noise magnitude at the
pixels associated with the object.

To verify this, a data set was collected by recording depth samples of an object placed
at numerous positions in the scene using a KinectV2 [31]. The object was placed at 30 cm
intervals symmetrically within the camera’s horizontal field of view (X position) and
between 140 cm and 350 cm distance from the camera (Z position) resulting in 81 positions.
For each sample, 300 frames were recorded, from which the noise magnitude and variance
on the object were computed as a feature vector. The label of each sample was the ground
truth x-z position from which the sample was recorded. A multi-class SVM classifier with
squared hinge loss [33] was trained on the sampled feature vectors to form a division of the
classes based on the sample noise. For testing, an additional 2025 samples were collected
of the object placed again in the scene at the designated locations. Using the trained SVM
classifier the position (X and Z values) were predicted and compared to the ground truth
values. Table 1 shows the results. Accuracy of predicting the X-Z position of the samples
showed 73% accuracy. Considering the top 2 rankings predicted by the classifier, improved
accuracy to 92%. The low accuracy in the highest ranked prediction is explained in the
confusion that occurs due to the symmetry in noise values along the horizontal (X) direction
as can be seen both in Figure 7 and in the large average X error value in Table 1 compared
to the average Z error. Similar experiments were performed for other camera types such as
KinectV1 [34] (structured light), ZED [35] (stereo) and showed very similar behavior.

Table 1. Depth (Z-value) and horizontal position (X-value) prediction from noise.

Correct X-Z Avg Z Avg X
Prediction Error Error

1-rank 73% 9.61 cm 38.54 cm

2-rank 92% 1.54 cm 6.62 cm

3-rank 97% 0.31 cm 1.84 cm

4. Determining Source Camera from Sensor Noise

In addition to variation in depth sensor noise as a function of object position, as shown
above, it is also found to vary across camera types due to the make and the depth sensing
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technology used in the cameras. Figure 8 shows noise distribution measured for three
different camera types capturing an object at the same position in the scene (Z = 1200 mm).
Figure 9 shows the noise for the three different types of cameras across different depths.
The ZED camera shows the highest noise values and the KinectV2 the lowest, across all
depths. Both figures emphasize the difference in pattern noise across different camera
types. This distinction allows to determine the source camera from the sensor noise of a
depth image, as shown in [32]. To test this, the noise data collected with the three camera
types (Kinect V1, Kinect V2, ZED) as described in Section 3, was used as the training model.
Testing data was collected using new recordings of these cameras as well as additional
camera units of the same type (Kinect V1, Kinect V2) with objects placed in the scene at
positions similar to the training data. Additional testing data was obtained using Kinect V1
depth video sequences collected from a public database [36] and Kinect V2 sequences from
private home recordings. A total of 300 test patches (each of 300 frames) were extracted
from each of these test sequences and the noise statistics (histogram of noise magnitude,
mean and variance) was calculated for each patch. Test samples totaled over 2100 examples.
K-Nearest Neighbor was used to predict the source camera of the test data. Accuracy of
the predictions are shown in Table 2. It can be seen that high accuracy rates were obtained
for the Kinect V2 cameras; however the Kinect V1 cameras showed lower accuracy rates.
This is not surprising due to the high level of noise in the latter. It can also be seen that
higher accuracy rates were found for the data collected in the lab settings compared to
those from private recordings and from the public database. It is interesting to note that the
Kinect V2 cameras were detected even for units that were not in the training data, implying
that the noise characteristics of the Kinect V2 are inherent to the camera type and do not
significantly differ across units.

Table 2. Camera source identification results.

Camera Unit % Correct Camera Type Identification

KinectV2 (unit #1) (Training) 98%

KinectV2 (unit #2) 92%

KinectV2 (unit #3) 95%

KinectV2 (private Cam1) 95%

KinectV2 (private Cam2) 87%

KinectV2 (private Cam3) 86%

KinectV2 (private Cam4) 97%

KinectV1 (unit #1) (Training) 90%

KinectV1 (unit #2) 74%

KinectV1 (unit #3) 75%

KinectV1 [36] 92%

KinectV1 [36] 65%

KinectV1 [36] 68%

ZED (training) 96%
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Figure 8. Histograms of deviations from the average depth value of an object at distance 1200 mm
from the camera as captured by three types of cameras. Noise magnitude of these examples are (left
to right) ZED 0.74, KinectV1 3.14 and KinectV2 1.6 (mm). The noise pattern differ between cameras.
(Note the difference in scale of each plot).

Figure 9. Camera noise at different distances from camera for three different camera types. Noise
pattern differs significantly between cameras.

5. Distinguishing Real from Fake Faces Using Sensor Noise

We show that noise in depth images combined with a binary classification model can
be used as an anti-spoofing tool for face recognition systems. For this purpose we used the
3D Mask Attack Data-set [37] which contains 17 real face sessions and 17 mask sessions
(Figure 10). Each session consists of five videos of 300 frames each (both RGB and depth,
of which we used only the depth frames). As a pre-processing step, we cropped a patch
of size 98 × 98 around the face in all videos. Each video was segmented into 30 segments
of 10 frames each. For each segment, we generated a noise image by evaluating the
variance of depth values at each pixel across the 10 consecutive depth images (Equation (1)).
The generated noise images were used as input feature vectors in training the binary
classification model with labels corresponding to real/fake faces. Figure 11 shows the
noise histogram for a real face (left column) and a masked face (right column) taken at
4 different regions on the face: (top to bottom); forehead, nose, chin and cheek. There is a
clear difference in noise pattern between real and masked face. This is most likely due to
the difference in material and temperature between skin and mask.
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(a)

(b)

Figure 10. Examples from the 3D Mask Attack Dataset [37]. Depth image (left) and RGB image
(right) of (a) real face and (b) masked face.

Figure 11. Noise histogram for a real face (left column) and a masked face (right column) taken at
4 different regions on the face: (top to bottom); forehead, nose, chin and cheek. Note the difference
in noise pattern between the real and masked faces.

The training set consisted of 14 real sessions, and 14 mask sessions resulting in a
total of 4200 noise images. The test set consisted of the remaining subjects not seen in
the training and included 3 real and 3 fake sessions totaling in 900 noise images. Using a
coarse Gaussian SVM (kernel scale 390, 5-fold cross validation), we achieved an accuracy of
95.11% success rate in determining real from fake on the test set. We were able to increases
the accuracy to 96.67% by voting on the 30 noise images associated with each video and
determine real from mask based on the majority vote. This high rate of success is most
likely due to the difference in material and reflectivity between skin and mask which induce
different noise characteristics (see Section 2.2). Determining real from masked faces can be
exploited in detecting spoofing attacks [38–40].

6. Determining Scene Illumination Direction from Sensor Noise

As mentioned in Section 2.2, depth cameras do not perform well under outdoor
lighting mainly due to the fact that natural light contains IR components which interfere
with the IR light used by depth cameras [5,24]. Figure 12 shows this effect. A subject’s face
was captured using a Kinect V2 camera with sunlight source on the right. The RGB image
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is shown on the left and the noise magnitude of the captured depth sequence (variance per
pixel across all frames, as defined in Section 2.2) is shown on the right. It can be seen that
noise values are larger on the right side of the face corresponding to a higher concentration
of impinging light.

Figure 12. RGB image of a subject in sunlight (left), and corresponding depth noise image (right).
Greater noise can be seen on the right side of the face indicating the sun’s direction.

The effect of illumination on noise in depth images can be exploited to determine
the source direction of the sunlight (relative to the object). We captured several depth
sequences using a Kinect V2 camera, of a doll under sunlight. A sequence of 100 frames
was captured every hour from 6 am to 6 pm and the noise image was computed for each
sequence. Figure 13 shows the noise images for every hour from 6 am (top-left) to 6 pm
(bottom-right). The region with largest noise values can be seen shifting from the right side
of the doll to the left side corresponding to the change in sun position (see side, neck and
nose of the doll). Figure 14 displays the noise ratio between the right and the left side of
the doll’s face. For example, at 7 am the noise ratio was 2.1, i.e., the noise on the right was
much greater than on the left, indicating that sun light direction was from the right. At
13 pm, the ratio was close to 1, i.e., equally distributed on both sides of the face, in accord
with the sun light direction from above. Additionally, the strong sun light combined with
the reflective surface (the plastic material of the doll), produced very strong reflections,
inducing a large increase in noise, which caused saturation of the camera’s IR sensors and
ultimately resulted in burned out pixels. This can be seen in Figure 13 where missing pixels
at the top of the doll’s head can be seen shifting position with the sun’s motion.

Figure 13. RGB image of a doll (top left) and noise images of the doll sequence captured by a
KinectV2 camera, under sunlight every hour from 6am (top left) to 6pm (bottom right).
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Figure 14. The noise ratio between right and left sides of the face plotted per hour.

This characteristic of changing noise ratios between left and right sides can be exploited
for detecting inconsistencies—and hence detecting tampering—in depth images. Consider
the example shown in Figure 15. Three objects are positioned on a table in the scene. The
noise image of the depth sequence of this scene is shown in Figure 15. For each object, we
examined the noise ratio between its right and left sides. Ratios are 0.6, 1.4 and 0.5 for
the three objects, respectively, from left to right. The ratios indicate that two objects share
the same lighting direction while the middle object has a different lighting direction. This
inconsistency of lighting direction in the scene indicates some form of image manipulation.

Figure 15. Example of detecting inconsistency in a scene based on scene illumination. A scene with 3
objects is captured using a depth camera. The noise image of the scene shows larger noise values on
the right of the middle object and on the left of the other two objects.

7. Shadows in Depth Images

Depth sensing systems are based on two components: two RGB sensors in stereo
cameras, and an IR projector and an IR sensor in structured light and ToF cameras. Shadows
in depth images are portions of the scene that are observed by one component while blocked
from view of the second component (Figure 16a). This typically occurs at the edges of
objects in the scene. With ToF cameras, shadows form in the resulting depth image when
the IR sensor sees a portion of the scene that is blocked from view of the IR projector.
Depth cameras typically report shadows in the output depth images as pixels with 0 depth
(visualized as black pixels in depth images). Shadow size is shown to be a function of object
distance from the sensor (Figure 17), background distance from the sensor (Figure 18) and
sensor configuration.
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(a) (b) (c)

Figure 16. (a) A shadow in a depth image is the area observed by the left camera component (e.g., IR
sensor) while blocked from view of the right component (e.g., IR projector). (b) Shadow size (S1, S2)
depends on object distance from camera. (c) Conversion from world units to image units.

(a) (b)

Figure 17. In both images, the distance from camera to the background is 1150 mm. The distance
from camera to object is (a) 770 mm and (b) 450 mm. Shadow pixels are marked in green on the left
side of the head. The smaller the distance from object to camera, the wider the shadow.

(a) (b)

Figure 18. In both images, the object’s distance from camera is 600 mm. The distance of the back-
ground from the camera is (a) 880 mm and (b) 1200 mm. Shadow pixels are marked in green on the
left side of the head. The greater the distance between object and background, the wider the shadow.

7.1. Shadow Size

Consider the scene and camera configuration shown in Figure 16a viewed as a projec-
tion onto the x-z plane of the camera coordinate system. The scene contains an object (blue
box) with a background object or plane behind it. Denote by b the camera baseline, i.e., the
distance between the two camera components. Let do be the distance from camera sensor
to the object and db be the distance from camera sensor to the background. Let s denote the
shadow width. (we consider only the horizontal geometry along the x-axis). Using simple
geometry and triangle similarity, we have:

s =
b
do
· (db − do) (3)

It can be seen that the shadow width is independent of the horizontal positioning
of the object. Thus, shadow width remains the same when the object is moved horizon-
tally in the scene. However, shadow width changes when the object changes position in
depth. Figure 16b shows two objects at depth positions do1 and do2. Using the relation
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in Equation (3) and equating for the baseline b, we obtain the relation between shadow
widths s1 and s2:

s2 =
do1

do2
· (db − do2)

(db − do1)
· s1 (4)

The camera output is a 2D projection of the scene onto an image where each pixel
value denotes depth. We consider the size of the object’s projection and that of its shadow.
Using a standard camera model where the object’s projected size is inversely related to its
distance do from the camera sensor, we have that the projected sizes w1 and w2 of an object
placed at distance do1 and do2 from the camera are related by:

w2 =
do1

do2
· w1 (5)

Finally, we map world units to image pixel units to allow measurements in the camera
output image. Let α be the horizontal field of view angle of the camera, Nx be the horizontal
resolution of the image (the number of pixels per row of the camera sensor), and d be a
distance from the camera sensor in millimeters (Figure 16c). The conversion between
millimeters and pixels at depth d is given by:

Nx [pixel] = 2d · tan(
α

2
) [millimeter] (6)

To verify these calculations, we used the NYU Depth Dataset V2 dataset [41] which
contains more than a thousand indoor scenes captured using a Kinect depth camera.
Shadow widths were measured in each image and compared with the expected value
calculated from Equations (3) and (6) using the Kinect V1 camera parameters. The average
absolute difference between real and estimated shadow widths over all examples was
µ = 1.97 pixels with variance of σ2 = 1.4. Implying consistency of the computed shadow
width values.

7.2. Sensor Shadow as a Source Camera Identifier

Sensor shadow size can also be used as a source camera identifier since cameras differ
in build, specifically in their baselines and fields of view which in turn, affect shadow
size. Furthermore, the same camera with multiple resolution modes will generate different
shadow sizes for the same scene, allowing the detection of the specific camera resolution.
Figure 19 shows the same scene captured by three structured light cameras: Intel D415,
Intel D435 and Microsoft Kinect. Camera parameters are: {b = 55 mm, α = 70◦, Nx = 1280},
{b = 50 mm, α = 90◦, Nx = 1280} and {b = 75 mm, α = 57.8◦, Nx = 320}, respectively.
Shadow width are correspondingly: 13, 8 and 3 pixels.

Figure 19. The same object captured by three different depth cameras positioned at the same distance
from the camera. Shadow size in pixels (left to right): Kinect V1 (3), Intel D435 (8) and Intel D415 (13).

As an example of the use of shadow size as an indicator for source camera identi-
fication, we collected a set of depth images using the three cameras with the object at
different depths. For each image, the measured shadow width was compared with the
three possible shadow widths calculated using each of the cameras’ parameters. Table 3
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shows the results. Each row represents an example, and lists the object distance to the
camera do, the background distance to the camera db, the measured shadow width (in
pixels) and the calculated shadow width (in pixels) for each of the three possible camera
parameters. The true source camera is marked in gray. As can be seen, the calculated value
closest to the measured shadow width indeed indicates the correct source camera.

Table 3. Camera source identification. The measured shadow width is compared with the three
expected shadow sizes calculated using the parameters of each of the three cameras. The true source
camera is marked in gray.

do db Measured D435 D415 KinectV1
330 930 63 63 98 85
450 1050 42 41 63 55
750 1350 20 19 30 26
940 1410 10 19 29 7

1125 1810 5 11 17 7
600 1100 36 24 38 16
750 1030 18 11 18 7
750 1350 29 18 30 12

7.3. Sensor Shadow Inconsistencies

Shadow size and its relation with object distance from camera can be exploited to
detect suspected image manipulation or tampering. Tampering is suspected when the
measured shadow width or position in the image does not match the theoretically expected
value. In the following we describe several principles of this type of tampering detection.

For most depth sensing cameras, the IR projector is positioned to the right of the IR
sensor, thus object shadows are formed primarily on the left edges of objects. Regardless,
object shadows appearing on opposite sides of objects within the same scene, indicate
inconsistency that may imply the image has been tampered with.

In depth images, tampering may induce scaling of the depth values of the object pixels.
In this type of forgery the object and the shadow size do not change. However, the scene
parameters do,db change, thus affecting the expected shadow size. Figure 20 shows an
example. The original image (Figure 20a) shows an object at distance 900 mm from the
camera with the background at distance 1340 mm. Shadow width is measured as 12 pixels
where the calculated width, given the camera parameters is 11.7 pixels. Figure 20b shows
the forged image where depth values of the object were scaled to 500 mm. In this case
the shadow width remains 12 pixels whereas the calculated width is 40.11 pixels, clearly,
implying suspected tampering in the image.

However, even when corrected for object size, shadow width is still inconsistent.
Figure 20c shows the object with depth values scaled to 500 mm and the object itself,
together with it’s shadow, scaled to a size consistent with its new depth, using Equation (5).
Shadow size in this example is thus scaled to 25 pixels which is still inconsistent with the
calculated width of 40.11 pixels and forgery is detected here as well. This inconsistency in
shadow width even with object re-sizing can be derived directly from Equations (3)–(5).

Finally, if the object and shadow are re-sized to obtain the shadow width as computed
for the scaled depth value (40.11 mm), as shown in Figure 20d, we find inconsistency in the
object’s size compared to its real world size. In the example, reverse-projecting the head in
the image (from pixels to millimeters using Equation (6)) results in a head size of 230 mm
(while real human heads average approximately ∼140 mm ).
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(a) (b) (c) (d)

Figure 20. Manipulating depth images. (a) Original depth image. Object and background distances
from camera are 900 mm, and 1340 mm. Shadow width is calculated as 11.675 pixels and measured
12 pixels. (b) Object depth values have been scaled to 500 mm. Shadow width is now calculated
as 40.11 pixels with shadow width in image, remaining 12 pixels. (c) Object depth values have
been scaled to 500 mm and the object re-sized consistently. The shadow width is now calculated
as 40.11 pixels and measured width is 25 pixels. (d) Depth values have been scaled to 500 mm and
the object re-sized to correct for the shadow width. Shadow width now measures 40 pixels in the
image. The head, however, now corresponds to a head size of 230 mm, which is much larger than a
human head.

8. Conclusions

This paper presented a study on noise in depth sensors. We showed how various
parameters and scene characteristics can be deduced from the noise patterns in depth
images. The varying pattern of noise across depths and horizontal positions in the scene,
enabled determining the position and distance of objects from the camera using the noise
in the image alone. Sensor noise can also determine the source camera type, and even the
specific camera unit that was used. Noise patterns allowed distinguishing between real
and masked faces with high accuracy. This can probably be attributed to the difference in
material between skin and mask. Future studies can attempt to construct different noise
models for different materials, thus, enabling detection of inconsistencies in noise statistics
in scenes more comprehensively.

Distribution of sensor noise on objects in the scene can indicate the light source
direction. Inconsistencies of these distributions across objects in the scene may indicate that
the image was tapered with.

Finally we showed that missing depth data (shadows) in the image impose a relation-
ship between object distance from background, object distance from camera and object size.
Thus, manipulation of object depth, or manipulation of object size can be detected through
shadow size measurements. Additionally, due to differences in camera parameters, shadow
size can be used to determine source camera.

Extraction of scene and object characteristics from sensor noise, can be exploited
in various applications such as determining the time of day, dealing with spoofing and
determining whether an image has been forged.

The capabilities and methods presented in this study are specific for depth cameras
and rely on the spatio-temporal noise patterns as well as image artifacts (such as depth
shadows) that are unique to depth cameras.
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