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Abstract: Data are a strategic resource for industrial production, and an efficient data-mining process
will increase productivity. However, there exist many missing values in data collected in real life due
to various problems. Because the missing data may reduce productivity, missing value imputation is
an important research topic in data mining. At present, most studies mainly focus on imputation
methods for continuous missing data, while a few concentrate on discrete missing data. In this paper,
a discrete missing value imputation method based on a multilayer perceptron (MLP) is proposed,
which employs a momentum gradient descent algorithm, and some prefilling strategies are utilized
to improve the convergence speed of the MLP. To verify the effectiveness of the method, experiments
are conducted to compare the classification accuracy with eight common imputation methods, such
as the mode, random, hot-deck, KNN, autoencoder, and MLP, under different missing mechanisms
and missing proportions. Experimental results verify that the improved MLP model (IMLP) can
effectively impute discrete missing values in most situations under three missing patterns.

Keywords: data preprocessing; discrete missing data; data imputation; multilayer perceptron;
momentum gradient descent algorithm

1. Introduction

With the advent of the data age, scientific and engineering practices generate explo-
sively growing, widely available, and large volumes of data. These data contain many
latent laws of development of various industries that are attracting more and more attention
from academia and industry [1]. Over the past few decades, many enterprises have taken
advantage of data to assist in making production decisions, achieving great benefits [2].
With the advancement of global informatization, analyzing and utilizing data play a sig-
nificant role in promoting social development. However, there are some problems in the
data-collection process, such as functional limitations, failures of equipment, incorrect data,
temporary modification, and lack of responses to surveys [3], which generate considerable
amounts of missing values in the final datasets obtained. These incomplete, unprocessed
datasets may affect data analysis results, reduce data utilization, and even lead to wrong
decisions [4]. Therefore, manipulating missing values in datasets is critical to improving
the benefits of mining and using data, which is of great research significance.
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Because of the importance of dealing with missing values in the object dataset, scholars
have investigated many solutions. Generally, deleting the tuples with missing values is
one of the most straightforward and commonest methods [5]. However, its performance
is extremely unsatisfactory when the percentage of missing values per attribute varies
considerably. Moreover, removing the tuples may make the remaining attribute values
in the entire dataset less useful, as the deleted tuples may be crucial for the task at hand.
Studies have shown that after removing missing data, good performance can be maintained
only if the missing proportion is less than 10% or 15% [6]. To solve the mentioned problems
with deleting missing values, another solution for this issue is to impute the missing values
using statistical or machine learning techniques. Statistics study the collection, analysis,
interpretation or explanation, and presentation of data, and statistical techniques model
missing data values to fulfill data imputation. Initially, statistical techniques were utilized
to find out the latent laws within the complete data to impute missing values, including
the mean (mode), random, hot-deck [7], etc. Taking the mode as an example, a measure of
central tendency for the attribute is applied to fill in the missing values. Due to the ease
of implementation of statistical techniques, they have been successfully used in various
fields and remain one of the major solutions for missing values imputation [8]. However,
statistical imputation methods may downgrade in performance when the observed values
are not close to the actual estimate of the missing value [9]. Machine learning techniques
enable computer programs to automatically learn to recognize complex patterns and make
intelligent decisions based on data. In this regard, imputation methods based on machine
learning techniques develop models using different observed attributes to effectively fill in
the missing values of the unobserved attributes [10]. Compared with the statistics-based
imputation methods, machine learning techniques make missing value imputation more
precise and accurate by selecting the most similar patterns or features to the actual estimates
of the missing values. Consequently, machine learning techniques play the same role as
statistical techniques in reconstructing a complete dataset [11].

Machine learning techniques have formed the bases of a series of efficient frame-
works for data processing over the past few decades, such as the k-nearest neighbors
(KNN) [12,13], artificial neural network (ANN) [14], support vector machine (SVM) [15],
autoencoder (AE) [16], and multilayer perceptron (MLP) methods [17], some of which have
also been applied in missing value imputation. For instance, Sanjar et al. developed a
prediction model for house prices with correlations between features utilizing the KNN
algorithm. It outperformed the mentioned baseline in [13], but calculating the similarity
based on KNN cost computational overhead, and the effect of the missing ratio on impu-
tation performance was ignored. To explore the effect of the missing rate on imputation
performance, Lin et al. applied deep belief networks with a feature extraction strategy for
missing values imputation, conducting experiments with different missing proportions
ranging from 1% to 15% [18]. Wang et al. developed a transfer learning model with an ad-
ditive least squares SVM to improve the classification performance for incomplete datasets,
with which experiments were conducted using different missing proportions from 10% to
60% [15]. It has been testified that such approaches have stable performance with various
missing proportions, even if the missing ratio is over 50%. Moreover, AE can learn to
represent the incomplete data and infer alternative data for the missing value [16]. Pereira
et al. summarized and discussed the successful cases of using autoencoders in missing
data imputation during the last decade [19], which showed that denoising autoencoders
provided a suitable choice for cases of missing values. Yoon et al. introduced the GAN
framework to deal with missing values, and their proposed method significantly exceeded
some state-of-the-art imputation methods [20]. Nonetheless, all the above research princi-
pally focused on continuous missing data, and the final imputation performance is affected
by the data size. MLP is another representative deep learning framework for missing
data imputation [21], and it has shown its superiority in cases of large-scale of data or
unstructured data. For instance, Gad et al. and Cheng et al. took advantage of MLP as
a framework for handling climate and medical data [22,23], respectively. Because of its
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simplicity and efficiency, MLP has been investigated further to improve the performance
of missing value imputation in recent years. Jung et al. introduced a novel missing value
imputation scheme utilizing a bagging ensemble of multilayer perceptrons, which provided
superior performance in the case of electricity consumption data [24]. Śmieja et al. pro-
posed a variation of origin MLP for several incomplete datasets, with missing ratios from
0.25% to 23.8%, which verified that the MLP imputation method was widely applicable in
distinctive domains [25]. In [26], experiments testified that the MLP method was optimal
for numerical and mixed datasets in terms of classification accuracy, while the classification
and regression tree (CART) method performed well for categorical datasets.

Though imputing the missing data based on an MLP has desirable performance in
specific applications, there are still several challenges. First, considerable training time
and computational cost are required to maintain the imputation performance, which
might reduce its practicality to some extent. Second, real-world datasets are composed of
continuous and discrete data in most cases, namely, there are both continuous and discrete
missing values. However, many studies only paid attention to continuous data, while
little research concerned discrete missing data [27,28]. Although some mentioned methods
could theoretically handle discrete missing values with some definite manipulations, they
were always slow or inefficient for object problems. Finally, there are actually three missing
mechanisms according to the occurrence of missing values, but most of the previous
research has studied only one missing mechanism (more details will be introduced in the
next section). Therefore, it is essential to improve the standard MLP method to overcome
the existing problems and propose a novel imputation scheme based on an improved MLP
technique for discrete missing data. The main contributions of this paper are as follows:

• An imputation scheme for discrete missing data based on a multilayer perceptron
with the gradient descent algorithm and prefilling strategy is proposed.

• A performance evaluation is conducted on seven real-world datasets for three missing
mechanisms compared with eight classical methods, which was mainly done for one
missing mechanism in previous work. Several levels of noise are artificially added to
simulate missing proportions according to the definition of missing mechanisms, and
the effect of missing proportions is explored.

The paper focuses on developing an efficient imputation method for filling in incom-
plete datasets, especially datasets with discrete missing values. As a result, an imputation
method based on an improved multilayer perceptron with the momentum gradient tech-
nique [29] is proposed to overcome the insufficiency of the basic MLP method [30], which
combines different prefilling strategies for specific missing patterns. To verify the effec-
tiveness of this method, comparisons are conducted on various statistical imputation
methods and machine learning imputation methods under different missing patterns and
missing proportions.

The rest of the paper is structured as follows. Section 2 introduces the fundamental
conceptions of missing data, representative imputation methods, and the MLP framework.
The improved MLP imputation scheme for discrete missing data is concretely illustrated
in Section 3. Section 4 describes the experimental settings and presents the results of the
experiments, analyzing the latent laws within the results. Lastly, Section 5 summarizes
the conclusions and provides avenues for future work regarding discrete missing data
imputation theory.

2. Materials and Methodology

Data preprocessing plays a significant role in data mining and analysis, typically
including normalizing data, removing noise, dealing with missing values, etc. Because
missing data generally downgrade the efficiency of data mining and analysis, much recent
research concentrates on handling them to improve the quality of data based on statistical
techniques, machine learning techniques, ensemble methods, etc. For instance, Emmanuel
et al. discussed and summarized the classical techniques for missing data imputation [31],
proposing and evaluating two methods using a missing rate of 5% to 20%. The results
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certified that KNN can successfully deal with missing data. However, their major experi-
mental object was continuous data, providing insufficient comparisons with more missing
rates and compared imputation methods. Unsupervised machine learning techniques are
another typical way to handle missing data. Raja et al. conducted experiments on the Der-
matology; Pima; Wisconsin, United States; and Yeast datasets, utilizing an improved fuzzy
C-means algorithm to enhance the utilization of information [32]. Li et al. combined fuzzy
C-Means and a vaguely quantified rough set to detect reasonable clustering for missing
data [3]. Nevertheless, its computational cost is still a challenge for application in practice.
Machine learning techniques with neural networks have increasingly shown their superior
ability to handle sizeable data. To reduce the influence of missing values on prediction
performance, Lim et al. developed an LSTM-based time series model for predicting future
values of liquid cargo traffic with other evaluation indexes, finding that the proposed
model improved the prediction performance [33]. Zhang et al. adopted an end-to-end
GAN framework to handle multivariate time series data, which was combined with an
encoder network to improve the prediction performance [34]. Li et al. aimed to explore
random missing and continuous missing situations for dam SHM systems, proposing a
combination of deep learning and transfer learning to improve the generalization of the
missing data imputation scheme [35]. Many successful applications of the deep learning
technique have shown that it is well suited to missing data. However, considerable training
data and computational resources are needed for deep learning techniques, which may
be an obstacle to their application in practice. Furthermore, their ignorance of concerning
discrete missing data also downgrades their practicability.

MLP has good applicability to data processing, and it has been successfully used in
missing data imputation [36,37]. Recently, the influences of missing mechanisms, missing
rates, and specific applied domains have been further studied. Missing mechanisms can
affect the imputation performance of different methods. To explore imputation performance
in MAR, Fallah successfully utilized the MLP method to impute time series landfill gas
data [38]. Śmieja et al. performed experiments with missing rates from 0.25% to 23.8%
based on the MLP method for continuous data [25]. Luo et al. evaluated MLP with other
competitive machine learning or statistical models for clinical data [39]. Lin et al. conducted
research on the effect of data discretization for continuous data, where MLP and DBN
were significantly superior to the mentioned baseline imputation methods [40]. To repair
missing data for credit risk prediction, Yang et al. developed an ensemble MLP model
with superior accuracy to the traditional machine learning model, which testified that
repairing missing data can improve the model’s prediction ability [41]. However, more
comprehensive consideration of missing mechanisms and missing rates is first required
for wide application of the technique to imputing missing data. Discrete data are of
great significance for studying, as insufficient processing may reduce data utilization and
decision making. All of these concerns motivate us to propose a new scheme for discrete
missing data to improve imputation performance, which theoretically is conducted on
three missing mechanisms and five levels of missing proportions.

This section presents some fundamental concepts of missing data, especially regarding
discrete missing data and missing patterns. The basic methodology of the missing data
imputation technique is provided next. Finally, MLP and the gradient descent algorithm
are accordingly introduced.

2.1. Discrete Data

There are two types of data, i.e., continuous and discrete data, where discrete attributes
refer to attributes with a finite or infinite number of values represented with or without
integers. Generally, discrete attributes include ordinal attributes, binary attributes, nominal
attributes, etc. Most research concentrated on imputation methods for continuous missing
data, such as regressions [42,43], decision trees [44], and deep learning techniques [42], but
few studies offered solutions to handle discrete missing data. For instance, a dataset named
Lymphography from the UCI Machine Learning Repository [45] used in this study contains
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an attribute named lymphatics, including four attribute values: normal, arched, deformed,
and displaced. However, most machine learning techniques cannot directly deal with
discrete missing data. If such discrete data enter an imputation model without processing,
most such models will not perform well. Thus, it is essential to preprocess datasets
containing discrete data. One-hot encoding is a common discretization technique based
on binary coding which can effectively deal with the different types of data, expanding
the feature space to some extent. Figure 1 shows the corresponding forms with one-hot
encoding of the above example, where 1 represents the position of the discrete value in
coding space In particular, the one-hot technique is also suitable for discrete integer values.

Figure 1. An example of the one-hot encoding technique in the Lymphography dataset.

2.2. Basic Methodology for Missing Data Imputation

The missing mechanism or pattern is an inherent feature of the missing data. In [10],
the missing pattern was theoretically classified into three categories, including missing
completely at random (MCAR), missing at random (MAR), and not missing at random
(NMAR). Specifically, MCAR means that the missing values occur randomly and do not
generate deflection in the results, which have no relationship with the observed and
unobserved data. MAR refers to a pattern in which missing values are related to the
observed data, which suggests the missing data can be inferred from the existing data.
The case in which missing data are related to the unobserved data can be classified as
NMAR. This theory means that the missing values can be effectively imputed with some
specific laws.

According to the definition of missing mechanisms, two primary type methods have
been summarized in theory: statistics-based and machine-learning-based imputation meth-
ods. The former utilizes statistical principles to infer the missing values, and the mean and
random are the two most representative approaches. Specifically, the mean imputation
method chooses the mode or mean of the observed data to fill the missing values, and it
has been widely applied in imputing missing values [10]. For numerical missing data, this
method calculates the mean values of the observed corresponding attributes as the filling
values of the missing values; for the nonnumerical case, it uses the mode as a substitute for
the missing values. The random imputation method is another common solution to missing
data in surveys [46]. Its imputation scheme depends on the probability of each feature value
in the whole observed dataset. It randomly selects an observed value as the imputation
result, which means that a more frequent value is more likely to be chosen to replace a
missing value. Because machine learning techniques are highly efficient for sizeable data
analysis, the second type of imputation method takes full advantage of machine learning.
Several typical machine-learning-based imputation methods of filling missing values are
as follows.

The k-nearest neighbors (KNN) technique can mine the latent patterns based on the
similarity between samples. Therefore, the imputation method based on the KNN technique
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selects k complete samples closest to the missing samples from the whole complete sample
set as candidate samples and takes the weighted average value of the observed values
in the candidate samples as the filling value [47]. There are many metrics to determine
the neighbors of the objective sample, and the Hamming distance has been chosen as the
distance metric in many studies [48]. It counts the sum of the number of different positions
of two strings of equal length, and its definition can be expressed as Equation (1):

HD =
m

∑
i=1

Ai ⊗ Bi (1)

where A and B are two samples involved in the calculation. Ai and Bi represent the
ith feature of A and B, respectively, and their values might be 1 or 0. m represents the
dimension of feature space. The Hamming distance describes the similarity of different
samples, and the smaller the distance, the more reliable the filling value that is obtained.
Unlike the imputation method using the KNN technique, another type of imputation
method based on machine learning techniques regards the filling process as a classification
task, aiming to figure out a similar pattern in missing data. Generally, all the incomplete
features are divided into several subgroups, where each subgroup represents a classification
target. The features without missing values are fed into a specific learning model for each
target. The random forest [49] and decision tree algorithms [44] are two representative
methods in this category.

Deep learning is the main branch of machine learning which is especially suitable
for unstructured data, such as images and text documents [50]. However, only a few
missing value imputation methods for tabular or structured data have been studied. The
autoencoder is a typical deep learning technique with the same number of neurons in the
input and output layer [19]. Because of its special neural network structure, an autoen-
coder is easy to implement, as it only needs to train the weight of a single network. The
implementation steps of missing value imputation with an autoencoder are presented in
detail below:

Step 1: Determine the network structure according to the object dataset;
Step 2: Split the dataset into the complete subset (Dcom) and the incomplete subset (Dmiss);
Step 3: Take Dcom as the training set, and calculate the weights of the network;
Step 4: Prefill the incomplete subset. Take the samples in Dcom as the input of the train-

ing model, and the missing values can be filled with the predictions of the trained model.

2.3. Multilayer Perceptron

The multilayer perceptron (MLP) has been widely used in sizeable data processing,
especially for images and text documents [40]. In general, it is composed of an input layer,
an output layer, and multiple hidden layers, and each neuron between adjacent network
layers is fully connected. A standard MLP model is shown in Figure 2.

An MLP utilizes a supervised learning technique called backpropagation during the
training phase [40]. As shown in Figure 2, external data are directly transmitted to the
next layer without any computational processing via the input unit. The neurons in the
hidden and output layers are the computational units of the network. During the training
stage, the input data are first weighted and summed with the bias parameter, and then the
summed value is transferred to the activation function, and the output is obtained. Finally,
the output neurons output the predictions of the model. As for the weight updating and
error function, the gradient descent algorithm and the cross-entropy error are commonly
utilized, which are also related to the characteristics of the object dataset. Specifically, the
training process is as follows.
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Figure 2. A basic MLP model framework.

First, the input from a specific neuron can be expressed as a multiple-dimensional
vector xi, and then the hidden unit outputs netik are computed as Equation (2):

netik = ϕ

(
S

∑
l=1

ω
(1)
lk · xil + b(1)k

)
(2)

where the superscript (1) refers to the corresponding parameters in the first layer of the
MLP. xil indicates the lth attribute of xi in the whole set of S attributes. ωlk is the connected
weight between the lth unit in the input layer and the kth unit in the hidden layer. b(1)k
denotes the bias parameter of the kth unit in the hidden layer. The outputs summed have
to activate via ϕ, which is a particular function, such as tanh(x), sigmoid(x), or relu(x).
Following that, all the netik values are linearly combined and transformed by an output
activate function ϑ. The output unit yij is computed via Equation (3):

yij = ϑ

(
K

∑
k=1

net(1)ik ·ω
(2)
kj + b(2)j

)
(3)

where the superscript (2) refers to the corresponding parameters in the second layer of the
MLP, and net(1)ik is the same as xil in Equation (2).

2.4. The Gradient Descent Algorithm with Momentum

An MLP is a typical artificial neural network, consisting of several components,
including neurons, weights, biases, and activation functions. As for training an MLP
model, the main task is to determine the parameters between adjacent layers, including
the connected weights and biases. Regarding calculating parameters as an optimization
problem, one of the solutions is to make use of gradient descent. Specifically, all parameters
are stochastically initialized at first. The model is then trained iteratively, continuously
calculating the gradient and updating parameters until a specific condition is met (e.g., the
error is less than a threshold, or the number of iterations reaches a threshold). Though
the gradient descent technique has been widely used in parameter optimization, there
are still several challenges involving it to be solved. One of the challenges is to overcome
the risk of falling into a local optimum. Researchers have proposed several optimization
algorithms to deal with this problem, including batch gradient descent, stochastic gradient
descent, and mini-batch gradient descent. On the other hand, each update manipulation
of the traditional descent algorithm in the MLP training process is based on the current
position, slowing the convergence speed. Therefore, momentum gradient descent (MGD),
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as a kind of stochastic gradient descent algorithm, is introduced into the MLP model [29].
Incorporating the MGD algorithm, the parameters can be updated via Equations (4)–(6):

vk+1
∇ω = β · vk

∇ω + (1− β) · ∇ωk (4)

vk+1
∇b = β · vk

∇b + (1− β) · ∇bk (5)

ωk+1 = ωk − α · vk+1
∇ω , bk+1 = bk − α · vk+1

∇b (6)

where α is the learning rate; β is the momentum coefficient, and its default value is always
set to 0.9. v is the momentum used to control the convergence speed, and its introduction
combines all the previous ∇ω and ∇b via Equations (4) and (5).

3. The Proposed Method

Completing missing values using a machine learning technique aims to estimate the
missing value by finding the correlations among attributes. Its goal is to develop prediction
models for the missing values, which is generally regarded as a classification task. In this
regard, building an accurate nonlinear prediction model for the unobserved set is the key
to ensuring high imputation accuracy. The standard MLP architecture is chosen to impute
discrete missing data in this study. The research framework and proposed scheme for
discrete missing values are discussed in this section.

3.1. An Overview of the Proposed Method

Before the detailed discussion of the proposed methodology, an overall framework
will be presented. Figure 3 exhibits a comprehensive overview of the proposed method, in
which its process can be summarized as follows:

Figure 3. The overall workflow of the proposed IMLP imputation technique.

Step 1: The object dataset is divided into two parts: the observed or complete samples
as subset Dcom, and the incomplete samples with missing attribute values as subset Dmiss.
In the study, missing values are artificially simulated using complete datasets with different
ratios for the three missing mechanisms;



Sensors 2022, 22, 5645 9 of 23

Step 2: Discretizing the object data and ensuring the missing type are two preliminaries
of our scheme. An MLP with momentum gradient descent, called an IMLP, is applied to fill
in the missing values. The IMLP model generates alternative for the missing values after
fully training;

Step 3: Dcom and Dmiss are combined to recover the origin dataset, and Dmiss would
also be a complete dataset after Step 2;

Step 4: The imputation performance is measured by using different imputation meth-
ods, such as the mode, random, KNN, and AE.

3.2. The Imputation Scheme Based on IMLP

Briefly, the imputation scheme based on IMLP (ISB-IMLP) includes four steps, i.e.,
determination of the missing types, construction of the MLP, training of the model, and
reconstruction of the incomplete dataset. The details of the IMLP model scheme are
expounded on below.

3.2.1. The Determination of the Missing Types

The core methodology is to make use of the complete data to train the IMLP model
and then predict the missing values utilizing the trained model. To conduct the simulation
experiments, levels of noise are first artificially added to the object datasets; five different
missing proportions are considered in this paper. Additionally, because there are three
missing patterns (MAR, MCAR, and NMAR), each missing pattern is also artificially
simulated according to its definition in this study. As shown in the research framework,
the subset Dcom is chosen to train the IMLP model, and it is discretized via the one-hot
encoding technique. According to the definition of missing mechanisms, there are usually
multiple missing types in Dmiss. Consequently, it is essential to determine the missing types
before employing the overall IMLP scheme. Figure 4 depicts an example with five missing
types, where Ai(i = 1, 2, . . . , n) indicates the ith attribute of the incomplete dataset with n
attributes. Moreover, the grid squares marked in black indicate the positions where the
missing values appear.

Figure 4. An example of five missing types.

Specifically, each row denotes an instance in the incomplete dataset. For the first
instance, the black mark appears in A1, A2, and A3, which means this kind of missing type
can be denoted as mt1 : {1, 2, n}; in the second instance, the missing value is shown at A2;
the third instance includes two missing values whose positions are A3 and An. Figure 4 is
just a basic example to illustrate the principle of identifying the missing type. The missing
types of the object dataset for experiments can be determined based on the above method.
As a result, the collection MT = {mt1, mt2, . . . , mtn} denotes all n missing types in Dmiss.
Note that all the illustrations are based on this example in this section.



Sensors 2022, 22, 5645 10 of 23

3.2.2. The Construction of the IMLP

The input space of the multilayer perceptron corresponds to the feature space of the
model input data, and the number of neurons in the input layer is equal to the feature
dimensions of the input data. The neurons in the input layers are fully connected to other
neurons in the next layer. The last layer in the MLP network is the output layer, whose
dimensions correspond to the feature dimensions of the model output data. The neurons in
the output layer are also fully connected to the neurons in the previous layer. The network
layers between the input and output layers are called hidden layers. On the one hand, the
MLP method commonly makes use of the backpropagation algorithm to figure out all the
parameters. However, the full connection architecture leads to considerable parameters
and gradient descent computations, which require consumption of time and resources.
On the other hand, according to the principles of the neural network, all the connection
weights and biases in the network structure are calculated and updated by a gradient
descent algorithm, which may be limited by a local optimum. All the above concerns are
our motivations to propose the IMLP method.

In this study, we firstly construct an MLP model to fill in discrete missing values. The
activation function in the hidden layers is relu(x), and sigmoid(x) is for the output layer.
The input and output data are explained in the next subsection. The MLP model cannot
straightforwardly deal with missing values, so prefilling the missing values through some
specific approaches can not only allow more data to enter the model for the training on
missing types, but also speed up the convergence. Strategically, the gradient descent with
momentum is introduced to improve the performance of the MLP.

3.2.3. The Training of the Model

Because there is a set of string data in the object datasets, they may not be trained
well by the standard MLP model without encoding manipulation. In addition, some
attribute values are denoted as integers, but they are encoded from discrete data whose
actual meanings are discrete. Generally, if a specific model directly trains the continuous
data without processing to fill in the missing values, float results will be obtained as the
filling values. However, the filling values obtained via the above method cannot find
the corresponding discrete patterns, which means the results do not satisfy the actual
demand. Therefore, before the model training starts, the input data are encoded by the
one-hot technique.

Additionally, some prefilling strategies are needed to maintain the data size for model
training, as the data size for deep learning is crucial to the training performance. To the best
of our knowledge, imputing the missing values via statistical techniques without calculating
distances or similarities between different samples has an agreeable performance for both
accuracy and time cost. Compared with MAR and NMAR, the missing data arise without
relevance to the observed or unobserved features in MCAR. In this study, the mode method
is used as the prefilling strategy for the missing pattern of both MAR and NMAR, and the
random method is selected to prefill the missing values in MCAR.

Figure 5 illustrates the overall architecture of the IMLP model. mt1 is selected as
an example of a missing type in Figure 4. Its missing positions are 1, 2, and n, which
corresponds to the situation that data has missing values in the first, second, and last
attributes. The IMLP model uses a complete dataset for training, in which features without
missing values are the inputs of the model, and attributes corresponding to missing types
are the outputs of the model. As shown in Figure 5, xi represents the ith sample in the
object dataset. The elements in

{
xi3, xi4, . . . , xi(n−1)

}
are the input, while x1, x2, and xn

are the output of the model. During the training process, the binary cross-entropy and
momentum gradient descent algorithms are selected as the loss function and the optimizing
strategy, respectively, to figure out the optimal parameters of the IMLP model. In a word,
the fundamental law of the training is to utilize the observed attributes as input and the
unobserved attributes as output to find the optimal network weights and biases, and each
missing type can be trained similarly.
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Figure 5. IMLP model for mti.

3.2.4. The Reconstruction of the Incomplete Dataset

During this phase, the main target is to utilize the trained IMLP model to predict the
missing attribute values and fill them with the predicted results. Specifically, the first step
is to determine all the missing types of the target dataset. The model then provides the
corresponding IMLP model for the defined missing type, which makes use of the observed
data to impute the unobserved data. The incomplete data will then be filled in one by one.
Finally, the model outputs a complete dataset for subsequent operations.

In brief, the entire scheme can be illustrated in Figure 6, and the steps for filling in
discrete missing data can be concisely summarized as follows.

Figure 6. Overall process of ISB-IMLP.

First, the preliminary task is to determine the specific missing types for model devel-
opment and training. The one-hot technique encodes the object data for discretizing. Each
IMLP model is developed according to a specific missing type after data preprocessing.
As a result, there is an IMLP set for imputing discrete missing data, where each model
corresponds to a specific missing type. In fact, the discrete missing data imputation is
regarded as a classification task in this paper. As for reconstructing the incomplete dataset,
the alternatives to missing data are generated according to the IMLP set. Finally, the object
dataset with missing data will be transformed into a complete dataset based on this scheme.
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4. Experiments and Discussions

In this section, seven datasets collected from the UCI Machine Learning Repository
are selected to verify the performance of different imputation methods with regard to
classification accuracy. Additionally, the impacts of missing rates and missing mechanisms
on imputation methods are also studied. Specifically, each dataset is conducted with three
missing patterns (MAR, MCAR, and NMAR) and seven missing rates ranging from 10%
to 30%, whose interval is 5%. In particular, the imputation performance of ISB-IMLP is
compared with some standard imputation methods, i.e., the mode, random, and hot-deck
imputation methods, as well as the imputation methods based on the k-nearest neighbors
(KNN), decision tree (DT), random forest (RF), standard multilayer perceptron (MLP), and
autoencoder (AE) techniques. Furthermore, the performances of the benchmark methods
and the IMLP method on different missing patterns are evaluated, and the changing
trends with different missing ratios are also researched. The performance evaluation is
particularly performed based on classification accuracy by using several different classifiers
on each dataset.

4.1. Experiment Setup

In this section, the details of the simulation experiments are represented in three
aspects, i.e., platform, datasets, and other settings.

4.1.1. Experiment Platform

The experiments in the paper are based on a simulation platform, whose experimental
settings are as follows: Windows 10, 64-bit operating system, AMD R7-4800H process, and
16 GB RAM. The programming language is Python 3.7, and the main libraries used are
NumPy 1.21, Pandas 1.3.4, scikit-learn 1.0.2, Keras 2.8, and TensorFlow 2.8.

4.1.2. Dataset Description

Table 1 shows the characteristics of the datasets used in this section, including the
number of data samples, attributes, and classes. These datasets are collected from dif-
ferent fields in the real world for binary or multi-class classification tasks, and they are
all composed of discrete data or mixtures of discrete and continuous data. Particularly,
there are some datasets in this table with missing values (i.e., Breast Cancer and Blood),
which may reduce the effectiveness of the imputation method. Therefore, the pre-task
is to remove the incomplete samples and obtain seven complete datasets. To simulate
incomplete datasets and validate the performance of the proposed imputation method,
each complete dataset is transformed into 15 variant datasets (three kinds of mechanisms,
five kinds of missing rates). In this setting, it is convenient to evaluate the performance of
imputation methods. Specifically, the complete dataset before deletion processing can be
used as the control group, and the dataset after filling in the missing values can be used as
the experimental group.

Table 1. Details of UCI datasets used in the experiments.

Dataset Name No. of Samples No. of Features No. of Classes

Blood (B) 748 5 2
Breast Cancer (BC) 286 9 2
Balance Scale (BS) 625 4 5

Car Evaluation (CE) 1728 6 4
Contraceptive Method choice (CMC) 1473 9 3

Lymphography (LYM) 148 18 4
Tic-Tac-Toe (TTT) 958 9 2

4.1.3. Other Settings

As for settings for levels of missing proportions, five levels of noise are artificially
added to the datasets in Table 1, ranging from 10% to 30%. Actually, deleting the missing
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data with smaller missing proportions may be the most efficient manipulation. Higher miss-
ing proportions may be improper for our object datasets and insufficient for model training.

As for settings for experimental methods, the random method stochastically selects
an observed value as the filling alternative, and the mode method statistically sets the
most frequent value as the imputing option. Both of them are without extra settings. The
hot-deck method aims to find a substitution for the missing value based on the similarity
between different samples. For the parameters of the machine learning technique, the
number of neighbors for KNN is set to 5, and the Hamming distance is chosen to measure
the nearest neighbors. Those methods based on the decision tree and random forest model
classifiers develop models between observed attributes and unobserved attributes, which
regard missing value imputation as a classification task. Generally, their parameters are the
defaults that scikit-learn provides. In particular, the decision tree technique experimented
with is CART, which employs the Gini coefficient as the dividing evidence. For the parame-
ters of the neural network, all the object neural networks are composed of three hidden
layers, where each layer has 32 neurons, and the learning rate, batch size, and epochs are set
as 0.001, 256, and 1000 respectively. We adapt stochastic gradient descent with momentum
as the optimizer and set the momentum coefficient as 0.9. The prefilling method for IMLP
is the mode imputation method in both MAR and NMAR, and the random in MCAR.

On the other hand, classifiers used to evaluate the performance may bring biases,
which may be related to the characteristics of the datasets or the distribution of the data.
All the other hyper-parameters are set to their default values. In [11], some learning algo-
rithms, including © Bayes (NB), k-nearest neighbors (KNN), and support vector machine
(SVM), were considered to have biases on some specific datasets or data. In addition, the
decision tree (DT) method has good performance for multi-class tasks. Therefore, NB,
KNN, SVM, and DT are selected as different classifiers to verify the robustness of the
imputation methods.

4.2. Experiment Analysis
4.2.1. The Performance of Missing Value Imputation

According to the research framework in Section 3, this section aims to execute the last
research phase, i.e., measure and evaluate the performance of different imputation methods
compared with the imputation scheme based on IMLP (ISB-IMLP). Some statistical or
machine learning techniques, including the mode, random, hot-deck, KNN, decision tree,
random forest, MLP, and AE methods, are selected to fill the missing data as a control group.
To evaluate the imputation performance of the different methods, classification accuracy
based on the SVM classifier for the seven real-world datasets under three missing mecha-
nisms is the primary evaluation metric. Note that all the results are average accuracies after
10-fold cross-validation, where the training and testing set ratio is 9:1. To eliminate the
chance of erroneous results, the standard deviations of the five-times classification task are
calculated and placed after the accuracy. All the results are presented in decimal form to
simplify the calculation and analysis. Moreover, the classification accuracy based on the ori-
gin dataset without adding any noise is also obtained in comparison with the experimental
method. In this section, SVM is selected as the learning algorithm for classification.

Table 2 presents the average classification accuracy with five missing proportions
obtained based on the MLP and IMLP imputation models, where the experiments are
conducted in MAR. The last row in this table represents the accuracy obtained from the
clean dataset with the same operation as the others. Figure 7 visualizes the comparisons
of accuracy obtained from MLP, IMLP, and the clean dataset in MCAR and NMAR. The
accuracy obtained from the clean dataset acts as a standard for the others, where the closer
to it, the better performance is. On the one hand, the classification accuracy obtained from
the IMLP model is about 0.01 or 0.02 higher than that of the MLP model. This shows that
our modification improved the model’s ability to fill in discrete missing data compared
with the standard MLP model. On the other hand, the average classification accuracy is
also close to the accuracy obtained from the unprocessed dataset.
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Table 2. Average classification accuracy obtained from MLP, IMLP imputation methods and unpro-
cessed dataset in MAR.

CE LYM BC B TTT CMC BS

MLP 0.75506 0.74668 0.71074 0.7616 0.700675 0.42888 0.77778
IMLP 0.76626 0.78508 0.7262 0.7752 0.72215 0.44054 0.7887
Origin 0.875816 0.806664 0.70234 0.761924 0.76434 0.471 0.910028

Figure 7. Average classification accuracy obtained from MLP, IMLP imputation methods and unpro-
cessed dataset: (a) in MCAR and (b) in NMAR.

When the object dataset is Breast Cancer or Blood, both IMLP and MLP have higher
accuracy than the clean dataset, which contains missing data at first. This means that filling
in missing data has a positive effect on improving performance. When the experimental
dataset is Car Evaluation or Balance Scale, the difference from the standard accuracy is
higher than for the other sets, which means that missing data significantly downgrade the
classification performance in such a dataset. Generally, IMLP provides a better ability to fill
in missing data comprehensively, which shows that the momentum descent algorithm and
prefilling strategy have a positive effect on optimizing the performance of MLP.

Table 3 shows the complete experimental results for the scenario of MAR, while
Tables 4 and 5 present each imputation method’s average accuracy for five missing pro-
portions on the object dataset for MCAR and NMAR, respectively. For Table 3, each row
contains nine accuracies and standard deviations in a certain missing proportion for a
specific dataset, where the bold represents the best accuracy obtained by the corresponding
imputation method for each dataset with specific missing proportion. For Tables 4 and 5,
each row contains the accuracies obtained from different datasets based on the correspond-
ing imputation method, where the bold represents the best classification accuracy for
each dataset.
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Table 3. Classification accuracy and standard deviation with SVM classifier on seven datasets in MAR missing pattern.

Dataset Rates
Method

Mode Random AE KNN RF DT MLP Hot-Deck IMLP

CE

0.1 0.8092 ± 0.0064 0.7909 ± 0.0088 0.7983 ± 0.0064 0.7864 ± 0.0109 0.7914 ± 0.014 0.7861 ± 0.0046 0.792 ± 0.0133 0.7768 ± 0.0137 0.8035 ± 0.0127
0.15 0.7853 ± 0.0084 0.7766 ± 0.0093 0.7706 ± 0.0127 0.7711 ± 0.0146 0.7605 ± 0.0056 0.7719 ± 0.0093 0.7786 ± 0.0136 0.7711 ± 0.0101 0.7809 ± 0.0104
0.2 0.7536 ± 0.0055 0.752 ± 0.0063 0.7534 ± 0.0133 0.7569 ± 0.0113 0.7561 ± 0.0096 0.7644 ± 0.0118 0.7673 ± 0.015 0.7569 ± 0.003 0.785 ± 0.0217
0.25 0.7393 ± 0.0159 0.7204 ± 0.0206 0.7373 ± 0.013 0.6953 ± 0.006 0.7362 ± 0.0037 0.7428 ± 0.0075 0.7242 ± 0.0206 0.739 ± 0.0145 0.7347 ± 0.006
0.3 0.7324 ± 0.0075 0.6971 ± 0.013 0.7184 ± 0.0155 0.7117 ± 0.0152 0.6938 ± 0.0096 0.7093 ± 0.013 0.7132 ± 0.0135 0.6957 ± 0.012 0.7272 ± 0.0126

LYM

0.1 0.7453 ± 0.0644 0.776 ± 0.0153 0.7746 ± 0.0296 0.792 ± 0.078 0.8227 ± 0.0167 0.8053 ± 0.0338 0.7747 ± 0.0506 0.7733 ± 0.0323 0.78 ± 0.0145
0.15 0.7387 ± 0.0233 0.7814 ± 0.0578 0.8027 ± 0.0204 0.7587 ± 0.026 0.784 ± 0.0238 0.7987 ± 0.0247 0.7773 ± 0.0243 0.8067 ± 0.0302 0.8267 ± 0.0352
0.2 0.7547 ± 0.0357 0.7267 ± 0.0133 0.72 ± 0.046 0.7947 ± 0.0328 0.7933 ± 0.0236 0.7533 ± 0.0383 0.728 ± 0.0331 0.7667 ± 0.038 0.7587 ± 0.0159
0.25 0.7213 ± 0.0443 0.74 ± 0.0531 0.6987 ± 0.0369 0.7587 ± 0.0242 0.7773 ± 0.0555 0.7653 ± 0.0563 0.724 ± 0.0243 0.7413 ± 0.042 0.78 ± 0.0293
0.3 0.6667 ± 0.0403 0.7387 ± 0.0441 0.7093 ± 0.0454 0.7347 ± 0.0128 0.736 ± 0.0423 0.7773 ± 0.0586 0.7294 ± 0.0473 0.7347 ± 0.0272 0.78 ± 0.0445

BC

0.1 0.7179 ± 0.0396 0.7062 ± 0.0321 0.6848 ± 0.0202 0.7014 ± 0.0267 0.7069 ± 0.0261 0.7028 ± 0.0209 0.7124 ± 0.0273 0.7145 ± 0.0222 0.7483 ± 0.0317
0.15 0.7241 ± 0.0176 0.7131 ± 0.0324 0.72 ± 0.0215 0.7028 ± 0.0207 0.6917 ± 0.0318 0.7083 ± 0.0209 0.6993 ± 0.0247 0.689 ± 0.0311 0.7345 ± 0.0252
0.2 0.6966 ± 0.0177 0.7034 ± 0.0205 0.7055 ± 0.0254 0.6993 ± 0.0136 0.6924 ± 0.0247 0.7007 ± 0.0257 0.6993 ± 0.0367 0.6856 ± 0.0079 0.7241 ± 0.0343
0.25 0.6938 ± 0.0268 0.7152 ± 0.0259 0.6917 ± 0.0072 0.7021 ± 0.0436 0.7124 ± 0.0149 0.7083 ± 0.027 0.7103 ± 0.0144 0.7255 ± 0.0246 0.7069 ± 0.0155
0.3 0.7 ± 0.0311 0.7076 ± 0.0206 0.6986 ± 0.0219 0.7028 ± 0.0263 0.7055 ± 0.0262 0.7083 ± 0.0328 0.7324 ± 0.0135 0.6862 ± 0.0195 0.7172 ± 0.0214

B

0.1 0.764 ± 0.0107 0.7635 ± 0.0116 0.7552 ± 0.0128 0.7675 ± 0.007 0.7691 ± 0.0121 0.7627 ± 0.0116 0.7576 ± 0.0099 0.7616 ± 0.0143 0.7773 ± 0.0116
0.15 0.7618 ± 0.0214 0.7504 ± 0.0136 0.7523 ± 0.0092 0.7613 ± 0.0069 0.7579 ± 0.0058 0.7573 ± 0.012 0.7629 ± 0.0149 0.7549 ± 0.0093 0.784 ± 0.0142
0.2 0.756 ± 0.0178 0.7768 ± 0.0201 0.7453 ± 0.0174 0.7691 ± 0.0141 0.764 ± 0.0172 0.7597 ± 0.0134 0.7656 ± 0.0138 0.7602 ± 0.0177 0.7653 ± 0.0119
0.25 0.7637 ± 0.0061 0.7683 ± 0.0224 0.7613 ± 0.0154 0.7544 ± 0.0105 0.7651 ± 0.0125 0.7547 ± 0.016 0.7643 ± 0.015 0.7675 ± 0.0133 0.7707 ± 0.0137
0.3 0.756 ± 0.012 0.7731 ± 0.0108 0.7547 ± 0.0106 0.7683 ± 0.0149 0.7752 ± 0.012 0.7637 ± 0.0109 0.7576 ± 0.0167 0.7629 ± 0.0168 0.7787 ± 0.0133

TTT

0.1 0.7281 ± 0.0056 0.7125 ± 0.0192 0.7167 ± 0.0134 0.7369 ± 0.0107 0.7304 ± 0.0179 0.6971 ± 0.0134 0.7288 ± 0.0198 0.7169 ± 0.0146 0.73235 ± 0.0144
0.15 0.716 ± 0.0099 0.7021 ± 0.0233 0.7071 ± 0.0079 0.7156 ± 0.0099 0.6894 ± 0.011 0.6908 ± 0.0089 0.7127 ± 0.0072 0.715 ± 0.0102 0.7344 ± 0.0293
0.2 0.699 ± 0.0193 0.7138 ± 0.0156 0.7065 ± 0.013 0.7152 ± 0.0208 0.6827 ± 0.0111 0.6933 ± 0.0155 0.6946 ± 0.0069 0.6965 ± 0.0164 0.7312 ± 0.0229
0.25 0.7075 ± 0.0178 0.7056 ± 0.0124 0.7 ± 0.0078 0.7108 ± 0.0141 0.7017 ± 0.0213 0.6933 ± 0.0191 0.6981 ± 0.0183 0.719 ± 0.0172 0.7115 ± 0.014
0.3 0.7083 ± 0.0186 0.7177 ± 0.02 0.6933 ± 0.0146 0.6975 ± 0.0084 0.6892 ± 0.0192 0.7021 ± 0.0119 0.6973 ± 0.0181 0.7029 ± 0.017 0.7115 ± 0.0132

CMC

0.1 0.4384 ± 0.0194 0.4382 ± 0.0119 0.4464 ± 0.0126 0.4478 ± 0.0098 0.4496 ± 0.016 0.4488 ± 0.0231 0.4355 ± 0.0137 0.4389 ± 0.0191 0.4507 ± 0.004
0.15 0.4328 ± 0.0073 0.4428 ± 0.0153 0.4331 ± 0.0027 0.4295 ± 0.0206 0.431 ± 0.0121 0.4343 ± 0.012 0.4305 ± 0.0077 0.4285 ± 0.0136 0.4574 ± 0.0135
0.2 0.4311 ± 0.0071 0.4321 ± 0.012 0.4305 ± 0.0142 0.4324 ± 0.008 0.4301 ± 0.0097 0.4228 ± 0.0153 0.4212 ± 0.0178 0.4282 ± 0.0115 0.4405 ± 0.0155
0.25 0.4205 ± 0.018 0.4216 ± 0.0233 0.4211 ± 0.0074 0.435 ± 0.0155 0.4268 ± 0.0121 0.4343 ± 0.0159 0.428 ± 0.0084 0.4316 ± 0.0085 0.425 ± 0.0056
0.3 0.4304 ± 0.0201 0.4293 ± 0.0084 0.4242 ± 0.0104 0.4327 ± 0.0235 0.4292 ± 0.0178 0.4209 ± 0.0132 0.4292 ± 0.0051 0.4315 ± 0.0097 0.4291 ± 0.0063

BS

0.1 0.8381 ± 0.0213 0.8311 ± 0.0118 0.8359 ± 0.0217 0.8162 ± 0.0201 0.7984 ± 0.0189 0.8412 ± 0.0172 0.8495 ± 0.0192 0.8257 ± 0.0066 0.8556 ± 0.0178
0.15 0.8187 ± 0.0155 0.8076 ± 0.0182 0.799 ± 0.0238 0.7794 ± 0.019 0.7981 ± 0.0214 0.7984 ± 0.0194 0.8181 ± 0.0153 0.7832 ± 0.0127 0.8079 ± 0.0095
0.2 0.7848 ± 0.0215 0.7594 ± 0.0149 0.7914 ± 0.0189 0.7632 ± 0.0146 0.7632 ± 0.0072 0.7616 ± 0.0184 0.7683 ± 0.0214 0.7682 ± 0.0151 0.7816 ± 0.012
0.25 0.7607 ± 0.0107 0.7527 ± 0.0144 0.7489 ± 0.0308 0.7467 ± 0.0088 0.76 ± 0.0183 0.7429 ± 0.0101 0.7425 ± 0.0153 0.7473 ± 0.0125 0.7651 ± 0.0287
0.3 0.727 ± 0.0128 0.7238 ± 0.0176 0.7229 ± 0.0257 0.6994 ± 0.0171 0.7143 ± 0.0135 0.7308 ± 0.0095 0.7105 ± 0.0203 0.7105 ± 0.0239 0.7333 ± 0.0092
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Table 4. Average classification accuracy and standard deviation with SVM classifier on seven datasets in MCAR missing pattern.

CE LYM BC B TTT CMC BS

Mode 0.75852 ± 0.0105 0.76852 ± 0.03464 0.70428 ± 0.03254 0.75982 ± 0.01632 0.68676 ± 0.01174 0.44646 ± 0.01356 0.75436 ± 0.0142
Random 0.74708 ± 0.01364 0.75734 ± 0.027 0.69408 ± 0.0228 0.7606 ± 0.01658 0.69762 ± 0.01782 0.44012 ± 0.0096 0.76818 ± 0.0202

AE 0.754 ± 0.0095 0.74132 ± 0.03356 0.71076 ± 0.01978 0.76226 ± 0.01348 0.69058 ± 0.01888 0.44796 ± 0.0138 0.77404 ± 0.0208
KNN 0.7389 ± 0.01006 0.77866 ± 0.033 0.71448 ± 0.02618 0.76748 ± 0.01314 0.6844 ± 0.01346 0.4506 ± 0.01284 0.74948 ± 0.0135

RF 0.74284 ± 0.00766 0.7776 ± 0.04184 0.69862 ± 0.02204 0.76182 ± 0.01234 0.68316 ± 0.0135 0.43884 ± 0.01288 0.7626 ± 0.01586
DT 0.74338 ± 0.0091 0.7736 ± 0.02096 0.69932 ± 0.02926 0.7632 ± 0.0148 0.67418 ± 0.01712 0.44734 ± 0.01258 0.76342 ± 0.0147

MLP 0.7471 ± 0.01264 0.76612 ± 0.0392 0.70124 ± 0.02072 0.76326 ± 0.01022 0.69496 ± 0.01782 0.44776 ± 0.01246 0.77308 ± 0.0116
Hot-deck 0.7405 ± 0.0091 0.76 ± 0.03058 0.70068 ± 0.02982 0.75942 ± 0.01426 0.68732 ± 0.01182 0.44484 ± 0.01014 0.75808 ± 0.0166

IMLP 0.76368 ± 0.01534 0.77252 ± 0.03774 0.73378 ± 0.03006 0.7701 ± 0.01094 0.70292 ± 0.01976 0.45986 ± 0.01364 0.77484 ± 0.0145

Table 5. Average classification accuracy and standard deviation with SVM classifier on seven datasets in NMAR missing pattern.

CE LYM BC B TTT CMC BS

Mode 0.73736 ± 0.00922 0.73998 ± 0.03076 0.7044 ± 0.02292 0.76386 ± 0.01538 0.70026 ± 0.01642 0.44612 ± 0.01038 0.7626 ± 0.01542
Random 0.74374 ± 0.01044 0.74614 ± 0.03696 0.70606 ± 0.02442 0.76618 ± 0.01238 0.68308 ± 0.01988 0.44062 ± 0.01456 0.74516 ± 0.0152

AE 0.75258 ± 0.01218 0.76586 ± 0.0374 0.69972 ± 0.02182 0.75872 ± 0.01156 0.68342 ± 0.017 0.43874 ± 0.01234 0.7328 ± 0.02184
KNN 0.73324 ± 0.00816 0.79254 ± 0.03296 0.70554 ± 0.0279 0.75942 ± 0.01326 0.67988 ± 0.01466 0.4434 ± 0.01134 0.7356 ± 0.01344

RF 0.74816 ± 0.00878 0.77278 ± 0.0389 0.7 ± 0.02498 0.76134 ± 0.01668 0.6856 ± 0.01566 0.43828 ± 0.01296 0.7381 ± 0.01398
DT 0.74102 ± 0.01464 0.7792 ± 0.03738 0.7091 ± 0.02434 0.76796 ± 0.01314 0.67914 ± 0.0176 0.43882 ± 0.01094 0.73034 ± 0.015

MLP 0.75176 ± 0.0114 0.77494 ± 0.03936 0.69656 ± 0.02284 0.7669 ± 0.01362 0.68902 ± 0.01428 0.44292 ± 0.01292 0.7413 ± 0.01892
Hot-deck 0.73094 ± 0.01246 0.7864 ± 0.02186 0.7007 ± 0.02144 0.76584 ± 0.01586 0.6798 ± 0.01152 0.4472 ± 0.01442 0.7215 ± 0.01444

IMLP 0.75594 ± 0.00996 0.79868 ± 0.03614 0.70936 ± 0.02064 0.76756 ± 0.01534 0.70302 ± 0.02056 0.44898 ± 0.0127 0.7599 ± 0.01774
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MAR means that the missing values occur randomly, which is related to the observed
complete samples or attribute values. In this regard, statistical or machine learning tech-
niques are feasible for imputing missing values in theory. From this situation, Table 2
indicates that ISB-IMLP has good performance in most circumstances, especially for the
Lymphography, Breast Cancer, Blood, and Contraceptive Method Choice datasets. As for
the other test objects, the classification accuracy acquired from the proposed method is
closer to the best one than the others. For example, when the object dataset is Car Evalu-
ation, the mode imputation approach outperforms the others at the missing proportions
of 0.1, 0.15, and 0.3. However, our method is as close as possible, and the corresponding
differences are only 0.0057, 0.0044, and 0.0052. For the 35 sets of experimental results, the
proposed method is 54.29% accurate in these cases against the 11.43% accuracy of its best
competitor mode and KNN.

Gathering the results obtained using five missing proportions and seven datasets,
the best, second-best, and worst average accuracy values are 71.52%, 70.04%, and 68.95%,
respectively, and the corresponding methods are IMLP, decision tree, and KNN. Although
imputing missing data via KNN obtained great performance for continuous data in much
of the previous literature [12,13,30], the method’s ability to handle discrete missing data
is not as good as its ability to handle continuous data. According to the results, IMLP
brings 1.48% improvement compared with CART, and it was found that CART was suitable
for discrete missing data in [26]. Because this statistical technique has low computational
and training costs, filling in discrete missing data via this statistical technique is faster
than schemes based on machine learning or deep learning techniques. Compared to
the other experimental techniques, our imputation approach has computational cost for
good training. However, IMLP provides overall superior classification performance. The
combination of the statistical imputation technique and gradient descent algorithm makes
models converge, providing better classification performance after filling in missing discrete
data. The IMLP model performs better compared with the imputation scheme based on
the standard MLP model, with the average classification accuracy of the IMLP model
being 0.0177 higher. This indicates that IMLP provides improvements to MLP. Generally, it
verifies that the IMLP model with a prefilling operation has better imputation performance
in MAR.

MCAR means the missing values occur completely randomly, while NMAR refers to
the case in which missing values are related to unobserved attribute values. For the case
of the missing patterns MCAR and NMAR, Tables 4 and 5 show an average performance
on seven datasets of five levels of noise, respectively. As shown in Table 4, our method
obtains the best classification results except in the case of the Lymphography dataset,
which testifies that the proposed approach is also good for the MCAR missing pattern.
Moreover, imputing missing values with the KNN technique also has good performance in
this simulation situation. Especially for the Lymphography dataset, the KNN imputation
method obtains the best classification accuracy. To statistically evaluate the improvement
of ISB-IMLP, the average aggregating accuracy on seven datasets obtained from the MLP
and IMLP models are 0.6991 and 0.7111, respectively; the latter average accuracy is 1.2%
higher than the former.

As shown in Table 5, ISB-IMLP outperforms the other eight imputation methods
by 71.43%. Though there are two excluded datasets, i.e., Blood and Balance Scale, their
accuracies handled with the proposed method rank second only to the best one. Concretely,
their differences from the best one are only 0.0004 and 0.0027, respectively. However,
the best imputation methods for the Blood and Balance Scale datasets are mode and
decision tree. On the one hand, these two methods are also acceptable for the experimental
datasets in this missing pattern. On the other hand, our approach still has a better overall
performance in NMAR.

To illustrate stability visually, the boxplots indicate the classification accuracies ob-
tained from nine experimental methods in Figure 8. The object datasets are Car Evaluation
and Blood. According to the boxplots, ISB-IMLP has a longer box than the others in most
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situations. However, its mean, maximum, and minimum are comprehensively higher
than those of the other methods. This indicates that the missing proportion affects the
imputation performance. Moreover, the results show the specific standard deviation for the
corresponding situation after the symbol ‘±’. In general, the proposed method may have
no lowest standard deviation in most cases. Comparing the imputation methods based on
statistical and machine learning techniques, the standard deviations of the methods based
on deep learning methods (i.e., AE, MLP, and IMLP) are always higher than the two others,
for which the reason may be the sample size or the distribution of data. Actually, these
machine learning techniques with neural networks are sensitive to the scale of the training
samples; insufficient training data will lead to underfitting. Compared with the standard
MLP model, the results of our method are smooth as a whole.

In [11,33], the average classification accuracy obtained utilizing different imputation
methods with different missing rates was selected to show an overall changing trend of
continuous missing data. Figure 9 exhibits the average SVM classification accuracy based
on different imputation models, where the x-axis and y-axis represent missing rates and av-
erage accuracy for each line chart, respectively. A higher missing rate means more missing
information for the classification learning algorithm. Thus, the average accuracy decreases
as the missing proportion increases, regardless of the imputation method. However, there
are several excluded cases in which the average accuracy increases with the addition of the
missing proportion. For example, when the missing ratio is 30% in NMAR, the accuracy of
the proposed method increases compared to the accuracy of the 25% missing proportion.
One reason could be that the artificial operation for filling missing values impacts the classi-
fication task positively. In particular, the accuracy in MAR and MCAR is around 2% higher
than the accuracy in NMAR, which means that it may be harder to deal with the missing
data in NMAR. As a whole, our method outperforms many classical imputation methods
for discrete missing data, according to these line charts. Though the mode and random
methods have fast speeds of convergence for discrete missing data imputation, ISB-IMLP
gives a robust and higher classification accuracy for datasets with discrete missing data,
albeit with a larger time cost. As for schemes for filling discrete missing data based on
model learning, ISB-IMLP optimizes the convergence of the model and provides stable
performance for each missing mechanism.

Figure 8. Cont.
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Figure 8. Boxplot of accuracies for five missing proportions for the Car Evaluation and Blood datasets
in MAR, MCAR, and NMAR. (a–c) for the Car Evaluation dataset in MAR, MCAR, and NMAR,
respectively. (d–f) for the Blood dataset in MAR, MCAR, and NMAR, respectively. For the element of
boxplot, the solid square is the position of mean value, the hollow diamond is the position of 1%, and
× represents the 99% of the box.

Figure 9. Average classification accuracies of SVM for different imputation models in three missing
patterns: (a) in MAR; (b) in MCAR; (c) in NMAR.
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4.2.2. The Imputation Performance of Different Classifiers

The selection of the classification learning algorithm always affects the final perfor-
mance. Consequently, many studies aim to investigate the influence of the choice of
different classifiers on imputation performance [11,40,51]. Figure 10 presents the integrated
average accuracy for five missing proportions in the missing mechanism of MCAR. As
for the reason for evaluating in the case of such a missing mechanism, the missing value
appears completely at random, which may be unstable in imputation performance. The
x-axis is the name of the object datasets, while the y-axis is the aggregated accuracy. Our
proposed method does not necessarily achieve the best accuracy overall according to the
histogram, which means it is advisable to select a concrete learning algorithm for specific
datasets. Specifically, the Naive Bayes classifier may not be the first choice for the Car Eval-
uation dataset, where its overall accuracy is lower than 70%, while the other three obtain
accuracies over 70%. Moreover, all the imputation methods using the Naive Bayes learning
algorithm for the Blood dataset have low accuracies, and the others are 30% higher. It is
also evident that the SVM and Naive Bayes models are more suitable for the Balance Scale
dataset, where their accuracies are about 5% higher than the accuracies acquired by the
decision tree and KNN models. Note that ISB-IMLP with a decision tree for classification
has lower superiority than the others in datasets with small sizes of feature numbers, where
the distribution of the dataset has a negative effect on ISB-IMLP. In this regard, the selection
of classifiers plays a significant role in classification tasks. On the other hand, it is found that
our method combined with SVM can obtain the overall best performance; an object dataset
with a small number of samples, where the missing values are filled in by the imputation
methods using statistical techniques, is generally better than the proposed method. One
reason could be the deficiency of the training sample, which might not converge in the finite
iterations. Consequently, it is also necessary to determine suitable methods for datasets of
different sizes.

Figure 10. Performance analysis of four classifiers for nine imputation methods in MCAR. (a) for
SVM; (b) for decision tree; (c) for naïve Bayes; and (d) for KNN.
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5. Conclusions

The paper concentrates on developing an approach to fill in discrete missing data
and applying it to real-world classification tasks; an imputation scheme based on IMLP
(ISB-IMLP) is proposed. Specifically, the standard MLP method combined with gradient
descent and definite prefilling plans is regarded as an approach for filling in discrete
missing data. ISB-IMLP first develops classification models for each missing type, and
the generated alternatives to missing types are gathered to reconstruct the incomplete
dataset. To explore the effect of missing mechanisms, missing proportions, and selection of
the learning algorithm, the performance of ISB-IMLP is evaluated through experiments,
which are conducted on seven real-world datasets under three missing mechanisms (MAR,
MCAR, and NMAR); the results are compared with those of eight typical imputation
methods. Moreover, experimental comparisons were made using five missing proportions
ranging from 10% to 30%. The baseline imputation methods were the mode, random,
hot-deck, KNN, decision tree, random forest, autoencoder, and standard MLP techniques.
The simulation shows that ISB-IMLP has superior performance to MLP for each missing
mechanism, with the former’s classification accuracy being around 1% or 2% higher than
the latter’s. Compared to the statistics-based methods, ISB-IMLP has positive effects on
imputation performance without consideration of the time cost. According to the results, it
is a challenge to find a general method for missing situations. The reasons for this issue may
be considered as the missing mechanism and the missing proportion, the selection of the
classification algorithm, and the data size for model development. As a whole, ISB-IMLP
performs well under three missing mechanisms in most situations, offering a practical
approach for discrete missing data.

There are several unresolved issues that could be researched further in the future.
First, it is difficult to find an imputation method applicable to all missing mechanisms,
whether based on statistical theory or machine learning techniques, which will be one of
the main tasks of future missing value imputation research. Moreover, missing values affect
the classification accuracy and the efficiency of data processing techniques such as feature
selection. Given the above analysis, missing value imputation has several challenges to
overcome in the future and has extensive research implications.
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