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Abstract: In the Internet of things (IoTs), data transmission via network coding is highly vulnerable
to intra-generation and inter-generation pollution attacks. To mitigate such attacks, some resource-
intensive privacy-preserving schemes have been adopted in the previous literature. In order to
balance resource consumption and data-privacy-preserving issues, a novel fuzzy-based privacy-
preserving scheme is proposed. Our scheme is constructed on a T-S fuzzy trust theory, and network
coding data streams are routed in optimal clusters formulated by a designed repeated game model to
defend against pollution attacks. In particular, the security of our scheme relies on the hardness of the
discrete logarithm. Then, we prove that the designed repeated game model has a subgame-perfect
Nash equilibrium, and the model can improve resource utilization efficiency under the condition
of data security. Simulation results show that the running time of the proposed privacy-preserving
scheme is less than 1 s and the remaining energy is higher than 4 J when the length of packets is
greater than 400 and the number of iterations is 100. Therefore, our scheme has higher time and
energy efficiency than those of previous studies. In addition, the effective trust cluster formulation
scheme (ETCFS) can formulate an optimal cluster more quickly under a kind of camouflage attack.

Keywords: fuzzy trust; repeated game; pollution attacks; camouflage attack; optimal cluster; ETCFS

1. Introduction

The Internet of things (IoTs) refers to the networked connection of all daily objects,
which can play an eminent role in the application of services based on the Internet of
things, such as intelligent fire protection, industrial monitoring, intelligence collection,
renewable energy adaptation, and so on, greatly simplifying and bringing convenience to
life [1,2]. However, IoT is vulnerable to various network attacks, which can destroy the
process of data transmission and increase energy consumption. Therefore, in the previous
literature, many privacy-preserving schemes have been proposed to protect the security of
data. Furthermore, network coding technology has been introduced into IoTs for protecting
the privacy of data, where the sensor data is divided into multiple generations. Specifically,
the multiple packets in any generation are signed by an identifier. With this kind of packet
mixing, characteristic of the network coding, an internal or external enemy can inject
some fake or modified packets into the information flow, making it more vulnerable to
contamination attack, so that IoT devices cannot identify the correct and trusted data. In
addition, the polluted data will spread widely. In response to network-coding-enabled IoT
attack scenarios, we consider two typical types of pollution attacks. We firstly consider intra-
generation attacks, where the attacker modifies the innocent packets in multiple generations.
Secondly, we consider inter-generation attacks, where the attacker forges the malicious
packets into valid packets in one generation. In contrast with previous defense works,
we introduce a T-S fuzzy trust evaluation model to defend against malicious IoT devices
and construct an energy-efficient privacy-preserving framework. In the T-S fuzzy trust
evaluation model, limited bandwidth and power consumption are considered. Meanwhile,
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our T-S fuzzy trust model can obtain a more accurate trust evaluation value under the
premise of ensuring the required stability of IoTs. Referring to [3–5], we design a repeated
game model to perfect the energy-efficient privacy-preserving scheme, where the subgame
Nash equilibrium of the repeated game model can balance the data security and network
resource consumption [6]. The contributions of this research are given as follows:

• Firstly, we propose a novel privacy-preserving scheme based on T-S fuzzy trust theory
to mitigate the pollution attacks, in which the security is proved according to the
hardness of the discrete logarithm.

• Secondly, we construct a repeated game model to formulate the optimal cluster, in
which subgame-perfect Nash equilibrium is achieved, and the energy efficiency is
higher than in previous research under a kind of camouflage attack.

• Finally, we prove the correctness of our privacy-preserving scheme through strict
mathematical derivation and verify the performance superiority of our scheme by
simulation.

The organization of this paper is as follows. In Section 2, we present the previous
theories, including privacy-preserving schemes, T-S fuzzy technology, and the game theory
on which this research is based. In addition, we present a variety of improved models
adapted to coding trust in IoTs and discuss the shortcomings of these works in Section 3.
After that, we propose the energy-efficient privacy-preserving scheme based on the T-S
fuzzy trust model and repeated game model in Section 4. Then, the simulation results and
discussion are provided in Section 5, proving the correctness and accuracy of our proposed
model. Finally, we draw our conclusions in Section 6.

2. Related Works
2.1. Privacy-Preserving Schemes

At present, the technologies to solve pollution attacks in network coding can be
roughly divided into two categories: information theory schemes and cryptography-based
schemes. The information theory scheme mainly prevents pollution attacks by detecting
and correcting the polluted packets on the sink node. Regarding the effectiveness of
information theory methods, they cannot make intermediate nodes filter out fake messages,
which means that they can only passively tolerate the pollution attacks of sink nodes.

Another solution to the problem of pollution attacks is password-based authentication
technology that enables transponders to verify the accuracy of packets they receive in
routing. This method enables intermediate nodes to detect and discard fraudulent packets
in transmission, which can effectively reduce pollution attacks from the source [7].

In [8], a homomorphic signature scheme based on the hardness of the discrete loga-
rithm problem was proposed, which allows a node to check the validity of a packet without
decoding it. In this scheme, the node can check the integrity of the received packet by
taking advantage of the linearity of the packet in the coding system. In addition, Zhang
et al. [9] proposed a new idea called “orthogonal fill” in network coding, combining a
signature scheme based on public keys with a MAC scheme based on symmetric keys.
This scheme requires updating the public-private key tuple, which results in a high cost of
forwarder calculation. Liu and Wang in [10] divided pollution attacks in actual network
coding into intra-generation pollution attacks and inter-generation pollution attacks. Each
packet of each generation depends on the correct identifier and the corresponding dynamic
public key designed for this generation for validation. The scheme works by shuffling static
keys, and each shuffling is only used in one generation. However, the scheme only focuses
on the prevention of pollution attacks in general.

Besides the authentication scheme based on the asymmetric key, there is also a class
of authentication schemes based on symmetric key encryption. To solve the problem of
label contamination, Li et al. in [11] proposed a time-based authentication scheme called
RIPPLE, which uses delayed MAC key disclosure to achieve security similar to public key
authentication schemes. It is the first scheme to consider tag contamination, allowing nodes
to effectively detect corrupted packets and encode only validated packets. Cheng and Jiang
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proposed a homomorphic message authentication code scheme for network coding in [12],
which they claimed could obtain a reliable security parameter.

Although the authentication scheme based on the symmetric key has lower compu-
tational complexity than that based on the asymmetric key, it still has large bandwidth
overhead and key management problems. In [13], Cheng et al. proposed two improved key
distribution schemes for, respectively, signature schemes based on homomorphic subspace
and label-encoding schemes based on key pre-allocation, which can reduce the homomor-
phism of messages belonging to two different generations to combat multi-generation
pollution attacks; however, their communication costs increase significantly. In [14], Li et al.
proposed a multi-source homomorphic network coding signature in the standard model to
deal with multi-source devices in an IoTs network system, to ensure network availability
while mitigating pollution attacks. In [15], Fiandrotti et al. propose a simple and effective
method to deal with contamination attacks in point-to-point flow based on network coding.
The scheme can reduce the impact of pollution attacks by selectively combining the packets
of the forwarder and proving that the probability of the packet being drawn increases with
time. Subsequently, in [16], Antonopoulos et al. introduced a cooperative nonparametric
statistical framework to identify and mitigate node misconduct in IoT coding scenarios.
The framework does not require monitoring of wireless channels and additional overhead,
but it is not resistant to eavesdropping attacks. In [17], Lawrence et al. proposed a scheme
based on homomorphic message authentication coding in IoTs that could identify con-
tamination attacks and attack initiating nodes and developed data/message and marker
error correction techniques. In addition, Sodhro et al. included cognitive/brainwaves
via electroencephalogram (EEG), which function as a unique performance indicator to
construct an energy-efficient cognitive authentication scheme [18] for smart healthcare
applications, promoting the development of biometric recognition.

2.2. T-S Fuzzy

Nonlinearity is a common feature of many real systems [19,20]. It is also an important
factor that directly leads to the complexity of system analysis and design. Fortunately,
the “universal approval” of the Takagi–Sugeno (T-S) fuzzy model can solve the problems
caused by nonlinearity well. Therefore, in the past few years, many studies have modeled
nonlinear systems as T-S fuzzy systems, which are locally linear time-invariant systems
connected by if-then rules. Consequently, studies on T-S fuzzy systems have attracted
more and more attention [21]. Various meaningful studies on T-S fuzzy systems have been
carried out. To avoid the deterioration of system performance, fault-tolerant control (FTC)
and fault detection and isolation (FDI) schemes based on the T-S fuzzy model are developed
in [22]. By using the set theory description of the T-S fuzzy model, aiming at the problem of
fault isolation of the T-S fuzzy system, a new fault isolation method was proposed in [23],
which does not introduce the measurement information of the fault isolation sensor into
the premise variables of the corresponding observer. A new descriptor fuzzy sliding-mode
observer approach was proposed in [24], which augments the original fuzzy plant into a
descriptor system to estimate the system state, sensor fault, and actuator fault vectors at
the same time.

In [25], the problem of the hybrid-triggered controller design with quantization was
investigated for a T–S fuzzy system under cyber-attacks. However, in practical appli-
cations, parameter uncertainties in membership functions are usually inevitable. This
has encouraged research on the sliding mode control problem of interval type-2 (IT2)
fuzzy systems subject to the unmeasurable state and cyber-attacks by introducing two
weighting factors [26]. In [27], by designing a fault detection observer and separating the
measured premise variables explicitly from the unmeasurable ones, the finite frequency
error detection problem of T-S fuzzy systems with some unmeasurable premise variables
was studied.
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2.3. Game Theory

The methods of using game theory to mitigate different threats to the security of
the Internet of things are broadly summarized, and these methods are classified into
cooperative games and non-cooperative games [28]. In addition, some potential research
trends with great promising prospects in game theory have been proposed. In [29], a privacy
protection solution in an intelligent transportation environment was presented based on
a game model consisting of two participants (data holder and data requester). Markov
chains were utilized to model transformations for finding the optimal protection strategy
for data holders to keep data private over a series of interactions with the data requester.
Furthermore, the characteristics of the Stackelberg game are used to model security in
IoT applications [30]. At the same time, the Stackelberg game has also been extended
to deal with false injected data of intelligent attacks in sensor networks to enhance data
trustworthiness [31]. A repeated game model was also presented to enhance the resistance
of the Internet of things to selective forwarding attacks [32]. More specifically, in this
game, the credibility of high-priority data was maximized by detecting malicious nodes
that discard high-priority packets. However, the model attaches too much importance to
high-priority packets, which leads to the rapid degradation of low-priority packets due to
the impact of unprocessed attacks. Then, cooperative game theory was used to improve
security and manage cost and delay, focusing on the trust evaluation process based on
mixed-strategy Nash equilibrium [33]. In [29], a repeated game model was proposed to
detect and mitigate the influence of malicious cluster members, and a TDMA protocol was
adopted to keep the synchronization of cluster heads and cluster members, to reduce the
complexity of the detection mechanism.

3. System Model
3.1. Network Model

In this paper, a linear network coding enabling IoT is considered, in which an IoT
device sends a batch of sequenced messages to multiple target nodes. The delivered
messages are divided into M generations, where each message can be regarded as an
n-dimensional vector over the finite field Fp. Here, p is a pre-determined prime integer.
Meanwhile, each generation contains m native messages. Without loss of generality, the
i-th generation is labeled by an ρ-bit binary string Idi ∈ {0, 1}ρ, where i ∈ {1, . . . , M} and
ρ ≥

⌈
logM

2

⌉
. Let Γ = {Id1, . . . , IdM} represent the set of generation identifiers. Then, the

set of native messages belonging to the i-th generation is defined as {Di,1, . . . , Di,m}, where

Di,j = (D(1)
i,j , . . . , D(n)

i,j ) ∈ Fn
p, j ∈ {1, . . . , m} (1)

In this network model, the trust T between IoT devices is considered. The trusted
routing device set in the next round of data transmission is selected by the trust value
generated in the previous round of data transmission.

3.1.1. Trust Encoding at Data

For the j-th native messages Di,j in the i-th generation, a t-dimensional unit vector pj,
with the j-th entry being the measurable trustworthiness Ti,j for IoT devices and the other
being 0, is appended into the native messages. Then, the corresponding augmented block
ci,j is given as follows:

ci,j = (pj, Di,j) = (

t︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

j−1

, Ti,j, 0, . . . , 0︸ ︷︷ ︸
t−j

, Di,j) ∈ Ft+n
p , j ∈ {1, . . . , t}, (2)
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according to the bi-linear map polynomial-time algorithm, the corresponding encrypted
block is given by

Ei,j = Encrypt(h, Idi, ci,j)

= (

t︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

j−1

, eTi,j , 0, . . . , 0︸ ︷︷ ︸
t−j

, Di,j),
(3)

where h is the parameter in the bi-liner map between two multiplicative cyclic groups, and
Idi is the number of IoT devices.

3.1.2. Trust Decoding for Receivers

When the network controller receives the encoding data, the data block is first de-
crypted and stored in the buffer. After receiving m non-linearly correlated data blocks,
the network controller can recover the native messages by Gaussian elimination. Then,
an ACK message will be fed back to the sender to confirm the transmission of the next
generation of messages.

3.2. Adversary Model

We assume that there exists an attacker attempting to launch attacks in this network.
The types of attacks are listed as follows:

• Pollution attack: Attackers attempt to launch malicious data injection attacks to
disrupt the data transmission. Then, data integrity and privacy are compromised.

• Camouflage attack: Attackers deceive their surrounding trust evaluation devices by
pretending to be the normal devices, which leads to the wrong trust measurement
results.

3.3. T-S Fuzzy Trust Model

Here, the data-privacy-preserving model between IoT devices is introduced. However,
we should also consider routing security issues in data transmission. With the development
of trust evaluation technology in routing security, Li et al. [34] studied the trust routing
model instead of the traditional cryptographic scheme to defend against malicious nodes
in IoTs. In practical applications of IoTs, the degree of trustworthiness between IoT devices
is usually complex and variable. In this section, we reasonably assume a T-S fuzzy model
to mitigate the influence of subjective factors in trust evaluation. The T-S fuzzy model is
defined as follows:

Definition 1. Suppose that the domain X = {x1, x2, . . . , xn} is a non-empty set, and xi(i =
1, 2, . . . , n) is an element in X. For ∀xi ∈ X, there is a mapping relation as follows: µT : X →
[0, 1], xi 7→ µT(xi) ∈ [0, 1]; then, the set T = {(x1|µT(x1)), (x2|µT(x2)), . . . , (xn|µT(xn))} is
defined as a fuzzy subset (∀xi ∈ X) on XµT(xi)

, which is called the membership degree of xi to fuzzy
subset T, and the mapping µT is called the membership function of fuzzy subset T.

In Definition 1, X = {x1, x2, . . . , xn} is the set of IoT devices. Here, we chose the com-
munication trust Tc and energy trust Te as the fuzzy characters zk to objectively describe
the trustworthiness of IoT devices. Therefore, the vector v(xji) = vji = (µ1i, µ2i, . . . , µmi)
formed by the membership degree of each subject competing for these finite fuzzy parame-
ters zk is used as the evaluation trust vector of µji ∈ [0, 1], (j = 1, 2, . . . , l) for xi, while vji is
the evaluation trust vector of node j to node i, and µki(k = 1, 2, . . . , m) is the membership
degree of node i(xi) to fuzzy parameter zk evaluated by node j. Then, the definition of the
fuzzy rule is given as follows:
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Definition 2. IF v1i is XµT(1,xi)
and v2i is XµT(2,xi)

, . . . , vji is XµT(j,xi)
, THEN

ẋ(t) = Ai1i2 ...ip x(t) + Bi1i2 ...ip(µ(t) + a1(t)) + Bwn(t)

yj1(t) = Cj2 x(t), j1 = 1, . . . , m− h

yj2(t) = Cj2 x(t) + aj2
2 (t), j2 = m− h + 1, . . . , m,

(4)

Where x(t) ∈ Rn is the network statement, µ(t) ∈ Rl denotes the map input, n(t) is
the bias of noise, a1(t) ∈ Rl is the attack intensity in network, a2(t) ∈ Rl is the transmission
bias for indirect trust evaluation, and yj1(t) ∈ R and yj2(t) ∈ R are respectively the output
of direct and indirect trustworthiness in the T-S fuzzy model. In addition, m is the number
of IoT devices within two hops of node xi, and h is the number of IoT devices that can
communicate directly with node xi. Then, C is the measurable trustworthiness including
communication trust C1 and energy trust C2, while Ai1i2 ...ip , Bi1i2 ...ip , and Bw are known
matrices with suitable dimensions. Then, the y(t) and C can be rewritten as follows,

y(t) =
[

y1(t)
y2(t)

]
, C =

[
C1
C2

]
, (5)

Then, a singleton fuzzifier inference method with center average defuzzifiers is applied
to rewrite the T-S fuzzy model as follows:

ẋ(t) =
1

∑r1
i1=1 ∑r2

i2=1 . . . ∑
rp
ip=1

(
∏

p
j=1 XµT(1,xi)

)
×

r1

∑
i1=1

r2

∑
i2=1

. . .
rp

∑
ip=1

(
p

∏
j=1

XµT(1,xi)

)

×
(

Ai1→p x(t) + Bi1→p(µ(t) + a1(t)) + Bwn
)

y(t) =Cx(t) + a2(t).

(6)

Therefore, we can obtain the objective T-S fuzzy set T = {y(1), y(2), . . . , y(t)}, 1 ≤
t ≤ n.

4. The Energy-Efficient Privacy-Preserving Scheme Based on T-S Fuzzy Trust Model
and Repeated Game Model

In this section, we introduce the framework of our privacy-preserving scheme. Figure 1
shows the relationship between fuzzy trust evaluation, the repeated game model, and the
trust privacy-preserving scheme, in which the repeated game helps the network controller
formulate the optimal cluster to send the data to the trust privacy-preserving scheme. The
game model can obtain a balance between network performance and resource consumption
so that we can ensure maximum network performance by consuming fewer resources. Here,
network performance indicators include defense attack capability, energy consumption,
and so on. Explanations of this can be found in [35]. Therefore, the IoT data can be safely
transmitted with low energy consumption.
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Figure 1. The framework of the fuzzy-based privacy-preserving scheme based on the repeated game.
The devices in the solid line frame are common IoT devices in the cluster, and the dotted line is the
routing device that guarantees data uploading.

4.1. A Privacy-Preserving Scheme Based on T-S Fuzzy Trust Model

In this subsection, we propose a privacy-preserving scheme based on the T-S fuzzy
model, which can protect data privacy against pollution attacks in coding IoT networks.
Firstly, the scheme can be formulated as four steps (Encrypt , Sign, Verify, Decrypt). The
details of those steps are given as follows:

• Encrypt (h, T, Idi c). According to Definition 1, the trust set T contains 0 and 1. When
the trustworthiness of IoT devices is 1, the coding data will be received. Then, the
source is generated as a series of t-bit binary strings

{
sj
}t

j=1. A keyed pseudo-random

function f : {0, 1}∗ × {0, 1}∗ ×K 7→ Fp is applied to generate the encryption matrix

Ec,T =

 cei,1
. . .

cei,t

. (7)

Therefore, we rewrite Equation (3) as follows,

Ei,j = Encrypt(h, T, Idi, ci,j)

= (Ec,T, Di,j).
(8)

• Sign (sk, Idi, c). Suppose a full-domain hash function H : {0, 1}∗ 7→ Fp as a random
oracle. The signature of source c is given by
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∆ = ζ

t+n
∑

i=1
ciski+

(
t

∑
i=1

ci

)
H(Idi)skt+n+1

, (9)

where sk is the signature key such that sk = {sk1, . . . , skt+n+1}, ski
R← Fp. Then, the

data blocks {ci}σ
i−1 and {∆i}σ

i−1 of the i-th generation are combined as follows:

Θi =

(
σ

∑
i=1

Tici,
σ

∏
i=1

∆Ti , Idi

)
. (10)

• Verify (pk, c, Idi, ∆). When the public key pk, a data block c, a generation Idi, and the
signature ∆ are given, the compared computation is given by

η1 = e(∆, o) (11)

and

η2 = e(ζ,
t+n

∏
i=1

hci
i ·

t

∏
i=1

hH(Idi)ci
t+n+1 ). (12)

where o is the generator of G, pk = (ζ, o,G,GD, h), and µ
R← G{1}. G and GD

are two multiplicative cyclic groups, which satisfy e : G×G 7−→ GD in a bilinear
map, and h :=

{
osk1 , . . . , oskt+n+1

}
. When η1 = η2, the verification is successful;

otherwise, it fails.
• Decrypt (h, T, Idi c). When the secret key k and the pseudo-random function f are

given, the decryption matrix can be computed as follows:

DEc,T =


c−1

ei,1
. . .

c1
ei,t

 (13)

4.2. The Correctness and Security Analysis of Our Privacy-Preserving Sheme

In this subsection, we provide the correctness analysis of our privacy-preserving
scheme with two theorems and proofs.

Theorem 1. Given an augmented data block c ∈ ∏ i including coding vector p and native message
D, Decrypt(T, IdiEncrypt(h, T, Idi, c)) = c.

Proof of Theorem 1. According to Equation (8), the encrypted augmented data block cE is
given as follows:

cE = Ec,T · (p, D)

= (Ec,T · p, Ec,T ·D),
(14)

Then, according to our scheme, the decryption matrix can be expressed as follows:

cD = DEc,T · cE

= DEc,T · (Ec,T · p, Ec,T ·D)

=

 c−1
e

. . .
c1

e

 ·

 ce

. . .
ce

 · p,

 ce
. . .

ce

 ·D


= (p, D)

= c

(15)

Therefore, The proof is completed.
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Theorem 2. For any generation Idi and c ∈ Ft+n
p , Verify (pk, c, Idi, ∆) is successful.

Proof of Theorem 2. According to Equations (9)–(12), we have

η1 = e(∆, o)

= e(ζ

t+n
∑

i=1
ciski+

(
t

∑
i=1

ci

)
H(Idi)skt+n+1

, o)

= e(ζ, o)

t+n
∑

i=1
ciski+

(
t

∑
i=1

ci

)
H(Idi)skt+n+1

(16)

and

η2 = e(ζ,
t+n

∏
i=1

hci
i ·

t

∏
i−1

hH(Idi)ci
t+n+1 )

= e(ζ,
t+n

∏
i=1

oskici ·
t

∏
i−1

oskt+n+1 H(Idi)ci )

= e(ζ, o

t+n
∑

i=1
cisk+

t
∑

i=1
ci H(Idi)skt+n+1

)

= e(ζ, o)

t+n
∑

i=1
ciski+

(
t

∑
i=1

ci

)
H(Idi)skt+n+1

(17)

Therefore, η1 = η2 can be held for any generation Idi and c ∈ Ft+n
p .

The security of our privacy-preserving scheme relies on the hardness of the discrete
logarithm over G, where for any x ∈ Z∗p and given (g, gx), x cannot be computed in any
polynomial algorithm [36].

4.3. The Optimization Cluster Formulation Scheme Based on Repeated Game Model

After considering the data privacy and the trustworthiness of IoT devices, an effective
trust cluster formulation scheme (ETCFS) is designed based on the repeated game for
preserving the network stability and conserving the power consumption due to packet
re-transmission. Many studies in the literature have reported that the repeated game model
can solve the balance problem between network performance and resource consumption.

4.3.1. Repeated Game Model

In this sub-subsection, we first present a repeated game model based on the trustwor-
thiness to elect the trust route IoT devices. Then, the subgame-perfect Nash equilibrium is
given. Furthermore, the repeated game model is formally defined as follows:

(a) Attackers Ar = {A1, A2, . . . , Ar} and defenders Dr = {D1, D2, . . . , Dr} are the cooper-
ating parties in the repeated game, where r ∈ N+.

(b) Given the utility function Ur
A and Ur

D, and the loss discount δ, the average utility is

lim
r→∞

r
∑

j=1

UA
r and lim

r→∞

r
∑

j=1

UD
r , where r is number of iterations according to the lifetime of

the network. Furthermore, the total payoff for both parties are respectively as follows:

UA = U1
A + δU2

A + δ2U3
A + . . . + δr−1Ur

A =
r

∑
r=1

δr−1Ur
A, (18)

UD = U1
D + δU2

D + δ2U3
D + . . . + δr−1Ur

D =
r

∑
r=1

δr−1Ur
D, (19)

where the weight of the current and future payoff is inconsistent, and the future payoff
is generally less than the weight of the current payoff.
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(c) The proposed repeated game model is finite due to the power of the entire network be-
ing predetermined. Therefore, the finite repeated game can be solved by the backward
method, which basically converges to the sub-game equilibrium.

4.3.2. The Solution of Repeated Game Model for Optimizing Cluster Formulation

In the IoT, the various IoT devices including pads, phones, and monitors are members
of the cluster (CM). The network controller hopes that the IoT devices with higher energy
and trustworthiness become cluster heads (CH). Furthermore, the energy level E of IoT
devices is divided into two subsets, that is, Eh and El based on the remaining energy, where
Eh is the set of nodes having energy more than or equal to the threshold Eth, and El is lower
than Eth. Each IoT device in the cluster can select CH or CM according to the two strategies
S = CH, CM. In addition, the payoff of players can be found in Table 1.

Table 1. The different payoffs under different behaviors of players.

Strategy To Be CH To Be CM

Normal Ui,j(N, CH), U′i,j(N, CH) Ui,j(N, CM), U′i,j(N, CM)

Malicious Ui,j(M, CH), U′i,j(M, CH) Ui,j(M, CM), U′i,j(M, CM)

Meanwhile, the network controller is a defender, and other IoT devices may be normal
or malicious, so the utility function Ur

A and Ur
D in the iteration r can be defined as follows:

(a) Suppose that all members of Eh and El IoT devices become CH with no CM, and the
payoffs of defender and attacker are decreasing. At this time, the cluster is illegal.
Therefore, the utility of defender and attacker in the iteration r can be expressed as{

Ur
D,T = αTh − 2θCh

Ur
A,T = αTl ,

(20)

where α and θ are the weights of the reward and penalty, α + θ = 1, α, θ ∈ [0, 1]. Th
and Tl are the trustworthiness of low-energy and high-energy IoT devices. Meanwhile,
Ch and Cl are the communication costs of high-energy and low-energy IoT devices.

(b) Suppose that Eh and El IoT devices respectively become CH and CM; the payoff of
the defender is the highest, and that of the attacker is the lowest. Therefore, the utility
of the defender and attacker in the iteration r can be expressed as{

Ur
D,T = 2αTh − θCh

Ur
A,T = αTl − 2θCl ,

(21)

(c) Suppose that El and Eh IoT devices respectively become CH and CM, and the payoffs
of the attacker are the highest. However, the CH with El can also help the network
controller formulate a legal cluster. Therefore, the weight of reward and penalty are
predefined, and the utility of defender and attacker in the iteration r are given by{

Ur
D,T = Th − θCh

Ur
A,T = 2αTl − θCl ,

(22)

(d) Suppose that El and Eh IoT devices have become CM with no CH; then, the cluster is
illicit. Therefore, the respective utilities of the defender and attacker in the iteration r
are given by {

Ur
D,T = αTh − 2θCh

Ur
A,T = αTl − θCl ,

(23)

Then, we achieve subgame-perfect Nash equilibrium (ψ∗, ξ∗) = (1, 0) according to
the evolutionarily stable strategy (ESS) [35]. The details can be seen in Appendix A.
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5. Simulation Result and Discussion

This section shows the simulation result of the energy-efficient privacy-preserving
scheme and ETCFS scheme in IoTs. We use the OMNET++ simulator to construct the
network model with malicious activity and compute the trustworthiness of each IoT device.
The details of parameters used to configure the network model are given in Table 2. Then,
we compare the ETCFS scheme with state-of-the-art TDDG [33], HIDS [37], and LHIDS [38]
to show the effectiveness of the above schemes. In addition, the maximum running iteration
of the simulation is 100.

Table 2. The simulation network parameters.

Parameter Value Parameter Value

Network region 200 × 200 m2 Communication radius 2 m
Number of IoT devices 100 Sensing radius 1 m
Initial trustworthiness 0.6 Attack intensity 0.2–0.6

Packet length 400–1000 α, θ, δ 0.2, 0.2, 0.4
Initial energy 10 J Maximum iteration 100

Eth 4 J Hop limit 2

5.1. Simulation Parameter Setting

In this subsection, we define the metrics, including trustworthiness, the running time
of the privacy-preserving scheme, and the lifetime of the IoT, to discuss the performance of
the privacy-preserving scheme and ETCFS scheme.

(a) The trustworthiness of each IoT device consists of direct trust Tdirect and indirect trust
Tindirect. The total trust is defined as follows:

Ttotal = λ1Tdirect + λ2Tindirect (24)

where λ1 and λ2 are the weight parameters of direct and indirect trust, which satisfy
λ1 + λ2 = 1. The trust evaluation method including direct and indirect trust can be
found in [39].

(b) The running time of the privacy-preserving scheme reflects the effectiveness of our
scheme, which can run faster than previous schemes [40,41], while satisfying the
demand for data privacy.

(c) The lifetime of the IoT reflects lower resource consumption than in other literature.
Furthermore, the lifetime of IoTs with our repeated game model is the highest.

5.2. Performance Comparison

In this subsection, we compare the performance of the proposed privacy-preserving
and ETCFS scheme with the state-of-the-art methods under the preset network parameters.

(a) Energy Efficiency with T-S Fuzzy Trust Model: In Figures 2 and 3, the energy con-
sumption of our T-S fuzzy trust model is compared with NCS0-, NCS1-, and ID-based
schemes. The result of the simulation shows that our scheme has the lowest energy
consumption. As the number of attack nodes in the IoT increases, the energy re-
quired for trust evaluation gradually increases. However, the energy consumption
of our scheme has been in a stable state, and there is no significant increase. Mean-
while, our scheme has the highest remaining energy than other schemes when the
iteration = [30–100].

(b) Time Efficiency of Our Privacy-Preserving Scheme: In Figure 4, the runtime of our
trust-based privacy-preserving scheme is the lowest compared to the other three
methods. In addition, our scheme has higher stability according to the magnitude of
running time variation.

(c) Time Consumption with Cluster Formulation: In Figures 5 and 6, we compare the time
consumption when the hop limit is 1 and 2 under camouflage attack. Based on theo-
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retically verifying that the proposed repeated game has effective game equilibrium,
we also find our game-based cluster formulation has the lowest time consumption.
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Figure 2. The energy consumption with T-S fuzzy trust model.
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Figure 5. The time consumption with cluster formulation under different schemes in camouflage
attack (hop limit = 1).
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Figure 6. The time consumption with cluster formulation under different schemes in camouflage
attack (hop limit = 2).

6. Conclusions

This paper investigates a novel fuzzy-based privacy-preserving scheme to defend
against pollution attacks in coding IoTs and constructs a repeated game model to balance
data security and energy consumption. We propose a T-S fuzzy trust evaluation method
to replace the traditional cryptography scheme and reduce the energy consumption in
IoTs. Then, we introduce the trust-based privacy-preserving scheme, in which the security
relies on the hardness of the discrete logarithm. Finally, an optimal cluster formulation
based on the repeated game model is proposed to balance the data security and energy
consumption. The result shows that the cluster formulation can mitigate the camouflage
attack. In addition, our scheme only considers two types of attacks in IoTs. Therefore,
we will consider more kinds of attacks on IoT data, and construct more effective privacy-
preserving schemes in future work.
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Appendix A

Appendix A.1. The Optimizing Solution of Defenders

UEh→CH
D =

r

∑
r=1

δr−1[ξ(αTh − 2θCh) + (1− ξ)(2αTh − θCh)]

UEh→CM
D =

r

∑
r=1

δr−1[ξ(Th − θCh) + (1− ξ)(αTh − 2θCh)]

UEl→CH
D =

r

∑
r=1

δr−1[ξ(αTh − 2θCh) + (1− ξ)(Th − θCh)]

UEl→CM
D =

r

∑
r=1

δr−1[ξ(2αTh − θCh) + (1− ξ)(αTh − 2θCh)],

(A1)

UD = ψUEh→CH
D + (1− ψ)UEh→CM

D + (1− ψ)UEl→CH
D + ψUEl→CM

D

=
r

∑
r=1

δr−1


ψξ(αTh − 2θCh) + ψ(1− ξ)(2αTh − θCh)

+(1− ψ)ξ(Th − θCh) + (1− ψ)(1− ξ)(αTh − 2θCh)
+(1− ψ)ξ(αTh − 2θCh) + (1− ψ)(1− ξ)(Th − θCh)

+ψξ(2αTh − θCh) + ψ(1− ξ)(αTh − 2θCh)


=

r

∑
r=1

δr−1[(αTh − 2θCh) + (2αTh − θCh)ψ + (Th − θCh)(1− ψ)]

=
r

∑
r=1

δr−1[(1 + 2ψ)αTh − 3θCh + Th(1− ψ)]

(A2)

dψ

dr
= ψ(UEh→CH

D + UEl→CM
D −UD)

= ψ
r

∑
r=1

δr−1

 ξ(αTh − 2θCh) + (1− ξ)(2αTh − θCh)
+ξ(2αTh − θCh) + (1− ξ)(αTh − 2θCh)
−[(1 + 2ψ)αTh − 3θCh + Th(1− ψ)]


= ψ

r

∑
r=1

δr−1[(2− 2ψ)αTh − (1− ψ)Th)]

=
r

∑
r=1

δr−1ψ(1− ψ)(2αTh − Th)

(A3)

when dψ
dr = 0, the player D achieves a stable state. Therefore, when ψ∗ = 0 or 1, the player

D has the highest payoff.

Appendix A.2. The Optimizing Solution of Attackers

Similarly, the expression of player A is obtained as follows:

UEh→CH
A =

r

∑
r=1

δr−1[ψ(αTl) + (1− ψ)(αTl − 2θCl)]

UEh→CM
A =

r

∑
r=1

δr−1[ψ(2αTl − θCl) + (1− ψ)(αTl − θCl)]

UEl→CH
A =

r

∑
r=1

δr−1[ψ(αTl) + (1− ψ)(2αTl − θCl)]

UEl→CM
A =

r

∑
r=1

δr−1[ψ(αTl − 2θCl) + (1− ψ)(αTl − θCl)]

(A4)
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UA = ξUEh→CH
A + (1− ξ)UEh→CM

A + (1− ξ)UEl→CH
A + ξUEl→CM

A

=
r

∑
r=1

δr−1
[

ξ(αTl − 2θCl) + (1− ξ)(2αTl − θCl)
+(1− ψ)(αTl − θCl) + ψ(αTl)

]
=

r

∑
r=1

δr−1[(3− ξ)αTl + (ψ− ξ − 2)θCl ]

(A5)

dξ

dr
=

r

∑
r=1

δr−1ξ(UEh→CM
A + UEl→CH

A −UA)

=
r

∑
r=1

δr−1ξ

[
ψ(2αTl − θCl) + (1− ψ)(αTl − θCl) + ψ(αTl)

+(1− ψ)(2αTl − θCl)− (3− ξ)αTl − (ψ− ξ − 2)θCl

]
=

r

∑
r=1

δr−1ξ[(ψ + ξ)αTl + ξθCl ]

(A6)

When the ψ∗ = 0; the ξ∗ = 0, relatively; the ψ∗ = 1; the ξ∗ = 0; and the optimizing
payoffs of defender and attacker can be achieved. Furthermore, according to the reality, the
subgame-perfect nash equilibrium is obtained as (ψ∗, ξ∗) = (1, 0).
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