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Abstract: Fitness is important in people’s lives. Good fitness habits can improve cardiopulmonary
capacity, increase concentration, prevent obesity, and effectively reduce the risk of death. Home
fitness does not require large equipment but uses dumbbells, yoga mats, and horizontal bars to
complete fitness exercises and can effectively avoid contact with people, so it is deeply loved by
people. People who work out at home use social media to obtain fitness knowledge, but learning
ability is limited. Incomplete fitness is likely to lead to injury, and a cheap, timely, and accurate
fitness detection system can reduce the risk of fitness injuries and can effectively improve people’s
fitness awareness. In the past, many studies have engaged in the detection of fitness movements,
among which the detection of fitness movements based on wearable devices, body nodes, and image
deep learning has achieved better performance. However, a wearable device cannot detect a variety
of fitness movements, may hinder the exercise of the fitness user, and has a high cost. Both body-
node-based and image-deep-learning-based methods have lower costs, but each has some draw-
backs. Therefore, this paper used a method based on deep transfer learning to establish a fitness
database. After that, a deep neural network was trained to detect the type and completeness of fit-
ness movements. We used Yolov4 and Mediapipe to instantly detect fitness movements and stored
the 1D fitness signal of movement to build a database. Finally, MLP was used to classify the 1D
signal waveform of fitness. In the performance of the classification of fitness movement types, the
mAP was 99.71%, accuracy was 98.56%, precision was 97.9%, recall was 98.56%, and the F1-score
was 98.23%, which is quite a high performance. In the performance of fitness movement complete-
ness classification, accuracy was 92.84%, precision was 92.85, recall was 92.84%, and the F1-score
was 92.83%. The average FPS in detection was 17.5. Experimental results show that our method
achieves higher accuracy compared to other methods.

Keywords: deep transfer learning; Yolov4; Mediapipe; machine learning; fitness detection;
pose detection; image processing; deep neural network

1. Introduction

Fitness can bring many benefits to the body. With the rise in health awareness, men,
women, and children have gradually begun to engage in fitness activities. There are many
benefits of fitness exercise; it can effectively improve cardiopulmonary capacity, increase
concentration, maintain weight, etc. [1]. Most of those of exercise hope that their posture
can be improved, and improving posture can effectively reduce the risk of obesity [2].
Obese bodies are prone to many chronic diseases [3], and each is more likely to lead to
death, so regular exercise is important [4].
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With the prevalence of COVID-19, people spend less time outdoors [5], which re-
duces the amount of people’s physical activity. The gym industry, in particular, has been
considerably affected, resulting in people being unable to go to the gym to exercise. These
athletes then turn to home fitness [6], which can effectively help them avoid contact with
people and effectively reduce the impact of the epidemic. In addition, home fitness does
not require large fitness equipment but completes fitness exercises through dumbbells,
yoga mats, horizontal bars, and other equipment, so it is deeply loved by people. How-
ever, people who build their bodies at home usually do not hire fitness trainers but learn
fitness-related information from social media and mobile apps. Generally, most athlete
are novices and have not received professional fitness exercise guidance, so there is a risk
of injury when exercising. Common fitness injuries are usually caused by incorrect pos-
ture, heavy equipment, and excessive speed [7]. This type of sports injury is not easy to
avoid by obtaining fitness knowledge only through social media. Therefore, a cheap, sim-
ple, and accurate fitness movement recognition system is important, which can effectively
and instantly detect fitness movements, reduce sports injuries, and improve people’s fit-
ness awareness.

Among them, some systems use wearable devices to detect changes in human body
temperature and movement, which, in addition to detecting fitness movements, can also
perform preliminary detection of symptoms, such as COVID-19 [8,9]. This method lets the
fitness user put on the electronic device, and calculates the three-axis changes of the elec-
tronic device when the fitness user is exercising. Then, these data are collected and ana-
lyzed using machine learning to classify fitness movements. However, this detection
method has some shortcomings. When there are many types of fitness movements, it is
difficult to achieve accurate detection. When the body used for the fitness movement is
different from the part where the electronic device is worn, it is more difficult to identify
the current fitness movement. If the electronic device is carried all over the body, the fit-
ness user will be troubled when exercising, and the cost will be relatively high. Another
method is to detect fitness movements based on computer vision, which has lower cost
and does not hinder the exercise of fitness users through the detection method of com-
puter vision. The method of detecting fitness movements based on computer vision is
further divided into methods based on body nodes and methods based on image deep
learning. Body-node-based methods detect fitness movements by calculating body nodes,
which can be performed using OpenPose, Mediapipe, Simple Baselines, etc. [10-13]. Us-
ing these methods, nodes of the body and fitness movements can be detected through
changes in the coordinates of the nodes. In addition to detecting the speed of fitness move-
ments [10], these methods can also classify the current fitness movement type [11] or the
error between fitness movements and standard movements [12,13].

However, these methods cannot detect fitness movements from various angles, es-
pecially when the user is on the side or the back, which causes detection errors due to the
occlusion of nodes. The last type of detection is a method of detecting fitness movements
based on deep learning of images. This type of method usually classifies fitness move-
ments. For example, the convolutional neural network (CNN) method for detecting fitness
movements [14] can classify the current fitness movements well. Such classification meth-
ods do not cause detection errors due to occlusion of body nodes. As long as the training
data of the model are sufficient, fitness movements can be detected from various angles.
Usually, this method requires more computation time and cannot detect the nodes of the
body in detail. The fitness movement is usually a continuous movement, so if the body
nodes cannot be detected in a timely and detailed manner, it is difficult to achieve real-
time detection of the fitness movement. Therefore, this paper proposes a method that com-
bines You Only Look Once Version 4 (Yolov4) and Mediapipe to detect fitness movements
and uses the multilayer perceptron (MLP) to classify fitness states.

In our method, the deep transfer learning concept is used to train Yolov4 and detect
fitness movements. Deep transfer learning is a new type of classification model, which has
been widely used in many research fields. Due to the high cost of data collection and
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labeling, constructing large-scale and sophisticated data is difficult. The use of deep trans-
fer learning can solve the problem of insufficient data. In previous studies, deep transfer
learning methods have been applied to the detection of fitness movements [15]. This study
corrects for human motion, which is prone to inaccurate detection when detecting com-
plex human movements. The method we propose will also improve the problem of mis-
classification of fitness movements caused by the loss of Mediapipe nodes during complex
movements. We searched for professionally trained fitness trainers and untrained fitness
users to capture images and used them to build a database of images. This included label-
ing of accurate user positions and fitness movements, which were then used to train
Yolov4. Finally, Yolov4 was used to initially identify the types of fithness movements and
then combined with Mediapipe to detect the nodes of the human body in order to achieve
instant and high-precision fitness movement detection and realize completeness of those
fitness movements.

2. Methods
2.1. Proposed System Architecture

To be able to detect the fitness status of various backgrounds, users, shooting angles,
and lighting, a sufficient image database is necessary. It takes a considerable amount of
time to collect data, and the image data need to go through a long labeling process. This
paper proposes a method based on deep transfer learning [16] to detect fitness movements
in time and analyze the fitness status.

First, we collected a sufficient amount of fitness image data, established image data-
base I, and trained Yolov4. We used Yolov4 to judge 12 types of fitness. Afterward, Medi-
apipe was used to detect the body nodes of fitness users, in which different fitness move-
ments had different nodes of interest (Nol). The current Nol was adjusted based on the
detection results of Yolov4. By calculating the angle of the Nol, one can calculate the bend-
ing angle of the current joint. The angles of these Nols were stored as waveforms, and a
waveform database W was created. The waveform was then classified by the MLP to de-
tect the fitness status. Finally, the classification performance of Yolov4 and the MLP was
evaluated. The flowchart of the proposed method is shown in Figure 1, and the descrip-
tion of the process is as follows:

Stepl. Collect 12 types of fitness videos from 20 users and build a video database V.

Step2. Divide the video database V into a training set V,, and a test set V.

Step3. Savein Vi and Vi, animage every 10 frames and create image databases I,
and ;.

Step4. Mark the databases I, and I;; according to the format of Yolov4 and obtain
the databases L. and L.

Stepb. Use L, to train Yolov4, obtain the trained weights Wy, and then use L., to
test the performance of Yolov4.

Stepé. Use V,; todetect the fitness type using Yolov4 and the body node of the fitness
user using Mediapipe.

Step7. Calculate the angle of the Nol for each fitness movement to obtain the angle of
joint flexion.

Steps8. According to the fitness type detected by Yolov4, automatically adjust the po-
sition of the Nol.

Step9. Output and store the angle calculated by the Nol as a waveform.

Stepl0.  Calculate Completiony,; according to the included angle of the Nol and out-
putitasa 1D waveform.

Stepll.  Create a database W of the output waveforms and divide them into training
set W, and test set W,.

Stepl2.  Use W,, to train the MLP and W,, to test the MLP’s performance.

Stepl3.  Evaluate the classification performance of Yolov4 and the MLP.
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In Figure1, Vi, I;;, Ly, and W, represent the data of the training setand Vi, I,
L, and Wy, represent the data of the test set. V is the video database, I is the image da-
tabase, L is the label image database, and W is the waveform database.

C Data Collection )

v v
Training video dataset I, Testing video dataset I,
Y v
Training image dataset I, Testing image dataset I,
v v
/ Label dataset Z,, / / Label dataset Z,, /
L 2 v
Train Yolov4 Bt Fitness type detection by Yolov4
L 2
Automatically adjust the Nol na Mediapipe pose detection
L 2
Output the signal as a waveform =  Waveform database W, and W,
v
( Performance evaluation )4' Waveform analysis by MLP

Figure 1. Method flowchart.

2.2. Dataset for Fitness Types Detection

Sufficient image data can be used to better train deep learning models. For the deep
transfer learning method in this paper, a sufficient image database was important. We
collected image database I containing whole-body fitness movements, a total of 12 types
of fitness movements. The names and images of the movements are shown in Table 1.
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Table 1. Twelve types of fitness movements and names.

2.2.1. Video Dataset

These fitness movements include common fitness movements. In particular, these
movements are closer to home fitness. Home fitness is usually performed with simple
equipment, such as yoga mats, dumbbells, and horizontal bars, without the need for large
fitness equipment. Usually, large fitness equipment has a fixed movement trajectory, but
these 12 types of fitness movements are all irregular movement trajectories. That is, dif-
ferent exercise users complete these fitness movements in different postures, which in-
creases the difficulty of image recognition. Therefore, it is difficult to build an image da-
tabase that can identify these fitness movements. Additionally, these image data go
through a labeling process, which is time-consuming and labor-intensive.

In the experiment, 20 users were selected and videos of the 20 users when exercising
were used to create a video database V. These videos contain 12 types of fitness move-
ments by the 20 users. In the experiment, the users were asked to perform these 12 types
of exercises in a row, and each exercise was repeated 3 to 5 times. Every time a fitness
movement was performed, the user was required to complete a complete motion trajec-
tory and constantly change the shooting angle. The video format was 30 frames per sec-
ond, and the length and width were 540 x 540 pixels. Table 2 shows the video time cap-
tured when 20 users performed fitness movements. The total shooting time was 62 min
and 47 s.

In the selection of fitness exercises, we selected 12 fitness exercises under the advice
of fitness trainers, which included chest, back, legs, abs, biceps, triceps, and preparations.
These movements can be done using dumbbells or with bare hands, and they are also
relatively introductory and popular of all fitness movements. To build the database, pro-
fessionally trained fitness trainers and users were used to assist in the shooting. After
screening, 10 voluntary users were finally selected. The movements of these 10 users were
quite standard, so the captured images were used for the training set. Afterward, for fair-
ness in the experiment, another 10 untrained users were found to assist in filming and
used the test set data. Since most of the users are not professionally trained, it was better
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and fairer to use these 10 users for the test set. When the 20 users were shooting images,
we instructed them to complete 12 fitness movements, each of which was performed 3 to
5 times according to each user’s habits, with no rest time in between, and completed in
the same background.

Table 2. The fitness time photographed by each user.

User (No.) Time (s) User (No.) Time (s)
1 228 11 169
2 246 12 136
3 246 13 168
4 172 14 193
5 190 15 157
6 177 16 146
7 191 17 170
8 300 18 191
9 170 19 192

10 168 20 157

2.2.2. Image Dataset

The method proposed in this paper was based on deep transfer learning, so Yolov4
training was important. Yolov4 needs to use images for training, so the images in V'
needed to be converted to images. In the V video, each fitness movement was completed
in 1 to 3 s on average [17]. To record the fitness track from 0% to 100%, the experiment
stored the video as an image every 10 frames. Using this method to convert video to image
can successfully record the entire fitness track, as shown in Table 3. After training Yolov4
with these images, each user’s continuous movements while exercising are successfully
detected. In addition to the complete recording of the motion trajectories, database I also
contained images of various shooting angles of each fitness movement, as shown in Table
4. The images in database I contained complete fitness movement trajectories and images
from various angles, which could better train Yolov4. We obtained a total of 13,160 fitness
images from 20 users.

Table 3. The motion track recorded after converting the video database to images.

0% 25% 50% 75%




Sensors 2022, 22, 5700

7 of 21

Table 4. In the image database, the shooting angle included in each fitness exercise.

0° 45° 90° 135° 180°

Database I contained fitness images of 20 users. To add more users, backgrounds,
and shooting angles, this paper collected fitness images online. These images contained
screenshots taken from fitness images and videos on platforms such as Youtube and
Google. These online images were stored in database I with a pixel size of 540 x 540. The
total number of online images was 2964, plus 13,160 fitness images from 20 users. There-
fore, database I contained a total of 16,124 images and 12 fitness types.

2.2.3. Image Label

When database I was prepared, the images were labeled. This paper used the image
labeling tool “Labellmg” and performed labeling according to the format required by
Yolov4 training. The marking process is shown in Figure 2. The labeling process generates
a txt file for each image, which contains the image category and the coordinate position of
the object. The markers in the experiment included fitness users, objects on their bodies,
and dumbbells.

H

x

File List 5|
(CAUsers\USER\OneDrive\ Desktop\fF # & K2\1|

imiolotlio
R LR HE

X350.:0

Figure 2. Labeling process using Labellmg.

2.2.4. Training and Testing Dataset Formation

This paper collected a complete image database to train Yolov4 and implemented
deep transfer learning so that Yolov4 could better detect fitness movements. To fairly ver-
ify the performance of deep transfer learning, the experiments were divided into training
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and test sets. The training set V,, contained the fitness videos of 10 users, from no. 1 to
no. 10 in Table 2. The test set was V,;, which contained the fitness videos of 10 users from
no. 11 to no. 20. The video in V}, had a longer shooting time because it contained more
fitness shooting angles, which enabled Yolov4 to detect more fitness shooting angles. The
video in V;, contained only one fitness camera angle and was used to test performance.
After that, the videos in video database V were stored every 10 frames, and database I
was established. The images in the training set I, were from V,, and online, while the
images in the test set I;; were from V. Finally, the image database I was labeled to
generate training sets L, and L, and the number of images is shown in Table 5. L;,
contained a total of 12,301 images for training Yolov4, and L;, contained a total of 3823
images for testing the performance of Yolov4.

Table 5. Category and number of images.

Fitness L;. (Online) L, Ly
Squat 198 644 121
Pull-up 239 1442 427
Push-up 317 913 264
Sit-up 373 977 328
Standing 132 1065 454
Biceps-curl 273 405 154
Bulgarian-split-squat 311 577 365
Bench-press 304 924 471
Lateral-raise 162 299 152
Overhead-press 202 724 365
Dumbbell-rowing 305 598 347
Triceps-extension 148 769 384
Total 2964 9337 3823

2.3. Dataset for Fitness Completeness Detection
2.3.1. Dataset Preparation
Body Nodes Detection

Mediapipe is an open source tool published by Google in 2019. This tool is used for
image vision detection. Mediapipe supports many image-vision-based human detection
methods, such as face recognition, human body recognition, and gesture recognition [18].
Because Mediapipe supports a variety of programming languages, as well as open source
databases, and has high accuracy and fast computing speed, it has been widely used.

This paper used the Mediapipe BlazePose algorithm provided by Mediapipe, which
is a human body detection method that can calculate the 33 nodes of the human body [19],
as shown in Figure 3. The algorithm is mainly aimed at the detection of human body pos-
ture and can calculate the coordinate position of each joint of the human body. There are
33 such coordinates, ranging from 0 to 32. Except for coordinate 0, “nose,” all other coor-
dinates are symmetrical. Fitness movements are carried out mainly through the move-
ment of the joints of the body, so it is quite suitable to use Medipipe to detect the nodes of
joint movements of the body. Human body detection by this method has already been
trained, so no additional data collection was required to train the model. Medipipe is great
for detecting fitness movements.
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0. Nose 17. Left_pinky
1. Left_eye_inner  18.Right pinky
2. Left eye 19. Left index
3. Left_eye outer 20.Right_index
4. Right eye inner 21.Left thumb
5. Right_eye 22. Right_thumb
6. Right eye outer 23.Left hip

7. Left_ear 24. Right_hip
8. Right ear 25. Left knee
9. Mouth_left 26. Right_knee

10. Mouth_right 27. Left_ankle
11. Left shoulder 28. Right_ankle
12. Right_shoulder ~ 29. Left heel

13. Left_elbow 30. Right_heel
14. Right_elbow 31. Left_foot_index
15. Left_wrist 32. Right foot index

16. Right wrist

32 30 29 31

Figure 3. Mediapipe detects 33 nodes of the human pose.

Currently, there is a method of using Mediapipe to identify fitness movements. This
method first uses Mediapipe to identify the nodes of the whole body and obtain the coor-
dinate positions of the nodes. Each coordinate is then used to detect the current fitness
category using a K-nearest-neighbor (K-NN) classifier [20]. Using this method, it is simple
to count the nodes of the body and detect the fitness category. However, when performing
fitness movements, many joints of the body are blocked, which leads to the loss of body
nodes detected by Mediapipe. As shown in Figure 4a,b, when exercising with the shooting
angle on the side, only half of the body nodes were detected, and the other body nodes
were lost. In Figure 4c, the wrist is blocked by the fitness equipment, leading to detection
node error. At this time, the loss and error of the body nodes are likely to cause a misjudg-
ment when using the K-NN algorithm to classify the fitness types. However, Yolov4 can
solve this problem. Since Yolov4 is a detection method based on image vision, it does not
need to rely on node detection of the body. Therefore, as long as training images are suf-
ficient and include a variety of angles, users, and backgrounds, the classification perfor-
mance of fitness types can be better.

(b)

Figure 4. Node missing on Mediapipe detection, (a) squat missing node, (b) push-up missing node,
and (c) pull-up missing node.

Node Angle Detection

This paper combined two methods, Yolov4 and Mediapipe, to detect fitness move-
ments. Yolov4 detects the fitness type, and body nodes are detected by Mediapipe. The
results of the two methods for simultaneously detecting fitness movements are shown in
Table 6. When the user performs fitness movements, Yolov4 and Mediapipe detect them.
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At this time, even if the body is blocked by fitness equipment or a node is lost due to the
side shooting angle, the detection of the fitness category is not affected. After Yolov4 and
Mediapipe detected movements, the key nodes of each fitness movement, that is, Nol,
was calculated. The Nol of each fitness movement is shown in Table 6, where the pink
node is the Nol of each movement. The angle of the Nol can be calculated, and the com-
pletion degree of the current fitness movement can be determined. Through the coordi-
nate positions of the two yellow nodes P; and P; and the Nol node P, in Table 6, the
included angle of the Nol can be calculated, and the calculation formula is as follows:
P,Py X P P;

Angley,; = cos(P,) = T (1)

Here P,P; is the vector of P, to P;, and P,P; is the vector of P, to P;. Through
this method, the angle of Nol can be calculated Angley,;, and the fitness completion de-
gree of the current user can be known according to Angley,,.

Table 6. Result of Mediapipe and Yolov4 detecting fitness.

riceps-extension
T s o B

L

The Nol is automatically adjusted according to the type of fitness detected by Yolov4.
As shown in Table 6, when the user did a squat, the Nol was adjusted to the position of
the knee. When the user did a biceps-curl, the Nol was adjusted to the position of the
elbow. Therefore, the Nol of each exercise is different from the Angley,; required to com-
plete the exercise. The position of P;, P,, and P; and the angle range of Angley,; for
each fitness movement are shown in Table 7 [21]. Start_Angley,; indicates the initial an-
gle of the joint when the exercise is ready, and End_Angley,, indicates the final bending
angle of the joint when the exercise is completed. Among them, “standing” is the prepa-
ration movement, so when the user’s movement is “standing,” the Nol does not change
and adjust. Angley,; was adjusted according to Angley,,; calculated by the user in V;,
when exercising. The Nol was automatically adjusted by the fitness type detected by
Yolov4, and Angley,; was calculated according to the angle of the Nol. Finally, the fitness
completion of the current user was determined through Angley,;. Using this method, the
current fitness movement can be detected instantly and accurately.
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Table 7. The position of P;, P,, and P; corresponding to the body node in Figure 3.
Fitness Py P,(Nol) P;  Start_Angley,,; End_Angley,,;
Squat 24 26 28 100 170
Pull-up 12 14 16 80 170
Push-up 12 14 16 80 170
Sit-up 12 24 26 100 120
Standing X X X X x
Biceps-curl 12 14 16 80 160
Bulgarian-split-squat 24 26 28 110 160
Bench-press 12 14 16 80 140
Lateral-raise 14 12 24 20 80
Overhead-press 12 14 16 80 150
Dumbbell-rowing 12 14 16 110 150
Triceps-extension 12 14 16 80 140

After Yolov4 and Mediapipe detected the fitness exercise, the user’s fitness type,
body joint nodes, and Nol can be obtained. The included angle of Nol can be calculated
by Angley,;, and then through the change in Angley,;, one can understand the speed and
completion of the user’s fitness. The fitness completion degree was calculated according
to Start_Angley,; and End_Angley, in Table 7. The fitness completion degree
Completiony,, is calculated as follows:

Anglenor—Start_Anglenor 9
End_Anglenoi—Start_Anglenor ( )

Completiony,; =

Here Completiony,; is between 0 and 1, Start_Angley,; indicates the initial angle
setby Angley,; for the fitness movement, and End_Angley,; indicates the final angle set
by Angley,; when the fitness movement is completed. Completiony,; indicates the de-
gree of completion of the fitness movement. Generally, completing a complete fitness ex-
ercise increases Completiony,; from 0% to 100%, which then decreases to 0%, and this
change is stable and slow [22].

2.3.2. Fitness Completeness Definition and Dataset Formation

All videos contained in V;, and V,, were detected by Yolov4 and Mediapipe, and
then Completiony,; of the fitness movement was calculated. Completiony,; is dis-
played in the form of a 1D signal waveform, and database W was created. The 1D wave-
lines of the video output of V, and V,, were stored as training set V,, and testset V.
The way of establishing database W is shown in Figure 5, wherein the wave travel of the
1D signal was established by Completiony,,; every 100 frames, and the step is 50 frames.
As shown in Table 8, after databases W, and W,, were established, W, contained a
total of 657 records and W, contained a total of 587 records. These data contained the
data of 12 types of fitness movements.

To perform fitness movements completely, there must be complete range of motion.
Therefore, this paper simply divided the 1D waveform data into three categories: com-
plete, no-complete, and no-movement. The three types of waveforms are shown in Figure
6. These categories were judged as follows [21,22]:

e Complete: Completiony,; rose from 0% to 100% and then dropped to 0%, during
which the change was stable and slow. In addition, when the value was between 0%
and 100%, there was a short stop.

e  No-complete: Completiony,; did not rise to 100% or drop to 0% but did not stop at
0% and 100%. In addition, the value change was unstable and fast.

e No-movement: Completiony,,; had almost no change, that is, the state of prepara-
tion for fitness movements.
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Completiony,;

0 30 100 150 200
Frame

Figure 5. The waveforms of the fitness movements were used for classification.

(b)

Figure 6. Three categories of waveforms: (a) complete, (b) no-complete, and (c) no-movement.

Table 8. The distribution of training and testing data in database W.

WtT th

Complete 223 203
No-complete 372 261
No-movement 62 123
Total 657 587

2.4. Fitness Movement Detection
2.4.1. Fitness Type Detection

Yolo has achieved quite good performance in the task of object detection and also has
good performance in detection speed and accuracy [23], so it is widely used in the task of
real-time object detection [24]. Fitness moves are continuous, and each move is usually
completed in seconds, so a way to detect objects in real time was needed, and Yolo fit the
bill.

Yolo continues to improve with this release, with improved object detection accuracy
and speed. The Yolov4 method was released in April 2020 [25], and it has received great
attention and discussion. Compared with Yolov3, Yolov4 improves 10% AP and 12%
frame per second (FPS) and uses the Cross Stage Paritial Darknet 53 (CSPDarknet53) net-
work architecture [26], which can enable Yolov4 to provide faster detection speed and
accuracy. In this paper, Darknet was used to train Yolov4. Darknet is an open source neu-
ral network architecture [27], which is written in C and CUDA languages, which can train
Yolov4 simply and quickly and effectively reduce the training time. Darknet supports the
use of the computer’s CPU and GPU for computing, and the use of GPU computing can
bring about a faster training speed.

The most important part of the deep transfer learning algorithm proposed in this
paper was the training of Yolov4. The complete fitness databases L, and L; were used
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to train and test Yolov4. L, was added to Darknet and used to train Yolov4 and then
obtain weight W;. After that, L, was added to darknet, and W; was used to test the
performance of Yolov4. The test results were compared and introduced in later sections.
The video of database V,, was used to test the performance of Yolov4, where the
detected results of V;; are shown in Table 9. Each fitness category was successfully de-
tected with a fairly high confidence score. This means that database L, collected in this
paper had enough image data and Yolov4 was fully trained. After the detection of Yolov4,
the user’s fitness movement was detected in real time by category and the user’s location.

Table 9. Result of Yolov4 detecting fitness type.

2.4.2. Fitness Completeness Detection

W and Wy, contained 1D signals and were divided into three categories. Classify-
ing 1D signals using machine learning methods is a relatively simple task and therefore
does not require the use of complex network models. This paper used the MLP to classify
these 1D signals [28]. The MLP, also called an artificial neural network (ANN), is a model
[29] that belongs to supervised learning. It can quickly solve complex classification prob-
lems. The network model contains the input layer of the first layer, the middle hidden
layer, and the final output layer. This paper used a 3-layer hidden layer and a 2-layer
dense layer and used Dropout to reduce overfitting. The W,, data were used to train the
MLP, after which W,, was used to test the performance of the MLP.

3. Experimental Section
3.1. Experimental Setup

This paper used Yolov4 and Mediapipe to detect fitness movements and finally used
the MLP to classify the status of the fitness movements. Among them, Yolov4 and the
MLP used the databases L, and W, established in this paper for training. Yolov4 was
trained using the yolov4.conv.137 network framework in the Darknet network, which in-
cludes many experimental settings. The experimental settings for training Yolov4 are
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shown in Table 10. L., was used to train Yolov4, and weights W, were obtained after
training. The iterations were set to 100,000, but the iterations required for different data
types, the number of categories, and data quantities were different. To understand the
iterations required for database L,  built in this paper, the iterations were 10,000,
20,000...100,000 to train Yolov4 and compare its performance. The experimental settings
for training the MLP are shown in Table 11, using W,, to train the MLP. Since the data
size in W, was a 1D signal of 100, it is not like Yolov4 had length and width and image
channels, but the data size was set to 100.

Table 10. Experimental setup for training Yolov4.

Parameters Value
Class 12
Batch size 64
Subdivisions 40
Image width 416
Image height 416
Channels 3
Max batches 100,000
Filters 51
Learning rate 0.001
Decay 0.0005

Table 11. Experimental setup for training the MLP.

Parameters Value
Class 3
Batch size 64
Data size 100
Max batches 100
Learning rate 0.001
Decay 0.0001

3.2. Evaluation Index

When Yolov4 and the MLP were trained, performance was tested. Among them,
Yolov4 obtained 12 types of detection results and the MLP obtained 3 types of detection
results, both of which belonged to the classification methods in machine learning. Accord-
ing to the classification results of each category, true positives (TPs), false positives (FPs),
false negatives (FNs), and true negatives (TNs) were obtained. The introduction of these
four evaluation indicators is as follows:

e  TP: positive samples predicted by the model to be positive

e  FP:negative samples predicted by the model to be positive classes
e  FN: positive samples predicted by the model to be negative

e  TN:negative samples predicted by the model to be negative classes

According to the number of TPs, FPs, FNs, and TNs, the classification performance of
Yolov4 and the MLP can be understood. When the number of TPs is large, it indicates that
the number of correct classifications for the experiment is greater. Then, accuracy, precision,
recall, and the F1-score were calculated as follows:

| ~ TP + TN .
CoUracy = TP ¥ TN + FP + FN

TP
i P 4
Precision TP+ FP 4)
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TP
- 5
Recall TP+ FN (5)

= Cox Precision X Recall ©)
score = Precision + Recall

In addition, the predicted box detected in Yolov4 was evaluated using the intersec-
tion over union (IoU). The calculation method of the IoU is as follows:

Area of Overla
IOU — #

@)

Here, area of overlap represents the area where the actual box overlaps with the esti-
mated box. The area of union represents the area of the union of the actual box and the
estimated box. The larger the estimated overlap area with the actual box, the better the
performance.

In addition to these performance evaluation indicators, the mean average precision
(mAP), FPS, and Yolov4 training time were also used as evaluation indicators. Among
them, there are many methods of evaluating the mAP. This paper used the PascalVOC
2010-2012 mAP algorithm [30]. The FPS is the number of frames per second that can be
calculated when Yolov4 detects the video of L. Finally, the training time of Yolov4 was
also evaluated, and the training time was affected by the iteration. Therefore, later sections
will evaluate the changes in detection performance for different iterations and compare
them.

Area of Union

3.3. Results and Discussion

The performance of Yolov4 is shown first, but before entering the performance eval-
uation, the iteration settings of Yolov4 training were compared and the iterations were 10
settings to train Yolov4: 10,000, 20,000...100,000. Although the higher the iteration setting
is, the loss will generally continue to decrease, but this also increases the time cost of train-
ing and there is a risk of overfitting. So, a suitable iteration should be found and trained.
L;» was used to train Yolov4, and L, was used to test the performance of Yolov4. The
performance of Yolov4 at different iterations is shown in Figures 7 and 8. In the perfor-
mance comparison, the IoU thresholds were set at 0.5 and 0.75. The experimental results
showed that when the iteration was set to 50,000, high performance was obtained. After
the iteration exceeded 50,000, the performance decreased, and the performance did not
improve until the iteration was 100,000. So considering the time cost of training, the iter-
ations were set to 50,000.
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Figure 7. When the IoU threshold was 0.5, the performance comparison of different iterations.
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Figure 8. When the IoU threshold was 0.75, the performance comparison of different iterations.

There were two performances in the experimental results. The first was the perfor-
mance of using Yolov4 to detect fitness movement categories and the second the perfor-
mance of using the MLP to classify fitness movement 1D signal waveforms. L, was used
to test the performance of Yolov4, and W,, was used to test the performance of the MLP.
The experimental results of Yolov4 are shown in Table 12. The experimental results
showed that mAP achieved high performance. This is because the image in L;; contained
only one fitness user, that is, only one fitness user appears in each image. However, the
mAP showed high performance, which means that database L, completely trained
Yolov4. The results showed that when the IoU threshold was set to 0.5, the accuracy was
98.56%, precision was 97.9%, recall was 98.56%, and the Fl-score was 98.23%. The FPS
averaged 17.5 when running on a laptop with an i7-1185G7 CPU and a GTX-1650Ti GPU.
This means that when there are 12 fitness movements in the category, Yolov4's fitness
category detection achieves quite high performance and has the ability to process in real
time. To avoid detection errors of several frames, in the detection of V,, a buffer of 15
frames was set, which is equivalent to a buffer time of 0.5 s. Only when 15 frames of im-
ages are incorrectly detected will the current fitness type detected by Yolov4 change and
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the position of Nol will change. That is, according to the experimental results in Table 12,
when V,, isdetected by Yolov4, it is difficult for the fitness type to be detected incorrectly.

Table 12. Performance of Yolov4.

Evaluation Index IoU Threshold = 0.5 IoU Threshold = 0.75
mAP 99.71% 99.08%
Accuracy 98.56% 96.97%
Precision 97.90% 98.67%
Recall 98.56% 96.97%
F1-score 98.23% 97.82%

The results of classifying W,, using the MLP are shown in Table 13. The results
showed that the accuracy was 92.84%, precision was 92.85, recall was 92.84%, and the F1-
score was 92.83%. Although this classification result did not achieve high performance, it
could still effectively classify the fitness status. The confusion matrix of the MLP classifi-
cation results is shown in Figure 9, which shows that the classification results of complete
and no-complete are poor. This is because the videos in database V were not specifically
required to perform the complete and no-complete fitness movements when the videos
were shot. Therefore, there is not a great difference between these two categories. Alt-
hough a small amount of W,, datais classified into different categories, the wave patterns
are similar. Although the classification performance of the MLP is degraded due to this
factor, it still provides valid classification results.

Table 13. Performance of the MLP.

Evaluation Index MLP
Accuracy 92.84%
Precision 92.85%
Recall 92.84%
Fl-score 92.83%
1.0
Standard 91.28% 8.72% 0.00% 0.8
K9] 0.6
8
; No-standard 9.29% 90.71% 0.00%
-
= 0.4
0.2
No-movement 0.00% 0.00% 100.00%
0.0

Standard No-standard No-movement
Predicted label

Figure 9. Confusion matrix for MLP classification performance.

In this paper, a method based on deep transfer learning was used to build a complete
database to train and test Yolov4. Yolov4 is an image detection method based on deep
learning. This paper used Yolov4 to classify fitness movements.
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The methods previously introduced by Hobeom Jeon et al. [11] and Ali Bidaran et al.
[14] are both image-based motion detection methods, and both are classified by machine
learning. The method of Yongpan Zou et al. [31] and Crema et al. [32] is to let the user
wear an electronic wearable device to classify fitness movements through the signals of
the electronic device. These methods all classify fitness movements, so the method pro-
posed in this paper was compared with these methods. The experimental results are
shown in Tables 14 and 15. Our method had an mAP of 99.71% and an accuracy of 98.56%.
Compared to Hobeom Jeon et al. [11], the mAP improved performance by 9.21%. Com-
pared to Yongpan Zou et al. [31], Crema et al. [32], and Ali Bidaran et al. [14], accuracy
improved the performance by 2.49%, 4.2%, and 5.66%, respectively. This result shows that
our deep-transfer-learning-based method can provide better classification performance
and lead to better detection results for subsequent fitness movements.

In the analysis of fitness movements, we divided the completion of fitness move-
ments into three categories and use the MLP to classify them. The experimental results are
shown in Table 16; the accuracy of our method was 92.84%. Compared to the method of
Yongpan Zou et al. [31], accuracy improved the performance by 2.14%. Our method is
cheaper and does not have to consider the power consumption and hygiene issues of
wearable devices. Compared to the method of Jiangkun Zhou et al. [12], accuracy im-
proved the performance by 29.65%. Experimental results showed that our proposed
method has better performance.

In the methods of Madanayake et al. [33] and Chen et al. [34], the Kinect sensor was
used to analyze fitness movements. Compared to our method, it increases image depth
and also increases the cost. This method can successfully detect fitness movements, but
the experimental results have not shown its performance, so it cannot be compared.

Table 14. Comparison of the mAP for fitness movement classification.

Evaluation Index mAP
Ours 99.71%
Hobeom Jeon et al. [11] 90.5%

Table 15. Comparison of accuracy of fitness movement classification.

Evaluation Index Accuracy
Ours 98.56%
Yongpan Zou et al. [31] 96.07%
Crema et al. [32] 94.36%
Ali Bidaran et al. [14] 92.9%

Table 16. Comparison of accuracy of fitness movement analysis.

Evaluation Index Accuracy
Ours 92.84%
Yongpan Zou et al. [31] 90.7%
Jiangkun Zhou et al. [12] 59.7%

According to the experimental results and the performance comparison with other
methods, the method proposed in this paper has the following contributions:

e  This paper proposed a low-cost and effective method for current research on image-
based fitness motion detection. This method has the advantages of low cost and real-
time processing, and images captured by ordinary smartphones and network cam-
eras can be used to detect fitness movements. It is proved by the experimental results
that the method proposed in this paper can be practically applied to a variety of dif-
ferent users, and the detection performance is effective and immediate.

e  The method proposed in this paper does not require a professionally trained fitness
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trainer but trains Yolov4 and detects fitness movements through deep transfer learn-
ing. To achieve high-precision detection and fair performance evaluation, this paper
collected images of 20 users and online images for training and testing Yolov4. The
experimental results show that the database collected in this paper is sufficient to
train Yolov4, and it can detect fitness movements under different angles, back-
grounds, and users’ shots.

e  This paper proposed a method combining Yolov4 and Mediapipe to detect fitness
movements. Using Yolov4 to detect fitness categories can reduce errors caused by
missing nodes and can detect fitness types from more angles. By further using Medi-
apipe to detect body nodes, one can understand the movement changes in the body
in more detail and automatically adjust the position of the Nol according to the fit-
ness type detected by Yolov4, which can effectively reduce the misjudgment of inva-
lid nodes of the body and focus on valid nodes.

e  This paper proposed a method of using the MLP to detect 1D signal waveforms of
fitness movements. This must rely on a method to automatically adjust the Nol, cal-
culate the angle of the Nol, and detect the fitness completion and speed of the fitness
user. Using this method, the current state of fitness can be classified simply and ef-
fectively and the basic fitness state classification results of fitness users can be ob-
tained.

This method can detect fitness movements in real time, but there are still many areas
that can be improved, which can be considered in the future as follows:

e The deep learning methods used in this paper include Yolov4, Mediapipe, and the
MLP. Therefore, in the future, adding some other machine learning algorithms, such
as Genetic Algorithm, can used greatly improve performance [35].

e  Inthis paper, 20 users were selected to assist in shooting fitness images, and an image
database was established. However, these images required a lot of labor when mark-
ing them. In addition, when shooting these images, the background is usually the
same. Therefore, in the future, we will consider using image processing to automati-
cally identify fitness users and automatically mark them. This can greatly reduce per-
sonnel use and effectively increase the number of images.

e In this study, 20 users and 12 fitness movements were used for training. Another 10
users were used for testing our system. In the future, we will increase the number of
users and the number of fitness movements.

4. Conclusions

This paper proposed a method for detecting fitness movements based on deep trans-
fer learning, which is an image-based method and has the advantages of low cost, timeli-
ness, and accuracy. The method is mainly divided into four stages to complete, namely
image database collection, Yolov4 detection of fitness categories, Mediapipe detection of
body nodes and joint angles, and MLP classification of fitness 1D signal waveforms. This
paper collected 20 users and online image data to train Yolov4 and detect the type of fit-
ness movements. After that, Yolov4 and Mediapipe were combined to further detect the
nodes of the body, which were used to calculate the joint angle of the body Nol during
fitness. Finally, the change in angle was converted into a 1D fitness signal waveform, and
the MLP was used to classify it. The experimental results showed that Yolov4, which is
based on deep transfer learning training, has good classification performance for the de-
tection of fitness movements. Among them, the mAP was 99.71%, accuracy was 98.56%,
precision was 97.9%, recall was 98.56%, the F1-score was 98.23%, and the average FPS was
17.5, which means its classification performance is timely and accurate. This means that
the image database collected in this paper can fully train Yolov4, which can produce good
classification results for subsequent research on fitness detection. In the experiment of
MLP classification of fitness 1D signal waveforms, the accuracy was 92.84%, precision was
92.85%, recall was 92.84%, and the Fl-score is was 92.83%. This classified the 1D signal
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waveforms of fitness movements and obtained valid results. Compared to other methods,
our proposed method has better performance. The experimental results show that the
method proposed in this paper can effectively, timely, and accurately classify fitness
movements and can effectively detect the current fitness state.
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