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Abstract: Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) stand
as state-of-the-art techniques for non-invasive functional neuroimaging. On a unimodal basis, EEG
has poor spatial resolution while presenting high temporal resolution. In contrast, fNIRS offers
better spatial resolution, though it is constrained by its poor temporal resolution. One important
merit shared by the EEG and fNIRS is that both modalities have favorable portability and could be
integrated into a compatible experimental setup, providing a compelling ground for the development
of a multimodal fNIRS–EEG integration analysis approach. Despite a growing number of studies
using concurrent fNIRS-EEG designs reported in recent years, the methodological reference of past
studies remains unclear. To fill this knowledge gap, this review critically summarizes the status of
analysis methods currently used in concurrent fNIRS–EEG studies, providing an up-to-date overview
and guideline for future projects to conduct concurrent fNIRS–EEG studies. A literature search
was conducted using PubMed and Web of Science through 31 August 2021. After screening and
qualification assessment, 92 studies involving concurrent fNIRS–EEG data recordings and analyses
were included in the final methodological review. Specifically, three methodological categories of
concurrent fNIRS–EEG data analyses, including EEG-informed fNIRS analyses, fNIRS-informed EEG
analyses, and parallel fNIRS–EEG analyses, were identified and explained with detailed description.
Finally, we highlighted current challenges and potential directions in concurrent fNIRS–EEG data
analyses in future research.

Keywords: EEG; functional NIRS; multimodal neuroimaging; concurrent recording; integrated analysis

1. Introduction

The human brain comprises billions of neurons [1]. Each of these forms a number of
synapses, establishing a complicated network with quadrillions of connections and thus
enabling our brains to function in an adaptive manner [2]. Although our understanding of
neurons on a microscopic scale has progressed in recent decades, little is known about how
these huge numbers of neurons (and synapses) work collectively to generate macroscopic
brain signals and human behaviors. It is believed that human brain functions and associated
behaviors are carried out by complex neural activations and networks. These internal
activities generally elevate electrical activity (direct effects) accompanied by a hemodynamic
and metabolic response (indirect effects), which serve as the basic sources for all noninvasive
neuroimaging techniques. Depending on the sources of the signals, these brain imaging
techniques can be roughly divided into two categories. The first category refers to imaging
techniques that directly capture the neural electrical activities by detecting the induced
electrical or magnetic fluctuations over the scalp. The most representative methods in
this category are Electroencephalography (EEG) and Magnetoencephalography (MEG).
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The second category comprises indirect imaging approaches that rely on hemodynamic
(cerebral blood flow, cerebral blood volume) and metabolic (glucose and oxygen utilization)
responses induced by neural activity. Commonly available techniques in this category
include functional near-infrared spectroscopy (fNIRS), functional magnetic resonance
imaging (fMRI), and positron emission tomography (PET). In this perspective, EEG and
fNIRS have been gaining popularity in the research community and clinical practice due to
their distinct natures, particularly their noninvasiveness, mobility, and flexibility.

1.1. The Fundamental Basis of fNIRS

Functional Near-infrared Spectroscopy (fNIRS), first reported by Jobsis in 1977 [3], is
an optical imaging technique for non-invasive investigation of hemodynamic responses in
the brain. fNIRS usually utilizes lights with distinct wavelengths (between 600 and 1000 nm)
that can penetrate the scalp and reach the cortical surface to measure the concentration
changes of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) that
are coupled with the metabolic activity of neurons in the outer layers of the cortex. This
technique is particularly useful for studying the functional activation within the brain due to
the inherent relationship between neural activity and hemodynamic responses in the brain [4].
Specifically, fNIRS measures the regional changes of HbO and HbR concentration, which can
serve as an indicator of hemodynamic changes associated with neural activity in the brain.

Currently, the continuous wave NIRS (CW-NIRS) is extensively used in the research
and clinical settings due to its low cost and simplicity. The measurement of the hemoglobin
concentration (HbO and HbR) in CW-NIRS primarily relies on the physical basis that chro-
mophores inside the brain, especially the HbO and HbR, have specific and sensitive absorption
characteristics in the near-infrared range (between 600 and 1000 nm). Lights at different wave-
lengths can then be injected into the brain via the sources (illuminators) placed on the scalp,
and the attenuated lights are detected by the optical detectors placed near the illuminators
(Figure 1A), from which the concentration changes of HbO and HbR can be computed based
on the Modified Beer-Lambert Law [5]. Specifically, CW-NIRS systems typically utilize
laser/LED sources to shine two distinct wavelengths into the brain at a constant intensity
and use detectors to measure the intensity of diffusely reflected light continuously.
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Figure 1. Schematic demonstration: (A) fNIRS and (B) EEG measurement.
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1.2. The Fundamental Basis of EEG

Electroencephalography (EEG), first described by Hans Berger in 1929 [6], is thought to
result primarily from the synchronization of post-synaptic potentials at cortical pyramidal
neurons [7]. The recorded EEG signal does not represent single neuron depolarization
inside the brain. Instead, it is assumed that tens of thousands of synchronized pyramidal
neurons within the cortex are firing when the brain is activated, wherein dendritic trunks
of the neurons are coherently orientated, parallel with each other and perpendicular to the
cortical surface so as to induce sufficient summation and propagation of electrical signals
to the scalp (Figure 1B) [8].

Typically, EEG signals are measured through EEG electrodes (including a reference
electrode and a ground electrode) placed over a subject’s scalp. Voltage differences between
the electrodes and the reference electrode are then measured and amplified (Figure 1B).
The recorded EEG signals, which represent the large-scale neural oscillatory activity, can
be divided into various rhythms depending on characteristic frequency bands, including
theta (4–7 Hz), alpha (8–14 Hz), beta (15–25 Hz), and gamma (>25 Hz) [9]. These brain
rhythms contain information associated with the ongoing neuronal processing in specific
brain areas, which allows EEG to be used as a non-invasive method for the characterization
of cortical reorganization, induced by various brain disorders, particularity in the diagnosis
of epilepsy and stroke [9–12], and the assessment of brain state alterations [13–15].

1.3. Integration of EEG and fNIRS: Rationale and Advantages

The functional activity of the cerebral cortex can be investigated using various imaging
techniques including EEG, fNIRS, fMRI, and their combinations [16–19]. Each of these
techniques has its own advantages and disadvantages. However, single-modality imaging
techniques can only capture limited information associated with neural activity due to their
technical limitations and the inherent complexity of neural processing within the brain.
For example, compared to fMRI, fNIRS features higher temporal resolution (<1 s), good
portability, lower cost, good resistance to motion artifacts, and applicability to various
measurement scenarios including clinical settings as well as the natural environment [5].
More importantly, fNIRS measurements have been proven to be similar to the blood oxygen
level dependent (BOLD) response obtained by fMRI [20]. However, there are also several
limitations of fNIRS techniques: the limited penetration depth, low signal-to-noise ratio,
and low temporal resolution compared to EEG. EEG possess several advantages over fMRI
for exploring dynamic brain activity: it is portable, inexpensive, and features a remarkably
high temporal resolution (millisecond) compared to fNIRS and fMRI [21], though EEG is
highly vulnerable to motion artifacts that would inhibit the EEG measurement in a natural
settings [22].

To comprehensively explore the functional activity of the brain, multimodal ap-
proaches are needed. Integrated EEG–fNIRS approaches offer numerous benefits over
single-modality methods by exploiting their individual strengths; EEG provides favorable
temporal resolution while fNIRS offers better spatial resolution and is robust to noise [23,24].
Additionally, EEG and fNIRS signals are associated with the neuronal electrical activity
and metabolic response, respectively, providing a built-in validation for identified activity.
Measurements obtained from each of these two modalities thereby provide complementary
information related to functional activity of the brain.

In addition to their complementary technical properties, the rationale behind the
combination of EEG and fNIRS relies on a physiological phenomenon called neurovas-
cular coupling within the brain [25]. Neural activity is inherently accompanied with the
fluctuation of cerebral blood flow (CBF) that carries vital oxygen and nutrients to neurons.
Specifically, when neurons are activated within a specific brain region, blood will flow to
that brain region to meet the increased demand of glucose and oxygen, resulting in fluc-
tuations of hemoglobin concentration (HbO and HbR) that can be detected by functional
imaging techniques such as fNIRS and fMRI (Figure 2). The so-called neurovascular cou-
pling forms the theoretical basis for integrated fNIRS–EEG imaging of brain activity. It has
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been shown in recent studies that impairment of neurovascular coupling could serve as a
sign for several neurological diseases such as Alzheimer’s disease and stroke [25–27], which
might provide a new prospective for evaluation and diagnosis of neurological diseases as
well as increase our understanding of mechanisms underlying neurovascular coupling.
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Figure 2. Demonstration of neurovascular coupling.

1.4. Motivation of the Present Review

The fact that integration of fNIRS and EEG provides complementary information about
electrical and metabolic-hemodynamic activity of the brain activity has led to increasing
investigations of the benefits of integrated EEG and fNIRS [27–29]. In the last decade,
numerous studies utilizing integrated fNIRS–EEG systems have been reported on both
nonclinical and clinical topics [30]. Data analysis of concurrent fNIRS–EEG recordings
is a fundamental but essential step for fNIRS–EEG research studies. This step usually
consists of several key processes, including raw data processing, feature extraction, and
integrated/fused analysis of these two modalities. Although several recent reviews have
been published to summarize the latest progress on applications of concurrent fNIRS–
EEG recordings, such as brain–computer interface, development of wearable fNIRS–EEG
devices, and neuromodulation, there is no comprehensive summary yet regarding the
general analysis pipeline of simultaneously recorded fNIRS and EEG signals. To fill this
knowledge gap, this review aims to systematically summarize the status of analyses
methods used in concurrent fNIRS–EEG studies involving healthy individuals as well as
patient populations. Specifically, we focus on multiple levels of integrated analyses of
concurrent fNIRS–EEG recordings by critically evaluating the data processing methods,
extracted features, and forms of integration of these two modalities. The present review
differs from previous reviews in that this is the first systematic, methodology-focused
review to describe which approaches were used in previous concurrent fNIRS–EEG studies
and how these approaches were used, thus providing an up-to-date overview and technical
guideline for future projects to conduct concurrent fNIRS-EEG studies.
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This review is organized as follows: Section 1 is dedicated to the description of the
origins, the main characteristics of fNIRS and EEG, and the rationale of combining fNIRS
and EEG for multimodal brain imaging. Section 2 describes the strategy of our literature
review and the criteria of identification and classification of published articles. Section 3
starts with a brief summary of the preprocessing of raw fNIRS and EEG data and then
elaborates three main categories of analysis approaches in concurrent fNIRS–EEG studies.
Finally, Section 4 is devoted to underlining the limitations, challenges, and future direction
of data analysis of integrated fNIRS–EEG techniques.

2. Methodology

This review was conducted following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) protocol [31]. As shown in Figure 3, the flow
diagram of PRISMA mainly includes three steps: (1) initial search: search related studies
based on the defined keywords in selected databases; (2) prescreening: remove duplicated
articles and select articles based on designed criteria; (3) qualifying: read through the full
text of the selected articles to make sure they meet the eligibility and inclusion criteria.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 24 
 

 

Finally, Section 4 is devoted to underlining the limitations, challenges, and future direc-

tion of data analysis of integrated fNIRS–EEG techniques. 

2. Methodology 

This review was conducted following the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) protocol [31]. As shown in Figure 3, the flow dia-

gram of PRISMA mainly includes three steps: (1) initial search: search related studies 

based on the defined keywords in selected databases; (2) prescreening: remove duplicated 

articles and select articles based on designed criteria; (3) qualifying: read through the full 

text of the selected articles to make sure they meet the eligibility and inclusion criteria. 

 

Figure 3. PRISMA flow diagram for the literature review and article selection. 

2.1. Search Strategy 

The search for relevant peer-reviewed articles describing the use of a concurrent 

fNIRS–EEG design was conducted on PubMed and Web of Science as literature sources. 

The following keyword combinations were used in the literature search: (“fNIRS” OR 

“NIRS” OR “functional near-infrared spectroscopy” OR “near-infrared spectroscopy”) 

AND (“EEG” OR “electroencephalography”) AND (“Brain”). Only articles that were pub-

lished in English through 31 August 2021 were included. 

2.2. Prescreening and Qualifying Criteria 

The prescreening criteria were based on the reading of titles and abstracts. First, du-

plicated articles under different titles were removed. Then, publications were excluded if 

they (1) were not in line with the topic, i.e., animal studies; (2) were non-journal 

Records found from selected databases
(Web of Science, PubMed)

Records after removal of duplicated 
publications

N= 532

Records after reading of abstract 
N = 155

Records after reading of full text 
N= 92

Exclusion (n = 377): 
• Animal studies 
• Non-journal publications (reviews, 

conference papers, comments, dissertations, 
newspapers, and books) 

• Didn’t report results of both fNIRS and EEG 
measurements 

Exclusion (n = 63): 
• Studies focused on hardware development, 

montage/experiment design

• Studies focused on preprocessing of 
concurrent data

• Studies included extra modalities in the 
analyses (Heart rate, TMS etc.)

EEG-informed 
fNIRS analyses: 

N= 8

fNIRS-informed 
EEG analyses: 

N= 5

Parallel EEG-
fNIRS analyses: 

N= 79

Web of Science 
N= 507

PubMed
N= 473

In
it

ia
l S

e
ar

ch
P

re
sc

re
e

n
in

g
Q

u
al

if
yi

n
g

Figure 3. PRISMA flow diagram for the literature review and article selection.

2.1. Search Strategy

The search for relevant peer-reviewed articles describing the use of a concurrent
fNIRS–EEG design was conducted on PubMed and Web of Science as literature sources.
The following keyword combinations were used in the literature search: (“fNIRS” OR
“NIRS” OR “functional near-infrared spectroscopy” OR “near-infrared spectroscopy”)
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AND (“EEG” OR “electroencephalography”) AND (“Brain”). Only articles that were
published in English through 31 August 2021 were included.

2.2. Prescreening and Qualifying Criteria

The prescreening criteria were based on the reading of titles and abstracts. First,
duplicated articles under different titles were removed. Then, publications were excluded if
they (1) were not in line with the topic, i.e., animal studies; (2) were non-journal publications,
such as reviews, conference papers, comments, dissertations, newspapers, and books; and
(3) did not report analysis results of both fNIRS and EEG measurements.

We then performed further screening and qualifying by reading through the full text
of the articles. In this process, publications were excluded if they (1) focused on montage
design, experimental design, or hardware development of concurrent fNIRS–EEG systems;
(2) focused on preprocessing of fNIRS and/or EEG data; or (3) included extra modalities in
the analyses, such as heart rate, electromyography, transcranial magnetic stimulation, etc.
Furthermore, the following inclusion criteria for the review were considered: (1) articles
focusing on brain function investigation using concurrent fNIRS–EEG were included;
(2) articles with details of signal processing, feature extraction, and concurrent analysis of
fNIRS–EEG were included.

3. Results

The search strategy resulted in a total of 980 records in the initial search from the
selected databases (507 from Web of Science and 473 from PubMed, Figure 3). After the
prescreening and qualifying stages, we obtained a total of 92 articles available for this
review, including 5 studies focusing on fNIRS-informed EEG analyses, 8 studies focusing
on EEG-informed fNIRS analyses, and 79 studies focusing on the parallel analyses of fNIRS–
EEG (Figure 3). Figure 4A summarizes the number of concurrent fNIRS–EEG studies each
year since 2012, and Figure 4B shows the percentage of each type of integrated analysis of
fNIRS–EEG.
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3.1. Preprocessing of fNIRS and EEG Signal

Signal preprocessing is an essential step for any post-processing of integrated analysis
of concurrent fNIRS–EEG data. Since the present review specifically focused on the inte-
grated analysis of concurrent fNIRS–EEG data, here we only outline a general pipeline for
the basic preprocessing of each modality.
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3.1.1. Basic Preprocessing of fNIRS Signal

Basic preprocessing of fNIRS data is shown in Figure 5A. One particularly essential
step in the preprocessing of fNIRS data is signal quality check and artifact correction. The
quality of the fNIRS signal could be affected by several confounding noise sources, such as
instrument noise (e.g., due to light source instability, electronic noise) [32], physiological
interference (e.g., respiration, heartbeat) [33,34], or motion artifacts [35,36]. Instrument
noise and physiological interference are mostly located within a constant frequency range.
For instance, the instrument-degradation-induced noise is around 3~5 Hz, and respiration
and heartbeat lie in 1~1.5 Hz and 0.2~0.5 Hz, respectively [5]. Thus, these noises can be
easily removed by applying the band-pass filter/low pass filter. Motion artifact in the form
of spikes or baseline shifts is a typical category of noise in raw fNIRS signal, especially in
data collected from child populations or during experimental tasks that include motion
(e.g., walking or speaking) [36,37]. Multiple algorithms have been developed to identify
and correct motion artifacts in raw fNIRS signals, such as spline interpolation [38], wavelet-
based methods [39,40], or principal component analysis [41]. We refer the readers to
recently published articles for a more detailed overview of the preprocessing of fNIRS
signal [42,43].
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3.1.2. Basic Preprocessing of EEG Signal

We have outlined the basic preprocessing of EEG data in Figure 5B. Similar to fNIRS,
EEG recordings are often contaminated by different artifacts that come from internal and
external sources. Internal artifacts include physiological activities of the subject (e.g.,
ECG, muscle, and ocular artifacts) and movement [44,45]. External artifacts mainly in-
clude environmental/instrumental interference (50 Hz/60 Hz), electrode pop-up and
cable movement. Elimination of internal artifacts relies on extra measurements (e.g., elec-
trooculogram/electrocardiogram/accelerometer) or signal decomposition algorithms (e.g.,
ICA/PCA) [46,47]. External artifacts may be removed either by simple filters, signal decom-
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position algorithms (e.g., ICA), or artifactual segment rejection [48]. We refer the readers
to [49,50] for a more detailed overview of the preprocessing of EEG signals.

3.2. EEG-Informed fNIRS Analyses

Neurovascular coupling demonstrates that regional neural activity is typically ac-
companied by the generation of electrical activity and the resulted metabolic variation,
which is the fundamental principle of EEG and fNIRS measurements. Simultaneous fNIRS–
EEG recording is therefore highly suited for neurovascular coupling investigation through
various analysis approaches.

Among all the concurrent fNIRS–EEG studies, using EEG-derived characteristics
to enhance fNIRS analyses, which is usually referred as EEG-informed fNIRS analyses,
provides a particularly new and straightforward solution for investigating neurovascular
coupling. Table 1 summarizes all studies that performed EEG-informed fNIRS analyses.

Table 1. Characteristics of studies that performed EEG-informed fNIRS analysis.

Authors Tasks Brain Regions Features Analysis
Methods

Peng et al., 2014 [51] Resting fNIRS: Whole
EEG: Whole

fNIRS: HbO/HbR/HbT concentration
EEG: Amplitude GLM

Pouliot et al., 2014 [52] Resting fNIRS: Whole
EEG: Whole

fNIRS: HbO/HbR/HbT concentration
EEG: Amplitude GLM

Talukdar et al.,
2015 [53] Resting fNIRS: Whole

EEG: Whole
fNIRS: HbO concentration
EEG: Power spectral envelopes GLM

Peng et al., 2016 [54] Simulation;
Resting

fNIRS: Whole
EEG: Whole

fNIRS: HbO/HbR/HbT concentration
EEG: Amplitude GLM

Khan et al., 2018 [55] Motor fNIRS: Left motor
EEG: Left motor

fNIRS: HbO/HbR concentration
EEG: Power spectrum

Vector-phase
analysis

Zama et al., 2019 [56] Motor fNIRS: Motor
EEG: Whole

fNIRS: HbO/HbR concentration
EEG: ERD/ERS GLM

Li et al., 2020 [57] Motor fNIRS: Motor
EEG: Whole

fNIRS: HbO/HbR concentration
EEG: Absolute Power (amplitude) GLM

Sirpal et al., 2021 [58] Resting fNIRS: Whole
EEG: Whole

fNIRS: HbO concentration
EEG: Amplitude Autoencoder

In typical fNIRS analyses (Figure 6), the fNIRS signal is commonly regressed via
a general linear model (GLM) constructed by convolving the canonical hemodynamic
response function (HRF) with a boxcar or impulse function representing the consistent
temporal profile of the experimental paradigm to identify cortical regions activated by
specific stimuli [59]. Briefly, for measured fNIRS signal Y in a channel, the GLM model is
given by

Y = Xβ + ε (1)

where X is the design matrix, β is the regression coefficients to be estimated, and ε is the
error term. In the case of a block design experiment, X is commonly given by a convolution
matrix of a chosen hemodynamic response function (HRF) and boxcar functions describing
the latency and duration of the stimulus. Note that the HRF may use various type of
shapes, such as canonical HRF, gamma-HRF, or Gaussian-HRF [35]. Columns of X are the
regressors that represent conditions or tasks in the experiment, and additional nuisance
terms or auxiliary measurements that usually account for the systemic physiology or
motion artifacts.
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Figure 6. Basic principle of general linear model (GLM) in fNIRS analysis.

The estimated regression coefficient β and the error ε can be tested via a t-test to
identify the channels that represent a significant contrast between different tasks. The t-test
is calculated by

t =
cT × β√

cTcov(β)c
, (2)

where cov(β) is the covariance matrix of β and c is the contrast vector, which determines
the contrast between specific conditions.

The main limitation in common standalone fNIRS analysis is that neuronal response
to repeated trials or stimuli is time-varying across the experiment in a realistic setting,
which may be inconsistent with the boxcar function typically used in the construction
of a GLM analysis design matrix. With this in mind, the core idea of EEG-informed
fNIRS analysis is to replace or adjust the boxcar function in the fNIRS GLM analysis with
temporal- or frequency-specific regressors of interest derived from EEG signals [57]. Based
on the linear hypothesis of neurovascular coupling, the characteristics of the neural activity
extracted in EEG may offer better estimation of the fNIRS response after convoluting the
HRF, thus increasing the efficiency of identifying the related active region induced by
experimental tasks.

Figure 7 summarizes a generalized analysis framework of EEG-informed fNIRS analy-
sis. The selection of time-varying EEG features plays a crucial role in the construction of
a fNIRS GLM analysis design matrix. Among all EEG-informed fNIRS analysis studies,
amplitude information derived from EEG signals has been used as effective regressors of
interest for improving the estimation of the active fNIRS response associated with different
stimuli [56,57]. Li et al. collected concurrent EEG and fNIRS data from healthy participants
during a repeated motor execution task and extracted the peak value and latency of the
EEG signal within each trial to construct a series of frequency-specific design matrices [57].
Their results showed that amplitudes of frequency-specific EEG components, especially the
alpha and beta band, could better capture the time-varying neural activity at single trial
level and thus enhance the performance of fNIRS GLM analysis when compared with the
classic boxcar function-based fNIRS method [57]. The potential value of EEG-informed
fNIRS analysis in clinical applications was also explored, in particularly on the topic of
epileptic activity, given the suitability of this technique for the localization of brain sites
associated with epileptic discharges. A series of representative studies was performed
by Pouliot and his colleagues, where the onsets and amplitudes of epileptic spikes were
identified by EEG temporal traces and convolved with the HRF for fNIRS GLM estima-
tion [51,52,54,60]. These studies demonstrated that an EEG-informed fNIRS approach
revealed higher sensitivity and specificity than the classic GLM method in the detection of
epileptic events such as seizures or interictal epileptiform discharges (IEDs). Their work
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provides evidence that EEG-informed fNIRS analysis could be a sensitive technique for
monitoring epileptic activity.
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Figure 7. The conventional schematic of EEG-informed fNIRS GLM analysis framework.

In addition to the amplitude-specific information, frequency-related features were de-
rived from EEG signals and used as regressors of interest for fNIRS GLM analysis. Talukdar
et al. used gamma transfer functions to map EEG spectral envelopes that reflect time-
varying power variations in neural rhythms to hemodynamics measured during median
nerve stimulation [53]. The approach was evaluated through simulated EEG–fNIRS data
and experimental EEG–NIRS data measured from three human subjects. Results indicated
that fNIRS hemodynamics can be predicted by EEG spectral envelopes convoluted with
multiple sets of gamma transfer functions, providing a new perspective for the modeling
of neurovascular coupling.

3.3. FNIRS-Informed EEG Analyses

Studies using fNIRS to enhance the processing of EEG signals typically rely on the
relatively robust spatial information of fNIRS compared to EEG. Within this context, fNIRS-
informed EEG analyses, as summarized in Table 2, include two main levels of applications:
fNIRS-informed EEG source localization and fNIRS-informed EEG channel selection. The
former applies task-evoked information of fNIRS to enhance the mathematical estimation
of active EEG source activity related to specific tasks [27], while the latter used fNIRS as
a reliable reference for choosing the most representative task-related EEG channels for
analysis [61].

3.3.1. FNIRS-Informed EEG Source Imaging Analysis

Due to its high temporal resolution and portability, EEG is by far the most widely
used neuroimaging technique to measure rapid neuronal electrical activity. However,
one limitation of scalp EEG is the volume conduction problem; a single electrode on
the scalp picks up activity from multitude sources (cortical activity, subcortical activity,
external noise, etc.), which results in difficulty accurately localizing the source activity [62].
Therefore, EEG source imaging (ESI) has been developed to overcome the limitation of scalp
EEG in characterizing the spatial brain activity. Typically, ESI relies on the surface EEG



Sensors 2022, 22, 5865 11 of 22

signals and the anatomical structure and physiological properties of the brain to estimate
sources within the brain. This allows for more accurate localization of the cortical regions
contributing to EEG signals measured at the scalp. A common challenge for ESI is the
ill-posed “inverse problem”; the number of sources that give rise to EEG signals vastly
outnumbers the available measurements, making it impossible to localize the measured
scalp EEG activity to the actual current-generating source within the brain with absolute
certainty [63]. Given the good spatial resolution of fNIRS, the majority of fNIRS-informed
EEG studies have focused on using fNIRS-based spatial priors to enhance the estimation of
EEG source activity.

In summary of these studies, a traditional pipeline of fNIRS-informed EEG source
imaging is shown in Figure 8. Briefly, this pipeline begins with the forward model of the
ESI (Figure 8A):

Y = GJ + ε, (3)

where Y ∈ Rm×d is the scalp EEG signal consisting of m channels and d measurement
samples, J ∈ Rs×d is the unknown source activity of s dipole sources in the source space,
G ∈ Rm×s is the lead field matrix which describes the relationship between the source
activity and the EEG electrodes, and ε represents the noise component in the sensor space.
Using the EEG signals measured at the scalp, we can attempt to invert the forward model to
determine which parts of the brain are active from their associated scalp potentials, which
is the so-called inverse problem. A common solution of the inverse problem using classical
minimum-norm estimate (MNE) is given as:

Ĵ = RGT
(

GRGT + λC
)−1

Y, (4)

where Ĵ is the estimated source activity, R is the source covariance matrix representing
the prior knowledge about the distribution of source J, C is the noise covariance matrices,
and λ is the regularization parameters representing the trade-off between model accuracy
and complexity, which is traditionally determined using the L-curve method [64]. The
source covariance matrix R and noise covariance matrix C are usually set to identity
matrices when no prior information about the source space is available. With this in mind,
spatial prior information provided by fNIRS, usually represented by t values of significant
channels after GLM analysis, can be applied directly on the source covariance matrix R,
changing the weight of each source according to whether or not it is within an fNIRS-active
region. This results in improvement of EEG source activity estimation (Figure 8B). Note
that the inverse problem can be solved by multiple approaches, such as MNE, weighted
MNE, or probabilistic Bayesian methods, resulting in different forms of source covariance
matrix R [65,66].

The analysis pipeline shown in Figure 8B has been adapted in all existing fNIRS-
informed EEG analysis studies to investigate brain dynamics associated with typical brain
function as well as brain disorders. The first fNIRS-informed ESI study was carried out
by Aihara et al., in which the authors incorporated the fNIRS-based prior information in
the current source estimation using a Variational Bayesian Multimodal EncephaloGraphy
(VBMEG) method [67]. Using a simulation study and a finger tapping motor task, this study
demonstrated that fNIRS-informed ESI can achieve results similar to fMRI-information ESI.
Following a similar idea, Morioka et al. applied fNIRS-informed ESI to decode subjects’
mental states in a spatial attention task and found that the fNIRS–EEG framework exhibited
significant performance improvement over decoding methods based on EEG sensor signals
alone [68]. Recently, Li et al. employed the fNIRS-informed ESI technique to explore
the atypical brain dynamics associated with Alzheimer’s disease and stroke, from which
brain network alterations induced by these brain disorders were characterized in a high
spatiotemporal manner [27,69].
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3.3.2. FNIRS-Informed EEG Channel Selection for BCI Studies

FNIRS-informed EEG source imaging represents the deep fusion of fNIRS and EEG
signals. In addition, one study published by Li et al. demonstrated that fNIRS-based
spatial prior information can also be used to optimize processing of scalp EEG signal in BCI
studies [61]. Briefly, a desirable BCI system should be portable, minimally invasive, and
feature high classification accuracy and efficiency. However, the main challenge of hybrid
EEG–fNIRS BCI systems is how to reduce the complexity of the system while achieving a
satisfactory performance. To tackle this challenge, Li et al. proposed a fNIRS-based channel
selection method to greatly reduce the number of fNIRS and EEG channels needed for
BCI systems. In this fNIRS-based channel selection method, two fNIRS channels with
strongest task-evoked response, as assessed by GLM analysis, were determined. Then only
two EEG channels that were close to the selected fNIRS channels were selected for the
performance assessment of the hybrid fNIRS–EEG BCI system. Results demonstrated that
this approach could drastically minimized the burden (e.g., weight of cables, preparation
time) on the user while achieving a good performance compared to BCI systems including
large numbers of channels [61].

Overall, although limited studies focused on this topic were available or review, fNIRS-
informed EEG source imaging analysis has potential for achieving a deep fusion of these
two portable techniques. This multimodal approach holds promise for improving our
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understanding of the spatiotemporal dynamics of typical and atypical brain functions in
various scenarios including naturalistic interaction and clinical settings.

Table 2. Characteristics of studies performed fNIRS-informed EEG analysis.

Authors Tasks Brain Regions Features Analysis Methods

Aihara et al.,
2012 [67]

Motor (Simulation;
Experiment)

fNIRS: Motor
EEG: Whole

fNIRS: HbO peak
EEG: Source current amplitude

EEG source
imaging

Morioka et al.,
2014 [68] Mental fNIRS: Parietal, occipital

EEG: Whole
fNIRS: HbO t-statistic
EEG: Source current amplitude

EEG source
imaging

Li et al.,
2017 [61] Motor fNIRS: Motor

EEG: Whole

fNIRS: HBO/HbR concentrations
and slope
EEG: Wavelet transform coefficients

Binary classification

Li et al.,
2019 [27] Working memory fNIRS: Frontal, central

EEG: Whole
fNIRS: HbO t-statistic
EEG: Functional connectivity

EEG source
imaging, Brain
network analysis

Li et al.,
2020 [69] Motor fNIRS: Frontal, parietal

EEG: Whole
fNIRS: HbO t-statistic
EEG: Functional connectivity

EEG source
imaging,
Brain network
analysis

3.4. Parallel Analysis of EEG-fNIRS

Sections 3.3 and 3.4 describe directional integration analyses of EEG and fNIRS. How-
ever, the majority of concurrent EEG-fNIRS studies available for review focused on parallel
analysis/integration of the two complementary techniques (Figure 4). Such parallel analy-
ses of concurrent fNIRS and EEG data usually seek to investigate the interaction between
fNIRS and EEG signals through feature-based fusion analyses or correlational analyses
without any directional interference from the two modalities.

3.4.1. Feature Fusion Based on fNIRS–EEG Signals for Classification

Hybrid fNIRS-EEG classification-based studies account for a significant portion of
feature-based fusion analyses of concurrent fNIRS-EEG data. We roughly summarize these
studies into two categories based on their study aims: (1) brain–computer interface (BCI)
studies and, (2) characterization of typical and atypical brain functions.

The development of a BCI system allows users to control computers or external devices
based directly on the modulation of brain activity. Active investigations of the benefits
of hybrid EEG-fNIRS BCIs have been conducted and validated on healthy populations
in a number of BCI studies [28,29,61,70]. Specifically, by fusing the features derived from
two modalities, hybrid fNIRS-EEG studies have shown enhanced classification and decoding
accuracy over a single modality in various tasks, such as motor imagery and execution [61,71].

On the other hand, the complementary properties of fNIRS and EEG have led to
extensive investigations of the spatiotemporal hemodynamic and electrical patterns of
brain activity associated with a variety of functions, such as mental workload [72–75],
affective state [76], and intellectual function [77]. Similar analysis pipelines have also been
adopted to identified atypical brain patterns associated with different brain disorders,
from which multimodal features can be used to differentiate patients with Alzheimer’s
Disease [78] and Parkinson’s Disease [79] from healthy controls.

Despite the different aims of studies within the above two categories, most studies
tend to follow similar steps when processing concurrent fNIRS and EEG data, primarily
consisting of feature extraction, feature fusion, and classification. Among the reviewed lit-
erature, widely used fNIRS features are commonly derived from the concentration changes
of HbO and HbR, including the mean, slope, skewness, kurtosis, peak value, variance,
and median of HbO/HbR [61,80–82]. Typical EEG features used in concurrent fNIRS-EEG
analyses largely depend on the experimental tasks. In the case of a motor task, the power
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spectrum density and common spatial patterns are widely used [29,83–86], mainly due to
the event-related desynchronization/event-related synchronization (ERD/ERS) observed
in motor-evoked electrical potential [87]. Studies involving cognitive tasks usually adopt
features related to band power of signals [72,82,88–91]. Additionally, the logarithmic
band power features [84], time-frequency features [61,71], and amplitude-related proper-
ties [92–94] are often utilized in several studies involving motor and mental tasks. Defini-
tions and calculations of these features are summarized and shown in Table 3. In terms of
classification, most existing studies adopt traditional machine learning techniques such as
decision tree [93,94], linear discriminant analysis (LDA) [28,29,81,82,86,89–91,95,96], sup-
port vector machine (SVM) [61,70,72,85], and k-nearest neighbors (KNN) [92–94]. Recent
studies have demonstrated increasing interest in innovative deep learning techniques such
as the convolutional neural network (CNN) [97] and recurrent neural networks (RNN) [98].
We refer the readers to [99,100] for a more detailed introduction of the state-of-the-art
classification techniques.

Table 3. Definition and calculation of EEG and fNIRS features.

Features Definitions

Mean (µ) µ = 1
N

t2

∑
t=t1

x(t)

Slope (Sp) Sp =
x(t2)−x(t1)

t2−t1

Standard deviation (Sd) Sd =

√
∑(x(t)−µ)2

N

Skewness (Skew) Skew = 1
N

∑
t2
t=t1

(x(t)−µ)3

Sd3

Kurtosis (Kurt) Kurt = 1
N

∑
t2
t=t1

(x(t)−µ)4

Sd4

Median (Med) Med =

{
x
( n

2
)

if n is even
x( n−1

2 )+x( n+1
2 )

2 if n is odd

Power spectral density (PSD) PSDt
f =

1
N

N
∑

t=1

∣∣∣ x(t)e−2π f t
∣∣∣2

Logarithmic band power (PLB) PLB f = log
(

PSD f

)
Common spatial pattern (CSP) Xi = [CiCM]

[
Si

SM

]
, (i = 1, 2)

Phase locking value (PLV) PLV =

∣∣∣∣N−1
N
∑

t=1
ei(∅x(t)−∅y(t)

∣∣∣∣
Pearson correlation coefficient (r) r = ∑(x(t)−x) (y(t)−y)√

∑(x(t)−x)2 ∑(y(t)−y)2

x(t) is the input brain signals (i.e., EEG and fNIRS). N is the number of observations of the samples. ∅x(t) and ∅y(t)
are instantaneous phase values at time point t. f refers to the f -th frequency band. Xi represent the measured
signals of i-th tasks. Si is the source signal related to the i-th task. SM is the common source signal of both signals.
Ci and CM are the weight matrix of common spatial pattern. x(t) and y(t) present the signals from different channel.
x and y refer to the mean value of the signals of x(t) and y(t), respectively.

3.4.2. Correlational Analysis of Concurrent fNIRS–EEG Data

The well-established phenomenon of neurovascular coupling (NVC) supports the
premise that regional neural activity is accompanied by electrical activity generation and
concurrent metabolic variation. Therefore, correlational analyses between concurrent
fNIRS–EEG recordings have been extensively explored to investigate the spatiotempo-
ral association between hemodynamic and electrical patterns of various brain functions.
Among the eighteen articles reviewed here (Table 4), correlational analyses of concurrent
fNIRS–EEG have mainly focused on correlation and coherence analyses. Pearson corre-
lation, partial correlation, and simple linear regression are commonly used measures for
assessing the relationship between the event-related potential pattern in EEG and hemo-
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dynamic changes in fNIRS [101–110]. Several studies assessed the relationship between
EEG and fNIRS signal through cross-correlation analysis and canonical correlation analysis
(CCA) [111–114]. Compared to the Pearson correlation method, cross-correlation can cap-
ture the delayed response of the hemodynamic compensation phenomenon after neural
firing, while the CCA is a statistical method to identify a linear relationship between the
two modality data sets by determining the inter-subject co-variances. Frequency and phase
coupling were adopted in two studies to evaluate the interaction between electrical acti-
vation and hemodynamic response, in which spectral coherence and wavelet coherence
were employed as metrics to assess the neurovascular coupling [115,116]. GLM-based
analysis was also utilized to model the association of fNIRS and EEG in a recent study.
Chaiarelli et al. proposed a novel general linear model-based algorithm to estimate the
interaction of fNIRS and EEG signal in persons with Alzheimer’s disease [117]. In the GLM,
key components of the down-sampled EEG power spectrum (theta, alpha, and beta) were
used as the independent variables. The fNIRS signal was treated as the dependent variable.
Then the estimated β-weight was used to assess how well the frequency-specific neuronal
electric activity correlated with the corresponding hemodynamic response. Similarly, Per-
petuini et al. employed an entropy based GLM method to assess neurovascular coupling
alternation for an Alzheimer’s disease group relative to a healthy control group [118]. Due
to the significant variation in the temporal scale of two signals, the EEG signal was first
convolved with the canonical hemodynamic response and then downsampled. Compared
with single EEG/fNIRS-based features, neurovascular coupling-based features achieved
the highest classification accuracy for AD detection.

Table 4. Studies using parallel EEG–fNIRS analysis for neurovascular coupling investigation.

Authors Task Brain Regions Features Correlation Method

Chen et al., 2015
[101] Visual and auditory fNIRS: Temporal, occipital

EEG: Whole
fNIRS: HbO/HbR concentrations

EEG: ERP Pearson correlation

Chen et al., 2020
[102] Resting Whole fNIRS: HbO/HbR global amplitude

EEG: Power Spectrum Partial correlation

Balconi et al., 2016
[103] Visual and auditory fNIRS: Frontal

EEG: Whole
fNIRS: HbO concentrations

EEG: ERP Pearson correlation

Zich et al., 2017
[104] Motor execution Central fNIRS: HbO/HbR concentrations

EEG: ERD Pearson correlation

Borgheai et al., 2019
[105] Mental arithmetic fNIRS: Frontal

EEG: Whole
fNIRS: HbO/HbR concentrations
EEG: Power spectrum and ERP Pearson correlation

Gentile et al., 2020
[106] Finger tapping fNIRS: Motor

EEG: Whole
fNIRS: HbO/HbR concentrations

EEG: ERP Linear regression

Zhang et al., 2020
[107] Resting Whole

fNIRS: dynamic functional
connectivity

EEG: Microstate (amplitude)
Pearson correlation

Lin et al., 2020
[108] Mental Occipital and parietal fNIRS: HbO concentration

EEG: Power spectrum and ERD Pearson correlation

Kaga et al., 2020
[109] Working memory fNIRS: Frontal

EEG: Pz, Cz, Pz,
fNIRS: HbO concentration

EEG: ERP Pearson correlation

Suzuki et al., 2018
[110] Working memory fNIRS: Frontal

EEG: Fz, O1, O2,
fNIRS: HbO concentration

EEG: Power spectrum Pearson correlation

Keles et al., 2016
[111] Resting Whole fNIRS: HbO/HbR concentrations

EEG: Power spectrum Cross-correlation

Pinti et al., 2021
[112] Visual stimulation Occipital fNIRS: HbO/HbR concentrations

EEG: Power spectrum Cross-correlation

Nair et al., 2021
[113] Anesthesia Frontal fNIRS: HbO/HbR amplitude

EEG: Amplitude
Cross-correlation and

phase difference
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Table 4. Cont.

Authors Task Brain Regions Features Correlation Method

Al-Shargie et al., 2017
[114] Mental arithmetic Frontal fNIRS: HbO concentration

EEG: Average power (amplitude)
Canonical correlation

analysis

Govindan et al., 2016
[115] Resting Frontotemporal

fNIRS: difference between HbO and
HbR

EEG: Amplitude

Coherence and Phase
Spectra

Chalak et al., 2017
[116] Resting Parietal

fNIRS: Cerebral tissue oxygen
saturation

EEG: Amplitude
Wavelet coherence

Chiarelli et al., 2021
[117] Resting Whole fNIRS: HbO/HbR concentrations

EEG: Power envelops
GLM-Standardized

β-weight

Prepetuini et al., 2020
[118] Working memory fNIRS: Frontal

EEG: Whole
fNIRS: HbO/HbR sample entropy

EEG: Sample entropy
GLM-Standardized

β-weight

4. Integrated Analysis of Concurrent fNIRS-EEG: Current Limitations and Future
Directions

Both fNIRS and EEG are portable, non-invasive and cost-effective brain imaging tech-
niques that enable researchers to study brain function in conditions not suited for other
neuroimaging modalities such as fMRI and MEG. Accordingly, acquisition and analysis of
concurrent, integrated fNIRS–EEG data can potentially reveal more comprehensive infor-
mation associated with brain activity. The present review highlights what data processing
and analysis approaches can be adopted to study brain functioning in healthy cohorts as
well as those with brain disorders, thus serving as a foundation for future work. However,
it should be acknowledged that further development of integrated analyses of the two
modalities is required to fully benefit from the added value of each modality.

Neurovascular coupling in the brain is highly dynamic in nature, for both resting state
and task-engaging states. While various fusion approaches of fNIRS and EEG signals allow
for the imaging and investigation of brain activity with richer information, the majority of
such integrated analyses still rely on a summary of signals extracted from fNIRS and EEG
time series data. Neural activity is time-varying, thus requiring a more dynamic analytic
approach to improve accuracy in modeling actual brain function. Therefore, it is important
to explore the dynamic interaction of fNIRS and EEG signals with a more fine-grained
temporal resolution. This is a challenge for fNIRS signals, which usually suffer reduced
temporal resolution relative to EEG. Recently, effort has been made to tackle this challenge
by growing interest in the temporal fluctuations of fNIRS-based functional connectivity
across the brain, the so-called dynamic functional connectivity (dFC). Several studies have
shown that resting-state and task-evoked hemodynamic responses can be characterized
using dFC analysis to reflect a more dynamic and modular nature of neurovascular coupling
during normal cognitive processing and atypical brain activity associated with Alzheimer’s
disease [119,120]. It is expected that fusion of the dynamic properties of fNIRS and EEG
may open new lines of concurrent fNIRS–EEG analyses.

Despite the numerous approaches for integrated analysis of concurrent fNIRS–EEG,
most studies have utilized feature-based fusion of these two modalities, such as hybrid BCI
systems or correlation analyses between fNIRS-based (e.g., mean HbO) and EEG-based
features (e.g., power spectrum). Such analyses only allow for a rough characterization
of neurovascular coupling underlying brain activity. Questions remain as to how the
findings obtained from the integrated analyses of fNIRS–EEG reflects the interaction be-
tween neuronal electric activity and the resulting hemodynamic response. Therefore, it is
expected that more directionally integrated analyses of fNIRS and EEG data, such as the
fNIRS-informed EEG analyses or the EEG-informed fNIRS analyses, can be explored in
future work.

Combining fNIRS and EEG serves to bridge brain imaging techniques across labora-
tory settings to practical applications due to their high mobility, non-invasiveness, and low
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cost compared to MRI-based techniques. However, few studies, especially those focusing
on hybrid fNIRS–EEG BCI systems, have validated the feasibility of using such multimodal
approaches to address the needs of multiple practical scenarios, such as hybrid real-time
BCI systems, bedside monitoring, or neuromodulation based on the so-called brain control-
lability analysis, to treat different neurological and psychiatric diseases [121–123]. Therefore,
a prioritized goal of future research may focus on enhancing the ecological validity of ex-
perimental designs and analysis pipelines/algorithms that can be adopted in online or low
time-delayed settings. In fact, as motivated by real-time BCI applications, progress has
been made to increase the temporal response of fNIRS–BCI systems through single-trial
analysis [124], early signal detection [61], and adaptive filtering [125]. We anticipate future
solutions for real-time fNIRS signal processing may facilitate the development of real-time
hybrid BCI systems that enable human–computer interaction with high spatial and tempo-
ral performance. Another typical experimental protocol of fNIRS is hyperscanning, where
brain activities are recorded from two or more participants simultaneously, permitting
a direct investigation of how multi-brains communicate to each other during social in-
teraction [120,126]. Following this, we expect that the development of wearable fNIRS
and EEG devices will likely drive the typical fNIRS-based hyperscanning studies toward
multimodal fNIRS–EEG system-based hyperscanning research. This innovation will enable
us to examine human interaction in a high spatiotemporal resolution perspective, thereby
expanding our understanding of the neural mechanism underlying social interaction.

Apart from the perspective on methodological integration of fNIRS and EEG, we want
to highlight challenges in instrument development that might affect study design and
signal processing of concurrent fNIRS–EEG studies. In particular, conventional concurrent
fNIRS–EEG studies usually connect separate fNIRS and EEG systems for data recording,
which reduces the mobility of both systems and constrains the applications of concurrent
fNIRS and EEG. Recent advances have been made toward fiberless and wearable integrated
fNIRS–EEG systems that allows for broader research scenarios such as social interaction
and outdoor activity [127,128]. However, further improvement of fNIRS and EEG instru-
ments is necessary when applying these systems in clinical cohorts with psychological or
psychiatric disorders. For example, patients with psychiatric disorders, such as ASD and
ADHD, often display motor restlessness, anxiety, or hyperarousal symptoms that require
specific considerations during development of integrated fNIRS–EEG instrumentation.
Key factors to be considered may include (1) user-friendly materials for comfort contact
between electrodes/optodes, (2) lightweight/highly integrated design for enhanced mea-
surement experience, and (3) advanced signal processing algorithms for robust long-time
real-world study. In addition, simultaneous multimodal data recording, including brain,
physiological, and behavioral information, is important to the comprehensive understand-
ing of disease-linked/function-specific brain activity. Physiological or auxiliary signals
(e.g., blood pressure, respiration, and head movement) have been proven to greatly im-
prove the filtering of physiological interference and motion artifacts during fNIRS signal
processing [129–131]. In this context, one impactful direction of fNIRS–EEG instrument
development should focus on the development of multimodal systems that are deeply inte-
grated with these and other emerging modalities, such as eye tracking devices, physiology
modules (e.g., heart rate, skin conductivity), and accelerometers as well as VR devices.
From a clinical perspective, such multimodal systems could offer multi-dimensional brain–
physiology–behavior biomarkers specifically linked to brain disorders at individual level.
Together with powerful statistical/machine learning, we expect that future studies in the
field will propose advanced algorithms to fuse such multimodal information for accurate
monitoring of brain activity and facilitating personalized treatment protocols to obtain
enhanced efficiency for each individual patient.
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