
Citation: Song, J.; Li, J.; Wei, X.; Hu,

C.; Zhang, Z.; Zhao, L.; Jiao, Y.

Improved Multiple-Model Adaptive

Estimation Method for Integrated

Navigation with Time-Varying Noise.

Sensors 2022, 22, 5976. https://

doi.org/10.3390/s22165976

Received: 22 June 2022

Accepted: 8 August 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improved Multiple-Model Adaptive Estimation Method for
Integrated Navigation with Time-Varying Noise
Jinhao Song 1, Jie Li 1,*, Xiaokai Wei 1, Chenjun Hu 1, Zeyu Zhang 2, Lening Zhao 1 and Yubing Jiao 1

1 National Key Laboratory for Electronic Measurement Technology, North University of China,
Taiyuan 030051, China

2 Aerospace System Engineering Shanghai, Shanghai 201108, China
* Correspondence: lijie@nuc.edu.cn; Tel.: +86-0351-355-8098

Abstract: The accurate noise parameter is essential for the Kalman filter to obtain optimal estimates.
However, problems such as variations in the noise environment and measurement anomalies can
cause degradation of estimation accuracy or even divergence. The adaptive Kalman filter can
simultaneously estimate state and noise parameters, while its performance will also be degraded in
complex noise. To address the problem of estimation accuracy degradation and result divergence
of the integrated navigation system in a complex time-varying noise environment, an improved
multiple-model adaptive estimation (MMAE) that combines the Sage–Husa adaptive unscented
Kalman filter with the MMAE is proposed in this paper. The forgetting factor is included as an
unknown parameter of MMAE so that the algorithm can adjust the value of the forgetting factor
according to different system states. In addition, we improve the hypothesis testing algorithm of
classical MMAE to deal with the competition problem of undesirable models that severely impacts
the performance of variable-parameter MMAE and enhance the algorithm’s parameter identification
capability. Simulation results show that this method enhances the system’s robustness to noises of
different statistical properties and improves the estimation accuracy of the filter in time-varying
noise environments.

Keywords: multiple-model adaptive estimation; Sage–Husa; adaptive Kalman filter

1. Introduction

The strapdown inertial navigation system (SINS) is a navigation method in which the
inertial sensors (gyroscope and accelerometer) are fixed directly to the body. In contrast to
platform inertial navigation, which requires a complex mechanical and physical platform
structure, the SINS adopts an algorithmic platform to solve for attitude, velocity, and posi-
tion information of the body, which has the advantages of small size, light weight, strong
overload resistance, simple hardware structure, and comprehensive output information,
and is widely used for attitude measurement and navigation in missiles, vehicles, and
aerospace [1–3].

Nevertheless, inertial navigation systems have the issue of high short-term accuracy
and severe long-term drift in practice. It is hard to rely on their information for correction,
which dramatically affects the accuracy of inertial navigation [4]. Therefore, other naviga-
tion systems such as odometers, magnetometers, and global positioning systems (GPSs)
are often used to compensate for inertial navigation systems [5].

Moreover, information from different sources often contains some uncertain noise.
These noises cannot usually be accurately measured and simply removed, whereas the
characteristic statistical parameters can be reckoned from the physical model characteristics
of the system. Therefore, algorithms that can obtain helpful information in dynamic
systems with uncertain noisy information and perform optimal state estimation based on
the prediction of the next moment are incredibly critical [6].
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The Kalman filter (KF) is an optimal state estimation algorithm proposed by Kalman
in the 1960s, which uses prior knowledge such as deterministic and statistical character-
istic parameters of the system and measurement information to obtain the optimal state
estimation [7]. The standard Kalman filter can only solve the estimation problem of linear
systems. For nonlinear systems, linear approximations can cause significant errors. To
solve this problem, many scholars have improved the standard Kalman filter.

The extended Kalman filter (EKF) is used for the state estimation of nonlinear systems.
It uses the Taylor series expansion method to linearize the nonlinear model to make it
conform to the Kalman filter model [8]. However, under strong nonlinearity, the above
defects have not been significantly corrected [9]. Furthermore, the EKF needs to compute
the Jacobian matrix; however, in some cases, the Jacobian matrix has no solution.

In 1995, Julier and Uhlmann proposed the unscented Kalman filter (UKF). The UKF,
also known as the sigma-point Kalman filter, transforms the n-dimensional state vector
and error covariance matrix to the 2n-dimensional parallel state vector by unscented
transformation to evaluate the nonlinear propagation of error covariance rather than by
linearization [10]. Therefore, the UKF can accurately obtain the second-order posterior
mean and covariance for any nonlinear system [11,12].

In theory, the Kalman filter requires an accurate system model and the exact statistical
properties of the noise parameters so that the optimal estimate can be obtained. Inaccurate
noise parameters can easily lead to divergence of filtering results. To solve this problem,
many scholars have performed careful research on the uncertainty of filter noise parameters.
Robust Kalman filtering is a method for dealing with estimation problems for uncertain
systems [13,14]. Savkin and Petersen proposed a robust state estimation by constructing an
ellipsoidal state estimation set of all states consistent with the measured output and the
given noise and uncertainty description to determine if the assumed model is consistent
with the measurements [14]. Xie and Soh proposed a Riccati equation approach to guar-
antee the covariance of all acceptable uncertainties is within a certain range [15]. Li et al.
presented an improved robust filter with a double state model on the basis of the chi-square
distribution of the square of the Mahalanobis distance to adjust the observation noise co-
variance matrix in INS/GPS integrated navigation, improving the navigation accuracy [16].
In engineering applications, in addition to robust estimation, a more common approach to
solving the problem of filter noise parameter uncertainty is adaptive Kalman filtering.

Innovation-based adaptive estimation (IAE) is based on measurement innovation
sequences to correct the noise parameter matrix, but the window size predominantly
affects the adaptability of the system; choosing the appropriate size of the window is a
crucial problem in practice [17,18]. Sun et al. proposed an improved adaptive UKF to
estimate the statistical properties of the measurement noise of the navigation system and
applied it to INS/BDS integrated navigation. The simulation results showed that the
positioning accuracy was improved compared with the EKF and the adaptive UKF [19].
Narasimhappa et al. proposed a modified Sage–Husa adaptive Kalman filter to incorporate
a time-varying noise estimator and robustifier. Experimental results show the performance
of the proposed method on a three-axis IMU to minimize the random noise and drift error
under static and dynamic conditions [20]. In recent years, with the development of artificial
intelligence, some scholars have applied AI algorithms such as neural networks and swarm
intelligence to adaptive parameter identification, where training the model with previous
data enables the algorithm to quickly estimate the current statistical properties of the noise.
However, these methods often require a long time to train the model, and the training
result is strongly influenced by the system state of the training process [21–23].

In 1964, Magill proposed multiple-model adaptive estimation (MMAE), which uses a
set of parallel filters to estimate systems containing unknown parameters [24]. The model
parameters of classical MMAE are fixed, and there is no interaction between models, which
may have performance degradation or excessive convergence due to inaccurate modeling
and competition of undesirable models [25,26]. Assa and Plataniotis proposed a new fusion
scheme for MMAE using similarity estimation instead of traditional Bayesian estimation as
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the hypothesis testing algorithm to solve the undesirable competition among models [27].
Jia and Xu et al. analyzed the mechanism of MMAE and proposed various methods to
improve MMAE, and the simulation showed that this indeed improved the performance of
MMAE [28]. Li et al. adopted the exponential decay terms penalty function to overcome the
excessive convergence problem of classical MMAE and apply it to the problem of unknown
Martian atmospheric density during Mars probe landing [29]. Interacting multiple-model
estimation (IMM) is developed based on MMAE, which introduces interactions between
models and modeling jump patterns as Markov chains to improve the computational
efficiency of the system [30,31]. Although IMM has improved performance over MMAE, it
does not essentially modify the fixed-parameter structure of the multi-model [32]. Variable
structure multiple-model (VSMM) is a new multi-model estimation that assumes a varying
set of models which adopt a two-layer hierarchical structure [26,33]. Model set adaptation
(MSA) identifies the optimal set of models at the current moment based on the system
state. The model state estimator is responsible for getting the optimal state estimate in
a given model. Where MSA is the critical component of VSMM, how to enhance the
intelligence, flexibility, and real-time performance of the VSMM algorithm is the leading
research content at present [34,35].

In this paper, we focus on estimation accuracy degradation and result divergence
due to improper noise parameters; aiming to improve the robustness of the filter in a
complex time-varying noise environment, an improved MMAE with variable parameters
model was proposed. The method combines Sage–Husa with MMAE, which greatly
reduces the dependence of the multiple-model algorithm on the initial value selection of
model parameters. In addition, we found in our simulations that the optimal value of the
forgetting factor is not the same for different system states. Although the difference in
accuracy among them is not significant, if we can adjust the forgetting factor adaptively at
each moment of the algorithm operation, it will significantly improve the overall accuracy.
Therefore, we incorporated the forgetting factor into the unknown parameters of the multi-
model structure. In addition, the undesirable competition problem of classical MMAE can
have a more severe impact on the variable-parameter model, as we detailedly analyze in
Section 3.2. We improve the hypothesis testing algorithm of MMAE to reduce the influence
of undesirable models on state estimation, and the algorithm’s parameter identification
capability is enhanced. The experiments show that the performance of the proposed
method is superior to other algorithms in time-varying noise environments, reflecting the
effectiveness and superiority of the method.

The rest of this paper is structured as follows. Section 2 presents the formula derivation
of the standard UKF and introduces the algorithm of classical MMAE. Section 3 presents
the problems of classical MMAE and the details of the proposed method in this paper.
Section 4 introduces the design of the simulation experiment, and simulation results are
discussed in detail. In Section 5, the conclusions and suggestions regarding future research
are presented.

2. Mathematical Preliminaries
2.1. Unscented Kalman Filter

In order to better deal with nonlinear systems, the UKF was introduced in this paper
for state estimation. The UKF uses the unscented transformation to generate sigma points.
The mean and variance of the sigma points are the estimated value of the state vector
and the error covariance matrix, respectively, which utilizes an estimation method rather
than an approximate linearized approximation and therefore has higher accuracy. The
mathematical formulation of the UKF is depicted below.

The process and measurement model of nonlinear discrete-time system can be de-
scribed as follows: {

Xk = f (Xk−1) + Γk/k−1Wk−1
Zk = h(Xk) + Vk

(1)
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where Xk is the n-dimensional state vector, Zk is the m-dimensional measurement vector,
f (·) represents the nonlinear state transition function, h(·) represents the nonlinear mea-
surement function, and Γk/k−1 is the system noise distribution matrix. Wk−1 is the system
noise vector, and Vk is the measurement noise vector; these are both uncorrelated zero-mean
Gaussian white noises. The expectation values of system noise and measurement noise can
be expressed as:

E[Wk] = 0

E[Vk] = 0

E
[
WkWT

j

]
= Qkδkj

E
[
VkVT

j

]
= Rkδkj

E
[
WkVT

j

]
= 0

(2)

where Qk is system noise covariance, Rk is measure noise covariance, and δkj is defined
as follows:

δkj =

{
1, if k = j
0, otherwise

(3)

The standard UKF algorithm can be described as follows:
Step 1: Initialization {

X̂0 = E [X0]

P0 = E [
(
X0 − X̂0

)(
X0 − X̂0

)T
]

(4)

where P is the estimation error covariance.
Step 2: Sigma-point calculation

ξ0 = X
ξi = X + (

√
(n + κ)Px)i, i = 1, 2, . . . , n

ξi+n = X− (
√
(n + κ)Px)i

(5)

Wm
i =

{
λ/(n + λ), i = 0
1/2(n + λ), i 6= 0

(6)

Wc
i =

{
λ/(n + λ) + 1 + β− a2, i = 0
1/2(n + λ), i 6= 0

(7)

λ = a2(n + κ)− n (8)

where Wm
i and Wc

i are weights, n is the state dimension, κ and a are tuning parameters,
and λ is the composite parameter.

Step 3: State prediction
Following the sigma sampling strategy in Step 2, sigma points ξi are computed from

Xk−1 and Pk−1, and γi
k/k−1 is obtained by propagating the nonlinear state function f (·),

evaluating the one-step state estimation X̂k/k−1 and the error covariance matrix Pk/k−1.

γi
k/k−1 = f

(
ξ i

k−1

)
, i = 0, 1, . . . , 2n (9)


X̂k = X̂k/k−1 + Kk

(
Zk − Ẑk/k−1

)
Kk = PXZP−1

ZZ
Pk = Pk/k−1 − KkPZZKT

k

(10)

Pk/k−1 =
2n

∑
i=0

Wc
i

(
γi

k/k−1 − X̂k/k−1

)(
γi

k/k−1 − X̂k/k−1

)T
+ Qk−1 (11)
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Step 4: Measurement update
Similarly, the sigma point is calculated using X̂k/k−1 and Pk/k−1 according to Step 2,

and using the nonlinear measurement function h(·) to calculate the χi
k/k−1, the measure-

ment predictions Ẑk/k−1, autocovariance matrix PZZ, and cross-covariance matrix PXZ are
further derived.

χi
k/k−1 = h

(
ξ i

k/k−1

)
, i = 0, 1, . . . , 2n (12)

Ẑk/k−1 =
2n

∑
i=0

Wm
i χi

k/k−1 =
2n

∑
i=0

Wm
i h
(

ξ i
k/k−1

)
(13)

PZZ =
2n

∑
i=0

Wc
i

(
χi

k/k−1 − Ẑk/k−1

)(
χi

k/k−1 − Ẑk/k−1

)T
+ Rk−1 (14)

PXZ =
2n

∑
i=0

Wc
i

(
ξ i

k−1 − X̂k/k−1

)(
χi

k/k−1 − Ẑk/k−1

)T
(15)

Step 5: Filtering update
X̂k = X̂k/k−1 + Kk

(
Zk − Ẑk/k−1

)
Kk = PXZP−1

ZZ
Pk = Pk/k−1 − KkPZZKT

k

(16)

where Kk is the filter gain matrix.

2.2. Classical MMAE

MMAE uses a set of parallel filters to estimate independently, and each model corre-
sponds to different unknown parameters. The model’s probability is calculated according
to the hypothesis test algorithm, and the final state output is obtained by weighted summa-
tion of each model state estimation. MMAE enhances the system’s adaptability to noise
by increasing the number of models with different unknown parameters. This approach
increases the computational effort; however it is stable and generally does not suffer from
divergent estimation results.

The classical MMAE is given as follows.

pk,i = βe[−
1
2 δZ̃T

k,iS
−1
k,i δZ̃k,i ] (17)

where Sk,i = Hk,iPk/k−1,i HT
k,i + Rk,i, β = 1√

(2π)m|Sk,i|
, m is the dimension of vector, pk,i

represents the probability of the ith model, Z̃k,i is the measurement innovation, i represents
the ith model, and k is the simulation step.

The weight of each model can be formulated as follow:

Wk,i =
Wk−1,i · pk,i

n
∑

i=1
Wk−1,i · pk,i

(18)

The final state estimation is obtained by weighted summation of each model:

X̂MMAE|k =
n

∑
i=1

X̂k,iWk,i (19)

3. Proposed Method

In general, MMAE assigns a suitable posterior conditional probability for each model
to ensure that the final estimation converges to a proper range. From the perspective of
probability theory, it belongs to an optimal estimate. However, after a lot of simulation
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verification, we find that the classical MMAE has the following two inherent problems
in practice.

1. The classical multi-model algorithm suffers from the issue of undesirable competition
of unnecessary models [26]. Specifically, model probabilities are assigned based on
innovation; however, models with large innovations are likewise assigned a certain
probability. In addition, during weight updating, the model weights of the previous
moment need to be considered besides the probability that each model is assigned
at the current moment. With the combined effect of these two factors, some poor
models are sometimes assigned certain weights, and undesirable competition emerges.
Especially in time-varying noise environments, when the noise environment changes,
the trend is difficult to reverse even though the converged model is no longer the
optimal current model [27,36].

2. The selection of model parameters is usually in a bounded range based on analysis
of system characteristics and the significance of parameters, where fixed parameters
are selected to constitute the model [37]. In theory, the actual model must be in this
range. However, the noise characteristics of measurement anomalies and composite
application scenarios are difficult to predict and accurately model. For example, the
harsh road conditions of vehicle navigation, the interference and obscuration of GPS
signals, the vibration difference of coal cutters under various working conditions, and
noise characteristics also change, and such variations are often complex and cannot
be accurately predicted and modeled. On the one hand, too few models may fail to
cover the actual model, making the MMAE algorithm lose its advantage. On the other
hand, too many models will lead to a manifold increase in computational effort and
undesirable competition of unnecessary models [26]. Therefore, for MMAE with fixed
parameters, selecting an appropriate model set is particularly crucial but not easy
to achieve.

Therefore, in order to solve the problem of estimation accuracy degradation caused
by improper noise parameter setting and limited coverage of the classical MMAE model,
aiming to enhance the adaptability of the system to time-varying noise and the ability to
deal with nonlinear systems, we proposed an improved structure of the MMAE, which
combined Sage–Husa with MMAE. Specifically, we replace the standard Kalman filter of the
classical MMAE with the Sage–Husa adaptive UKF. This variable-parameter multi-model
structure reduces the system’s dependence on the selection of initial noise parameters and
extends the coverage of the MMAE model.

3.1. Sage–Husa Adaptive UKF

The UKF has excellent advantages for dealing with nonlinear systems; however, the
model divergence problem of the UKF is also more severe when the noise parameters are
inaccurate [38]. To better respond to complex noise variations and exert the advantage
of the UKF. We adopt Sage–Husa adaptive UKF as the model instead of the standard
Kalman filter like the classical MMAE. The Sage–Husa adaptive filter can estimate the noise
parameters online according to the measurement innovation in real-time, avoiding the
problem of estimation accuracy degradation caused by the unreasonable noise parameter
matrix setting [38,39]. Referring to the mathematical derivation of the UKF given in the
previous part, the Sage–Husa adaptive UKF is shown as follows.

In the filter, measurement prediction error (measurement innovation) is:

δZ̃k/k−1 = Zk − Ẑk/k−1 ≈ Hk/k−1X̃k/k−1 + Vk (20)

where Hk/k−1 = δh
δX

∣∣∣
X̂k/k−1

.

The Sage–Husa covariance estimator is given as:

R̂k = (1− dk)R̂k−1 + dkρk
Q̂k = (1− dk)Q̂k−1 + dkσk

(21)
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ρk = δZ̃k/k−1δZ̃T
k/k−1 − HkPk/k−1HT

k
σk = KkδZ̃k/k−1δZ̃T

k/k−1KT
k + Pk −Φk/k−1Pk−1ΦT

k/k−1
(22)

where Hk =
δh
δX

∣∣∣
X̂k

, dk =
1−b

1−bk+1 , and d0 = 1, b is the forgetting factor.

In the standard KF, the gain calculation loop where the noise parameter matrix is
located is relatively independent of the state estimation loop. In contrast, the noise parame-
ter matrix in the Sage–Husa adaptive filter is influenced by the measurement value, thus
turning the system into a complex nonlinear system that is more severely affected by the
estimation anomalies. In addition, according to Equation (22), we find that measurement
innovation simultaneously acts on the parameter estimation process of Q and R, and both
Q and R have an effect on the state estimation of the filter. Therefore, if the Sage–Husa
adaptive filter is used to estimate Q and R simultaneously, it would be easy to diverge the
filtering results. Fortunately, in integrated navigation systems, the measurement noise is
more susceptible to the complex noise environment, while the variation of progress noise is
relatively small. Therefore, in this work, we use Sage–Husa to estimate the measurement
noise in real-time and incorporate the process noise as a fixed unknown parameter into
the multi-model structure. Doing so ensures the adaptability of the filter and enhances the
stability of the system.

3.2. Improved Hypothesis Testing Algorithm

Classical MMAE can be affected by undesirable models with undesirable competition
due to the inherent characteristics of the multiple-model algorithm. For applications
where the noise parameters variation is slight, the undesirable competition only affects the
convergence rate of the model without having a severe impact on the estimation accuracy.
However, for environments where the noise parameters can vary, undesirable competition
can seriously affect the weight assignment of the optimal model, which extends detection
time and reduces the system’s decision-making capability, especially when the optimal
model has changed and the innovation differences between models are delicate.

When performing further analysis (Equation (17)), we noticed that MMAE assigns
weights mainly based on the innovation of each model. Thus, − 1

2 δZ̃T
k,iSk,iδZ̃k/k−1 plays a

decisive role in weight assignment. The constant term ( 1
2 ) is called the penalty value. The

penalty value also has an impact on the probability assignment of the model. Therefore,
we will explore the relationship between penalty value and weight assignment through
mathematical derivation.

Firstly, we define two models to perform state estimation simultaneously and at
the k moment, according to Equation (17), The calculation results of the two models are
as follows:

φa = δZ̃T
k,aS−1

k,a δZ̃k,a

φb = δZ̃k,b
T S−1

k,b δZ̃k,b
(23)

where a and b represent the model a and model b, respectively, and suppose φa < φb.
Then the weight of model a being assigned at this moment is:

Wk,a =
Wk−1,a ·pk,a

Wk−1,a ·pk,a+Wk−1,b ·pk,b

=
Wk−1,a ·e−n·φa

Wk−1,a ·e−n·φa+Wk−1,b ·e−n·φb

(24)

where n is the penalty value.
Derivative of Equation (24) with respect to p:

∂Wk,a

∂n
=

Wk−1,aWk−1,b(φb − φa)en·φa en·φb

(Wk−1,a · en·φa + Wk−1,b · en·φb)
2 (25)
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It can be seen from Equation (25) that the derivative is always greater than zero;
therefore, the weight of model a being assigned increases as the value of the forgetting
factor increases.

Through analysis, we can acquire that if we enlarge the penalty value, in the same
circumstances, the model that is closest to the real model is assigned a greater weight.
In other words, the larger the penalty value, the optimal model will be assigned a more
significant weight more quickly. However, probability jumps may occur, resulting in a
decrease in estimation accuracy, especially in the early stages of the algorithm operation,
in order to maintain stability during the early stages when the model parameters vary
considerably, as well as to still possess the ability to adjust the model weights and alleviate
the problem of undesirable competition after a period of time. Inspired by [29], which intro-
duced an exponentially decaying penalty value function to alleviate the over-convergence
problem, we introduce an increasing function that replaced the constant penalty value to
deal with the contradiction between convergence speed and stability, enhancing the model
identification capability of the system. In our simulation experiment, the penalty value
function was set as:

ρ(k) = 0.5 · k0.15 (26)

In Equation (17), we found that in addition to the exponential term, there is also an
sk term containing the internal parameters of the filter in the β term, leading to a greater
probability that the model with the smaller β is assigned among the two filters with similar
innovation, which is apparently contrary to our expectations that the exponential term plays
a decisive role in the probability calculation [28]. What is worse, for variable-parameter
models, the differences in noise parameters between models become small after a period
of operation, which causes the harm of this problem to be more severe, and decrease the
algorithm’s decision-making capability. Therefore, we removed the β term. Since the
weights of the models are determined by the proportion of each model to the sum of all
models, removing the β term will have no effect on the algorithm’s operation. Then the
hypothesis testing algorithm can be expressed as:

Λk,i = e[−ρ(k)δZ̃T
k,iS
−1
k,i δZ̃k,i ] (27)

3.3. Improved MMAE

As mentioned above, we combined the Sage–Husa adaptive UKF with MMAE to fully
exploit their advantage. The forgetting factor has an effect on the estimation results, which
determines the confidence of the adaptive system for prior information. The smaller the
forgetting factor is set, the stronger the adaptability of the system; however, when the
estimated parameters differ from the actual parameters by a small amount, if the forgetting
factor is set small, it may lead to jumps in the parameters and reduce the stability of the
estimation, thus affecting the filtering accuracy. In general, the forgetting factor needs
to select the optimal value for the current moment to ensure a balance between system
adaptability and stability; however, it is hard to achieve in practice. Therefore, in addition to
the process noise matrix, the forgetting factor is also included in the unknown parameters
of the MMAE, which enables the algorithm to identify the optimal forgetting factor value
among the artificially set parameters, reducing the system’s dependence on the selection of
the forgetting factor. Moreover, the undesirable competition problem can seriously affect
the system’s ability to respond to complex time-varying noise. In this regard, we propose
MMAE with an improved hypothesis testing algorithm to overcome the problem.

The specific process of improved MMAE implementation is as follows, and the struc-
ture diagram is shown in Figure 1.



Sensors 2022, 22, 5976 9 of 16Sensors 2022, 22, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 1. The structure diagram of improved MMAE. 

4. Experiment and Result Analysis 
GPS positioning error does not drift with time and can maintain high accuracy in 

long-time navigation, which complements INS and becomes the first choice for inertial-
based integrated navigation. The INS/GPS integrated navigation structure is shown in 
Figure 2. 

 
Figure 2. The structure of INS/GPS integrated navigation. 

In this section, we applied the algorithm to INS/GPS vehicle integrated navigation 
and carried out three experiments. Experiment 1 is used to verify the effect of the forget-
ting factor on estimation accuracy under different system states. Experiment 2 is designed 
to test the effectiveness of the improved hypothesis testing algorithm of MMAE for miti-
gating competition of undesirable models. Experiment 3 by comparing the positioning 
accuracy of different algorithms to test the effectiveness and meliority of the proposed 

Sage-Husa 
with 

Input

1Q

1b

( )1p i k +

1r

2r

nr

1X̂

2X̂

ˆ
nX

( )
1

ˆ * 1
n

i
i
X W i k

=

+
ˆ
MMAEX

( )1W i k +

UKF

Sage-Husa 
with UKF2b

2Q

UKF
Sage-Husa 

with nb

nQ

2, 1kR +

1, 1kR +

, 1n kR +

Model Probabillistic 
           Updata

Weight Updata

Model Set

1, 1,kR r

2, 2,kR r

3, 3,kR r
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Step 1: Set up m filters and assign different forgetting factors and noise parameter
matrices to them.

Step 2: Initialize each model to a weight of 1/m.
Step 3: Each filter performs state estimation independently and calculates the mea-

surement innovations.
Step 4: The model corrects the measurement noise matrix according to the innovation

and the corresponding forgetting factor using the Sage–Husa algorithm.
Step 5: Update the filter weights based on the measurement innovations using an

improved hypothesis testing algorithm.
Step 6: Weighted summation of the estimated vectors for each filter to obtain the final

state output.
Step 7: Update the data and repeat Steps 3–6.

4. Experiment and Result Analysis

GPS positioning error does not drift with time and can maintain high accuracy in long-
time navigation, which complements INS and becomes the first choice for inertial-based
integrated navigation. The INS/GPS integrated navigation structure is shown in Figure 2.

In this section, we applied the algorithm to INS/GPS vehicle integrated navigation
and carried out three experiments. Experiment 1 is used to verify the effect of the forgetting
factor on estimation accuracy under different system states. Experiment 2 is designed to
test the effectiveness of the improved hypothesis testing algorithm of MMAE for mitigating
competition of undesirable models. Experiment 3 by comparing the positioning accuracy
of different algorithms to test the effectiveness and meliority of the proposed method. A
vehicle navigation platform, as shown in Figure 3, is used to collect INS and GPS navigation
data. The INS is composed of three sets of MEMS accelerometers and gyroscopes; NEO-
M8T was used as the GPS receiver. A high-precision navigation device was installed on
the vehicle navigation platform to collect accurate navigation data as the reference. These
instruments have been carefully calibrated and compensated for the lever arm error. The
parameters of the above navigation device are shown in Table 1.
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In addition, we used the mean squared error (MSE) of position error to quantifica-
tionally evaluate the performance of algorithms. MSE is the mean square of the distance
between the predicted and actual values, reflecting the extent of data deviating from actual
values and is inversely proportional to navigation accuracy. MSE can be defined as follows:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (28)

Experiment 1:
In this paper, we include the forgetting factor as an unknown parameter of MMAE

to improve the performance of the algorithm in time-varying noise. That is because after
dk convergence, models with smaller forgetting factors will have higher adaptivity. They
can better respond to changes in noise, while models with larger forgetting factors will
demonstrate better stability when the noise parameter matrix is almost constant. To verify
this, we carried out an experiment in which the integrated navigation data were simulated
with three different values of forgetting factors. In order to simulate the process of noise
parameters changing after dk convergence, we used forgetting factor values instead of dk
for the experiment. Three time periods were selected as observation intervals, and the MSE
was calculated for the northward error within the interval, and the results are shown in
Table 2.

Table 2. MSE of position errors of different forgetting factors.

Forgetting Factor (b) 0–100 s 200–300 s 400–500 s

0.95 3.4178 2.2838 2.7963
0.97 3.5405 2.1956 2.7265
0.99 3.6641 2.1116 2.6564

In 0–100 s, the adaptive system estimates the measurement noise parameters, and the
filter with a smaller forgetting factor has more adaptability, achieving a better performance.
While the estimation accuracy of the filter with large values of the forgetting factor is higher
when the variation of the noise parameter matrix tends to stabilize. That is consistent
with our previous analysis. Although the difference in accuracy is not significant, if we
can select the optimal forgetting factor for each moment based on the system state while
the algorithm is running, there will be a substantial improvement in the overall accuracy,
especially for systems in complex noise environments.
Experiment 2:

For variable-parameter models, undesirable competition can affect the convergence
rate of the optimal model and extend detection time, especially when the parameters of
other models do not differ much from the optimal model; the optimal model could even
not be assigned the maximum weights due to the influence of previous data. Therefore, we
improve the hypothesis testing algorithm of the classical MMAE. To verify the effectiveness
of the improved method in alleviating the undesirable competition problem, we use a
set of INS/GPS navigation data and perform the combined navigation solution with the
traditional MMAE and the improved method, respectively. The weight change process of
the optimal model was recorded and shown in Figure 4.

According to the result of Figure 4, it can be noticed that the optimal model of the classi-
cal MMAE suffers from the competition from undesirable models, and the convergence rate
of the optimal model is slow. In contrast, the convergence rate of the improved algorithm
is significantly greater than the classical algorithm. From the results, the improved method
significantly alleviates the undesirable competition and reduces the algorithm’s identifi-
cation time, which can dramatically improve the performance of the variable-parameter
MMAE in the time-varying noise environment.
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Experiment 3:
In this part, we used a set of INS/GPS vehicle navigation data collected by the vehicle

navigation platform, as shown in Figure 3, to evaluate the effectiveness of the proposed
method. Furthermore, the meliority of the proposed method was evaluated by comparing
the results with the standard UKF, classical MMAE, and Sage–Husa UKF. In addition, we
replace the penalty value function in our method with the exponentially decaying penalty
value function proposed in [29] to verify the superiority of our improvement. The vehicle
navigation platform simulates regular vehicle driving at the test site and records navigation
data for 3500 s. In order to simulate the time-varying noise environment and evaluate the
adaptability of the algorithm to complex noise, we artificially added position noise to the
measurement data; specific parameters are shown in Table 3.

Table 3. Noise parameters.

700 s–1200 s (m) 1800 s–2300 s (m)

East Position 6 × randn 9 × randn
North Position 6 × randn 9 × randn

Where randn is a random number subject to normal distribution.

Subsequently, we used different integrated navigation algorithms to solve the data and
compare the results with the navigation results of the reference device to obtain the position
errors. The position errors in the east direction for different algorithms are demonstrated in
Figure 5, and the north position errors are shown in Figure 6. In order to quantitatively
evaluate the performance of different algorithms, the MSE of the position error in three
observation intervals are shown in Table 4.

From the results, the standard UKF cannot respond well to changes in noise char-
acteristics due to it having no adaptability. Its performance is the worst among the five
algorithms during these three time periods. MMAE uses a set of parallel filters to estimate
the state vectors simultaneously, each filter corresponding to a different noise parameter;
the results of each filter are weighted and summed to derive the final state estimate. It
expands the coverage of the noise parameter model to a certain extent, and the estimation
accuracy is improved compared with the standard UKF. However, models with fixed
parameters and a finite number can hardly cover the whole characteristics of varying noise.
Therefore, there is only a limited improvement in accuracy.
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Table 4. MSE of position errors of different methods.
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East position error (m)

Standard UKF 6.3643 1.5321 13.8936
Sage–Husa 3.7254 1.2423 6.9714
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Proposed method 3.4774 1.0694 6.3463

North position error (m)

Standard UKF 6.6866 1.8067 13.7319
Sage–Husa 3.8142 1.3226 7.2156

MMAE 4.8517 1.4829 10.9979
Exponential decay 3.6485 1.0659 7.2199
Proposed method 3.5103 1.0846 6.5168
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The adaptability of Sage–Husa adaptive UKF for changing noise is significantly higher
than that of the standard UKF and classical MMAE. During the three observation periods,
the accuracy is improved apparently. That is because it can estimate noise parameters in
real-time while performing parameter estimation, which enables the system to follow the
variation of the noise environment well. However, a single forgetting factor and process
noise parameter matrix cannot guarantee that Sage–Husa gets the optimal estimation at
every moment, which dramatically limits the performance.

The exponential decay penalty value function proposed in [29] enables the weights of
each model to converge to an appropriate range. However, the recognition speed of the
algorithm decreases with decreasing penalty values, which affects the performance of the
algorithm in time-varying noise.

The improved MMAE takes advantage of Sage–Husa adaptive estimation and MMAE.
The forgetting factor and the process noise parameter matrix are set as unknown parameters
of the multi-model structure. The improved probability assignment function significantly
alleviates the undesirable competition problem and enhances the ability of the algorithm
to assign model weights. This makes it feasible for the proposed method to select the
optimal value of the forgetting factor according to different system states. The stability and
adaptability of the system are simultaneously guaranteed. The performance is better than
the other four algorithms under the varying noise environment.

In order to show the performance difference between the five algorithms more intu-
itively, the radar chart for MSE of position error as shown in Table 4 is demonstrated in
Figure 7. It can be seen from Figure 7 that the performance of the proposed method is
significantly superior to other methods.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 17 
 

 

Table 4. MSE of position errors of different methods. 

Error (m) Algorithm 700 s–1200 s 1200 s–1800 s 1800 s–2300 s 

East posi-
tion error 

(m) 

Standard UKF 6.3643 1.5321 13.8936 
Sage–Husa 3.7254 1.2423 6.9714 

MMAE 4.9558 1.3075 10.8799 
Exponential decay 3.7961 1.1767 7.0322 
Proposed method 3.4774 1.0694 6.3463 

North posi-
tion error 

(m) 

Standard UKF 6.6866 1.8067 13.7319 
Sage–Husa 3.8142 1.3226 7.2156 

MMAE 4.8517 1.4829 10.9979 
Exponential decay 3.6485 1.0659 7.2199 
Proposed method 3.5103 1.0846 6.5168 

In order to show the performance difference between the five algorithms more intu-
itively, the radar chart for MSE of position error as shown in Table 4 is demonstrated in 
Figure 7. It can be seen from Figure 7 that the performance of the proposed method is 
significantly superior to other methods. 

 
Figure 7. Radar map for MSE of position error of four methods. 

5. Conclusions 
In this work, an improved multiple-model adaptive estimation method was devel-

oped, taking advantage of MMAE and Sage–Husa. The performance of the proposed 
method in integrated navigation simulation is higher than the UKF, Sage–Husa, and clas-
sical MMAE. Furthermore, it is easy to extend the algorithm to pattern recognition, target 
tracking, and fault detection to reduce system dependence on noise parameter selection 
and improve filter robustness to time-varying noise. In addition, how to enhance filter 
stability when measurement anomalies and reduce adaptive system complexity will be 
our subject in the future. 

Author Contributions: Conceptualization, J.L.; Data curation, X.W., C.H., Z.Z. and Y.J.; Investiga-
tion, J.L.; Methodology, J.S., X.W. and L.Z.; Resources, Z.Z.; Software, J.S.; Supervision, J.L.; Valida-
tion, C.H., L.Z. and Y.J.; Writing—original draft, J.S. and Y.J.; Writing—review & editing, J.S., J.L. 
and X.W. All authors have read and agreed to the published version of the manuscript. 

0

2

4

6

8

10

12

14

East position error of 700–
1200s

North position error of 
700–1200s

East position error of 
1200–1800s

North position error of 
1200–1800s

East position error of 
1800–2300s

North position error of 
1800–2300s

UKF MMAE Sage-Husa Exponential decay penalty value Proposed method

Figure 7. Radar map for MSE of position error of four methods.

5. Conclusions

In this work, an improved multiple-model adaptive estimation method was developed,
taking advantage of MMAE and Sage–Husa. The performance of the proposed method in
integrated navigation simulation is higher than the UKF, Sage–Husa, and classical MMAE.
Furthermore, it is easy to extend the algorithm to pattern recognition, target tracking, and
fault detection to reduce system dependence on noise parameter selection and improve
filter robustness to time-varying noise. In addition, how to enhance filter stability when
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measurement anomalies and reduce adaptive system complexity will be our subject in
the future.

Author Contributions: Conceptualization, J.L.; Data curation, X.W., C.H., Z.Z. and Y.J.; Investigation,
J.L.; Methodology, J.S., X.W. and L.Z.; Resources, Z.Z.; Software, J.S.; Supervision, J.L.; Validation,
C.H., L.Z. and Y.J.; Writing—original draft, J.S. and Y.J.; Writing—review & editing, J.S., J.L. and X.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 61973280),
the National Natural Science Foundation of China (No. 62003316) and the Shanxi Province Key R&D
Program (202003D111007).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, D.M.; Wang, Z.Z. Strapdown Inertial Navigation System Algorithms Based on Geometric Algebra. Adv. Appl. Clifford

Algebras 2012, 22, 1151–1167. [CrossRef]
2. Liu, R.X.; Liu, F.C.; Liu, C.N.; Zhang, P.C. Modified Sage-Husa Adaptive Kalman Filter-Based SINS/DVL Integrated Navigation

System for AUV. J. Sens. 2021, 2021, 8. [CrossRef]
3. Liu, N.; Hui, Z.; Su, Z.; Qiao, L.K.; Dong, Y.P. Integrated Navigation on Vehicle Based on Low-cost SINS/GNSS Using Deep

Learning. Wirel. Pers. Commun. 2021, 22, 1–22. [CrossRef]
4. Zhang, M.D.; Dai, H.F.; Hu, B.Q.; Chen, Q. Robust adaptive UKF based on SVR for inertial based integrated navigation. Def.

Technol. 2020, 16, 846–855. [CrossRef]
5. Wei, X.K.; Li, J.; Zhang, D.B.; Feng, K.Q. An improved integrated navigation method with enhanced robustness based on factor

graph. Mech. Syst. Signal Process 2021, 155, 17. [CrossRef]
6. Kim, K.H.; Jee, G.I.; Park, C.G.; Lee, J.G. The Stability Analysis of the Adaptive Fading Extended Kalman Filter Using the

Innovation Covariance. Int. J. Control Autom. Syst. 2009, 7, 49–56. [CrossRef]
7. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
8. Webster, S.E.; Walls, J.M.; Whitcomb, L.L.; Eustice, R.M. Decentralized Extended Information Filter for Single-Beacon Cooperative

Acoustic Navigation: Theory and Experiments. IEEE Trans. Robot. 2013, 29, 957–974. [CrossRef]
9. Ge, B.S.; Zhang, H.; Jiang, L.Y.; Li, Z.; Butt, M.M. Adaptive Unscented Kalman Filter for Target Tracking with Unknown

Time-Varying Noise Covariance. Sensors 2019, 19, 1371. [CrossRef] [PubMed]
10. Lee, S.H.; Song, J. Regularization-Based Dual Adaptive Kalman Filter for Identification of Sudden Structural Damage Using

Sparse Measurements. Appl. Sci. 2020, 10, 850. [CrossRef]
11. Julier, S.J.; Uhlmann, J.K.; Durrant-Whyte, H.F. A new approach for filtering nonlinear systems. In Proceedings of the 1995

American Control Conference-ACC’95, Seattle, WA, USA, 21–23 June 1995; Volume 1623, pp. 1628–1632.
12. Romanenko, A.; Castro, J.A.A.M. The unscented filter as an alternative to the EKF for nonlinear state estimation: A simulation

case study. Comput. Chem. Eng. 2004, 28, 347–355. [CrossRef]
13. Yang, G.-H.; Wang, J.L. Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty. IEEE

Trans. Autom. Control 2001, 46, 343–348. [CrossRef]
14. Savkin, A.V.; Petersen, I.R. Robust state estimation and model validation for discrete-time uncertain systems with a deterministic

description of noise and uncertainty. Automatica 1998, 34, 271–274. [CrossRef]
15. Xie, L.; Soh, Y.C. Robust Kalman filtering for uncertain systems. Syst. Control Lett. 1994, 22, 123–129. [CrossRef]
16. Li, Z.K.; Liu, Z.; Zhao, L. Improved robust Kalman filter for state model errors in GNSS-PPP/MEMS-IMU double state integrated

navigation. Adv. Space Res. 2021, 67, 3156–3168. [CrossRef]
17. Huang, Y.L.; Zhang, Y.G.; Xu, B.; Wu, Z.M.; Chambers, J.A. A New Adaptive Extended Kalman Filter for Cooperative Localization.

IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 353–368. [CrossRef]
18. Kottath, R.; Poddar, S.; Das, A.; Kumar, V. Window based Multiple Model Adaptive Estimation for Navigational Framework.

Aerosp. Sci. Technol. 2016, 50, 88–95. [CrossRef]
19. Sun, J.R.; Tao, L.; Niu, Z.; Zhu, B.C. An Improved Adaptive Unscented Kalman Filter with Application in the Deeply Integrated

BDS/INS Navigation System. IEEE Access 2020, 8, 95321–95332. [CrossRef]
20. Narasimhappa, M.; Mahindrakar, A.D.; Guizilini, V.C.; Terra, M.H.; Sabat, S.L. MEMS-Based IMU Drift Minimization: Sage Husa

Adaptive Robust Kalman Filtering. IEEE Sens. J. 2020, 20, 250–260. [CrossRef]
21. Asl, R.M.; Palm, R.; Wu, H.P.; Handroos, H. Fuzzy-Based Parameter Optimization of Adaptive Unscented Kalman Filter:

Methodology and Experimental Validation. IEEE Access 2020, 8, 54887–54904. [CrossRef]

http://doi.org/10.1007/s00006-012-0326-8
http://doi.org/10.1155/2021/9992041
http://doi.org/10.1007/s11277-021-08758-9
http://doi.org/10.1016/j.dt.2019.10.012
http://doi.org/10.1016/j.ymssp.2020.107565
http://doi.org/10.1007/s12555-009-0107-x
http://doi.org/10.1115/1.3662552
http://doi.org/10.1109/TRO.2013.2252857
http://doi.org/10.3390/s19061371
http://www.ncbi.nlm.nih.gov/pubmed/30893837
http://doi.org/10.3390/app10030850
http://doi.org/10.1016/S0098-1354(03)00193-5
http://doi.org/10.1109/9.905707
http://doi.org/10.1016/S0005-1098(97)00188-X
http://doi.org/10.1016/0167-6911(94)90106-6
http://doi.org/10.1016/j.asr.2021.02.010
http://doi.org/10.1109/TAES.2017.2756763
http://doi.org/10.1016/j.ast.2015.12.025
http://doi.org/10.1109/ACCESS.2020.2995746
http://doi.org/10.1109/JSEN.2019.2941273
http://doi.org/10.1109/ACCESS.2020.2979987


Sensors 2022, 22, 5976 16 of 16

22. Asl, R.M.; Hashemzadeh, F.; Badamchizadeh, M.A. A new adaptive neural network based observer for robotic manipulators. In
Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015;
pp. 663–668.

23. Wei, X.K.; Li, J.; Feng, K.Q.; Zhang, D.B.; Li, P.Y.; Zhao, L.N.; Jiao, Y.B. A Mixed Optimization Method Based on Adaptive Kalman
Filter and Wavelet Neural Network for INS/GPS During GPS Outages. IEEE Access 2021, 9, 47875–47886. [CrossRef]

24. Magill, D. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans. Autom. Control 1965, 10, 434–439. [CrossRef]
25. Alsuwaidan, B.N.; Crassidis, J.L.; Cheng, Y. Generalized Multiple-Model Adaptive Estimation using an Autocorrelation Approach.

IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2138–2152. [CrossRef]
26. Li, X.R.; Bar-Shalom, Y. Multiple-model estimation with variable structure. IEEE Trans. Autom. Control 1996, 41, 478–493.
27. Assa, A.; Plataniotis, K.N. Similarity-Based Multiple Model Adaptive Estimation. IEEE Access 2018, 6, 36632–36644. [CrossRef]
28. Jia, C.J.; Xu, H. The Research on Performance Improvement Techniques of a Multiple Model Adaptive Filter Algorithm. Fire

Control Command Control 2009, 34, 40–46.
29. Li, S.; Jiang, X.Q.; Liu, Y.F. Innovative Mars entry integrated navigation using modified multiple model adaptive estimation.

Aerosp. Sci. Technol. 2014, 39, 403–413. [CrossRef]
30. Blom, H.A.P. An efficient filter for abruptly changing systems. In Proceedings of the 23rd IEEE Conference on Decision and

Control, Las Vegas, NV, USA, 12–14 December 1984; pp. 656–658.
31. Blom, H.A.P.; Bar-Shalom, Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE

Trans. Autom. Control 1988, 33, 780–783. [CrossRef]
32. Xu, T.Y.; Xu, X.S. Anti-ship missile trajectory tracking based on CS_UKF and interacting multiple models. In Proceedings of the

33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 6334–6340.
33. Li, X.R.; Bar-Shakm, Y. Mode-Set Adaptation in Multiple-Model Estimators for Hybrid Systems. In Proceedings of the 1992

American Control Conference, Chicago, IL, USA, 24–26 June 1992; pp. 1794–1799.
34. Dong, P.; Jing, Z.L.; Gong, D.; Tang, B.T. Maneuvering multi-target tracking based on variable structure multiple model GMCPHD

filter. Signal Process. 2017, 141, 158–167. [CrossRef]
35. Firdeh, S.R.M.; Karrari, M.; Menhaj, M.B. Fast Variable-Structure Multiple-Model Estimation Using Modified Likely-Model Set

Tracker. Iran. J. Sci. Technol.-Trans. Electr. Eng. 2019, 43, 109–120. [CrossRef]
36. Zhao, Z.; Li, X.R. The behavior of model probability in multiple model algorithms. In Proceedings of the 2005 7th International

Conference on Information Fusion, Philadelphia, PA, USA, 25–28 July 2005; p. 6.
37. Xiong, K.; Zhang, H.Y.; Chan, C.W. Performance evaluation of UKF-based nonlinear filtering. Automatica 2006, 42, 261–270.

[CrossRef]
38. Sage, A.P.; Husa, G.W. Adaptive filtering with unknown prior statistics. In Proceedings of the Joint Automatic Control Conference,

State College, PA, USA, 17–19 November 1969; pp. 760–769.
39. Zhou, H.; Huang, H.Q.; Zhao, H.; Zhao, X.; Yin, X. Adaptive Unscented Kalman Filter for Target Tracking in the Presence of

Nonlinear Systems Involving Model Mismatches. Remote Sens. 2017, 9, 657. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3068744
http://doi.org/10.1109/TAC.1965.1098191
http://doi.org/10.1109/TAES.2011.5937288
http://doi.org/10.1109/ACCESS.2018.2853572
http://doi.org/10.1016/j.ast.2014.04.009
http://doi.org/10.1109/9.1299
http://doi.org/10.1016/j.sigpro.2017.06.004
http://doi.org/10.1007/s40998-018-0111-3
http://doi.org/10.1016/j.automatica.2005.10.004
http://doi.org/10.3390/rs9070657

	Introduction 
	Mathematical Preliminaries 
	Unscented Kalman Filter 
	Classical MMAE 

	Proposed Method 
	Sage–Husa Adaptive UKF 
	Improved Hypothesis Testing Algorithm 
	Improved MMAE 

	Experiment and Result Analysis 
	Conclusions 
	References

