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Abstract: Smart textiles have gained great interest from academia and industries alike, spanning
interdisciplinary efforts from materials science, electrical engineering, art, design, and computer
science. While recent innovation has been promising, unmet needs between the commercial and
academic sectors are pronounced in this field, especially for electronic-based textiles, or e-textiles.
In this review, we aim to address the gap by (i) holistically investigating e-textiles’ constituents and
their evolution, (ii) identifying the needs and roles of each discipline and sector, and (iii) addressing
the gaps between them. The components of e-textiles—base fabrics, interconnects, sensors, actuators,
computers, and power storage/generation—can be made at multiscale levels of textile, e.g., fiber,
yarn, fabric, coatings, and embellishments. The applications, current state, and sustainable future
directions for e-textile fields are discussed, which encompasses health monitoring, soft robotics,
education, and fashion applications.

Keywords: electronic textile; sensor and actuators; smart textile

1. Introduction

The term “smart textiles” has emerged to describe artifacts that interconnect active
functionalities (often electronic and computational-based) as a wearable artifact [1,2]. These
textiles engage almost all senses—olfactory, visual, auditory, haptic or tactile, and time [3,4].
Smart textiles convert stimuli from the environment (temperature, light, chemicals and
moisture, pH) or interactions (mechanical force and electromagnetic field) into responses
in aesthetic (color, light intensity, fluorescence, shape or form) or physical (mechanical,
electrical, thermal, chemical, wetting or moisture transport) properties [5–7]. They are
dynamic, biomimetic systems [4,7,8].

In general, smart textiles are composed of a base fabric, interconnects, sensors, actua-
tors, a power source or generator, and a computer processing unit. Although all components
can be made from textile materials (polymers, fibers, yarns, fabrics), not all are. This review
specifically focuses on electronic-integrated textiles; we point the readers to another review
article for non-electronic smart textiles [9]. Smart textiles are classified by obscuring or
highlighting their textile and electronic attributes:

(1) Interaction with the environment—passive (sense), active (sense and react), or very
smart (sense, react, and adapt) [9,10],

(2) Form, location, or attachment method [11], e.g., “soft systems”,
(3) Components involved and the level of human interaction [12], and
(4) Electronic (electronic textiles or “fibertronics”), which require a computer and batteries,

or non-electronic (“reactive”, “self-actuated”, or “adaptive”), which do not [4,7,8,13].

The role of the “textile” in smart textiles has evolved through three generations over
the past few decades: (1) rigid electronics on a textile platform, (2) devices embedded in
textiles, and (3) fully textile devices [14]. In the first generation, in the mid-1990s, wearable
computing, audio processing and signal processing with the textile as a platform were
researched. [11,15] In the second generation, in the early 2000s, toolkits democratized
prototype development [15] yet kept the textile as a platform. As a result, research moved
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towards non-electronic or fully textile solutions. In the third generation, the textile has
transitioned from being a surface on which components are attached to the interface for
human and computer interaction [7]. Thus requiring new modes for handling personal
data, technologies to support virtual commerce, and manufacturing processes for mass
personalization, and evolving the understanding of a textile’s activities [7].

The uniqueness of the smart textile field when compared to other materials, is in its
highly interdisciplinary and collaborative nature. Figure 1 shows a collective examination
of 300 scientific articles published on smart textiles within the last 5 years. The United
States lead the number of articles published, followed by other major players such as China,
the UK, South Korea, and Germany. It is notable that about 25% of papers are published by
two or more countries working together on one paper, which is one indication of the global
collaborations of this subject.
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Such collaboration spans multiple disciplines, components, and scale, as illustrated in
the overview of smart textiles in Figure 2. Smart textiles are multifaceted in nature; each
component of the e-textile needs to be “woven” into one garment. As also described in
Figure 2, an e-textile encompasses the integration of an input, activity, and response, which
is realized in the form of a sensor, actuator, interconnects, and power storage/device. The
development and incorporation of each component need contributions from seemingly
unrelated fields, such as material scientists, computer scientists, artists, and designers.

These collaborations, while enabling the innovation of smart textiles, also present
challenges to address gaps brought at every step, from the manufacturing of each compo-
nent to the end-use application. A comprehensive review article of e-textiles dates back
to 2012 [16], while more recent ones have dealt with focused applications [17,18], meth-
ods [19], or non-electronic textiles [20]. To date, no comprehensive review that deals with
the components of smart textiles and their challenges due to the interdisciplinary nature
of this new, fast emerging subject exists. As such, this review aims to holistically examine
the roles of each component and the expertise involved for each in a smart textile. We will
examine (i) the production and functionalities of each constituent, (ii) a brief overview of
applications, and (iii) the current needs and outlook.
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2. Components of Electronic Textiles
2.1. Conductive Materials

Conductive materials are required to make electrical elements such as resistors, ca-
pacitors, inductors, and interconnects [22,23]. While flexible electronics can be made by
decreasing the electronics’ dimensions, switching to flexible conductive materials allows
for long-term adaptation of textiles [24]. Raw materials, yarns, or fabrics can be made con-
ductive, while sensors, actuators, and power components can be constructed by layering
conductive fabrics [25]. The method selection depends on the available equipment, desired
conductivity, percolation threshold, and fabric rigidity requirements.

The textile can be made conductive at any production step: polymerization, fiber
spinning, insertions during fabric construction, or during post-processing such as by coating
or printing. Polymerizing conductive polymers or copolymers ensures high compatibility,
yet it is costly and may not result in spinnable materials. Conductive additives, such
as metals, carbon black, carbon powder, carbon whiskers, graphene, nanotubes, ionic
liquids, and conductive polymers, e.g., polyaniline (PANI) and polyvinylidene difluoride
(PVDF), can be included during fiber spinning to make an electrically conductive composite
fiber [26,27]. However, the percolation threshold, the amount of conductive material needed
to form a conducting network, and desired conductivity will impact fiber rigidity. Table 1
below lists the conductive materials used, conductivities, and percolation thresholds.
Metallic materials tend to have a lower percolation threshold and higher conductivity
than their non-metallic counterparts, so this will limit which of the available conductive
materials, metallic or non-metallic, should be used. Additives will make the fabric more
rigid since they are less compliant than polymers. Conducting materials that have a wire-
like aspect may be added during fabric construction as a weft insertion in knitting or
weaving. However, these materials will need to be capable of undergoing the same tension
and bending as their fibrous counterparts without breaking. Metallic printing is an exciting
way to add conductivity during post-processing, especially with the advent of nanoparticle
inks [9] and microdroplet printing [23]. While it may be easiest to add conductivity
during post-processing, these materials are more susceptible to cracking, delaminating,
and chipping due to poor adhesion and a difference in material rigidity [28,29]. Overall,
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the expertise and available equipment tend to select the production step for conductivity
addition rather than strategic benefit.

Table 1. Conductive materials used in smart textiles, their electrical conductivity and percolation threshold.

Material Conductivity Percolation Threshold *

Copper 5.87 × 107 S/m [30] 37% volume [31]

Gold 4.42 × 107 S/m [30]
39% volume for co-sputtered gold/poly(tetrafluoroethylene)

(PTFE) film [32]
Silver 6.21 × 107 S/m [30] 7–16 vol% in polyvinylidene difluoride (PVDF) [33]

Carbon Black 101–104 S/m [34] 0.58 wt% in polyethylene terephthalate (PET) [35]
Graphene 6.0 × 105 S/m (isolated) [36] 0.47 vol% in PET [37]

Carbon Nanotube (CNT) 106–107 S/m [38] 1.2 wt% (CNT in PVDF) [39]

Ionic Liquid
1.3 × 10−2

–1.4 × 100

S/m [40]

Decreased percolation threshold of graphene in urethane from
3.21 wt% to 1.99 wt% due to better graphene dispersion [41]

PVDF 10−2 S/m [42] N/A—typically used as a matrix

* Percolation thresholds given are best available or purely illustrative. Percolation depends on the polymer matrix,
particle size and dimensions, and the dispersion quality.

2.2. Interconnects and Communication

Interconnects, wires, or antennas relay information and power between components,
the computer, and the wearer. Wires are manufactured by extrusion processes or embroi-
dered conductive threads, while antennas can be made from conductive threads, embroi-
dering, or fabrics. Wired interconnects both attach items to the textile [15] and conduct
electricity for power and data communication between components and the wearer [14,22].
Interconnects must be robust against abrasion, puncture, laundering, and folding; this is
necessary to prevent device failure if a line is cut or abraded. Other attachment methods,
e.g., hot bar soldering, insulation displacement connections, and anisotropic conductive
adhesives, often fall short of meeting the needs of electronic textiles [43] due to corrosion
or short circuiting over time [44,45]. The bending rigidity of encapsulate films impacts
cracking: higher modulus encapsulate films can be thinner and support positioning of
the neutral bending axis at the encapsulate center to prevent stress concentrations and
the cracking of thin wires [23]. More recently, conductive inks and threads have been
used in place of rigid, soldered, un-washable plastic insulated wires. Sewing, sputtering,
soldering, and snaps can be used as interconnects [22]. Sewing or embroidering conductive
threads may use bobbin feeding instead of needle feeding depending on the machine thread
flexibility; since the bobbin thread undergoes less bending and remains unidirectional in
the fabric (Figure 3) [46], flexibility is often assessed by a curl test [47,48].
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The dual roles of wires can be devolved into two separate media: one to “attach”
components and one to “communicate” power and data. Attachment methods include
hook-and-loop fasteners, pockets, elastic material, iron-on (thin film circuit), sewing,
and glue [22,49,50]. Wireless communication uses antennas and resonators [11,51,52].
Antennas can wirelessly power inaccessible components, e.g., ingestibles [51]. However,
the drawbacks of wireless systems include a slower response time [11], signal degrada-
tion [51], bulkier components due to powering needs [53], and proprietary communication
protocols [14,53].

2.3. Electronic Sensors and Actuators

Sensors can monitor movement, physiology, or the environment. Movement sensors
require signal processing whether they are inertial motion, optics, or strain sensors, rigid
electronics, or fully textile, piezoresistive or conductive textile (Table 2). Strain sensors
convert mechanical deformation into measurable electrical signals and, as with pressure
sensors, can be resistive or capacitive [14,54]. Resistive pressure sensors change electrical
resistance when stretched or compressed [22]. Capacitive pressure sensors store or release
electrical energy. Strain sensors are made with conductive materials by screen printing,
sewing, knitting [55], or layering fabrics [14], although, repeated straining of carbon filler–
polymer matrix or multilayered systems can cause non-linearity and signal drift, resulting
from delamination, which decrease the device lifetime [56,57]. Fiber- or yarn-level devices
can be made by combining a conductive component and flexible substrate into a composite
or layered structure [56], e.g., from dielectric-coated conductive yarns or piezoresistive
materials [14]. Fabric-level devices can be made from conductive threads or sandwich
structures. For example, conductive threads have strain dependent resistance due to
changes in the effective yarn length when sewn [14] or knitted [58]. A resistive or capacitive
sensor can be made from a sandwich structure (conductor–spacer–conductor) [15]. A
capacitive sandwich structure (conductor–dielectric–conductor) can be made as a thread
or fabric by embroidering, patterning, or laminating electrodes [16,22]. Conductivity in
a sandwich structure (fabric–dielectric–fabric) varies depending on the dielectric layer’s
thickness [14].

Table 2. Sensors used in electronic textile.

Type Material Format Mechanism Ref.

Motion

Rigid electronic Inertial motion capture magnetometers, accelerometers,
and gyroscopes [56]

Bending sensor Optical fiber
(Bragg grating) Optics [22]

Carbon black dip-coated
co-polyester elastomer or

spandex filament

Sensors attached
to t-shirt

Strain-induced disruption and connection of
conductive pathways affects electrical

resistance (piezoresistive).
[56]

Machine knit elastomeric and
conductive (80% polyester, 20%

stainless steel)
multifilament yarns

Rehabilitation glove Strain affects contact resistance (Holm’s
contact theory) [44]

Flexible, non-crocking reduced
graphene oxide fabric through

dip coating and nickel
electroless plating

Strain sensor Strain affects resistance [54]

Conductive polymer filaments Strain sensor resistance change in paired
(stretched/relaxed) sensors [59]

Hand-knit together cotton yarn
and wire Inductor coils Increasing radius increases inductance [60]
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Table 2. Cont.

Type Material Format Mechanism Ref.

Physiology

Electrode Carbon or conductive
yarns (stainless steel) Change in resistance due to stimuli [50]

highly conductive,
nitrogen-doped

working electrodes

carbonized or
graphitized woven

silk fabric

Circuit converts signal into data for
mobile display Current: glucose, lactate

Potential: sodium, potassium
[61]

“wet” electrode (sweat
is electrolyte)

conductive knit fabric
(Shieldex Fabric by

Statex) knife-coated with
a conductive paste

Measure Biopotential [62]

(EEG) sensor layers of conductive and
sweat absorbent fabrics Measure Biopotential (~100 µV) [63]

Blood oxygenation Rigid electronics oxygenated and deoxygenated hemoglobin
absorb different amounts of light [52]

Antennas
Conductive fabric

attached to silicone
rubber substrate

Resonance frequency interference between
antennas corresponds to brain atrophy and

lateral ventricle enlargement
[64]

Environment

Temperature sensors printing conductive inks change resistance in response to
temperature [22] [65]

Temperature sensors weaving electronic strips
into textile

change resistance in response to
temperature [22] [65]

Temperature sensors
encapsulating

temperature sensor in
yarn core

change resistance in response to
temperature [22] [65]

Humidity sensor

poly(3,4-
ethylenedioxythiophene)

polystyrene sulfonate
(PEDOT:PSS) on a

substrate of
polyacrylonitrile

nanofibers

materials change conductivity in response
to moisture [22]

flexible ammonia sensor cotton yarn coated with
carbon nanotube ink

exposure to chemical changes
resistance, “chemiresistor” [66]

multimodal
“Carbon Nanotube Paint”

coated degummed
silk fiber

electrical resistance changes with stimuli [67]

Physiology sensors monitor internal and environmental conditions by way of elec-
trodes, near-infrared spectroscopy, microfluidics, and (Table 2). Some sensors discern
multiple stimuli and are called “multimodal”. Sensors are disease agnostic, such that a
thermistor embedded in a textile can monitor cardiovascular health, skin ambient tem-
perature, and the foot ulcers or wound infections of diabetic people [65]. Textile-based
sensors can diagnose cystic fibrosis based on pH, sodium, conductivity, and hydration
levels during exercise [50]; detect immune responses [68]; monitor neurodegeneration [64];
observe babies for poor circulation and heart disease [69]; and sense moisture in wounds,
beds, or athleticwear to reduce skin pathologies [25].

Electrodes, an electronic sensor constituent, are conductive contacts between the
wearer and a smart textile system. They can monitor or provide feedback, e.g., functional
electrical stimulation (FES) [14,70]. Skin irritation, conformability, and discomfort are
major concerns for electrodes and their adhesives [24,70]. Electrode placement for an
electrocardiogram (ECG) is notoriously challenging and affects reliability [70,71]. Textile-
based sensors and electrodes provide useful preventative, early detection, and serious



Sensors 2022, 22, 6055 7 of 19

health condition data. All of the aforementioned sensors may be used in conjunction with
the actuators to yield responses to e-textiles that engage with human’s senses, e.g., display,
mechanical actuation, audio, or combinations therein (Table 3).

Table 3. Actuators used in electronic textile.

Type Material Mechanism Ref.

Speakers

sandwiching layers of piezoelectric
polyvinylidene difluoride (PVDF) film/zinc

oxide pillars on fabrics printed with
conductive inks

Electronics [14]

Mechanical
actuator Motorized seams sewn onto fabric pulling seam changes the textile shape [72]

Sensor/actuator sewing, couching, shape memory alloy fiber
onto fabric and painting conductive ink

strain sensor which responds to cutting, heating,
or pressure [73]

Mechanical
actuator

conductive textiles cut, coated,
and laminated

Electro-adhesive actuators and dielectric
elastomer actuators [74]

Display knit or woven electroluminescent fibers electrically controlled fabric visual display [75]

Display tactile enhanced fabric display electrostatically actuated with electrodes [76]

Vibrotactile
displays film tactile elements operate independently based on

mechanical resonance frequency [77]

2.4. Power–Energy Generation and Storage

A smart electronic textile requires power for electronic components throughout the
lifetime of the device by the use of batteries or energy generators [11,12,15,51]. Batteries
store energy; ideally, batteries would be replaceable and rechargeable [14]. However,
conventional batteries tend to be bulky, rigid, and not washable [14]. Thin, flexible, hidden
batteries may be made by embroidering or printing with conductive materials [78]; the
advancement of nanomaterials may also help with energy conversion efficiencies [79].

Reducing component consumption, through “wake up” and “sleep” functions, and
increasing energy efficiency may also extend the battery life and reduce the risk of over-
heating and burns [11,12]. Harvestable energy sources include light (solar or artificial,
“photovoltaic”), human body heat (“thermal”), human motion (pressure or mechanical,
“piezo”) or friction (“tribo”), and wind [22,26,27,51]. Not only must the energy source
match the power consumed of the device, it must also provide enough current and volt-
age [51]. Hybrid energy generators increase and stabilize the output for a constant power
supply [27,80]. Power can be wirelessly transferred through planar spiral coils embroidered
with conductive thread onto a woven polyester glove using inductive coupling [81]. Energy
generation stability is degraded by cyclic mechanical loading, chemical treatment, and
environmental factors [27]. For example, piezo materials lose their dipoles above the curie
transition or melting temperature [27]. Wearable energy generation must be efficient, stable,
mechanically durable, and survive scaled-up textile production methods [82].

While thermoelectric generators can be embedded in fabrics (woven, knits, synthetic,
natural fiber), the current thermoelectric generator materials have limited practical use
due to being high profile (discomfort), a low temperature differential (output voltage) and
their bulkiness (energy generation) [83]. For example, a flexible thermoelectric generator
based on the Seebeck effect converts heat lost from the wrist into 35 uW/cm2 energy
under walking conditions; it was made from a thermoelectric pillar assembly attached to a
wristband (Figure 4) [49].

Solar cells can be dye-sensitized, perovskite, or polymer. Dye-sensitized solar cells
follow a photosynthesis-like process: incident light excites electrons, from the dye into the
semiconductor conductive band, typically titanium dioxide, which generates a current; a
redox electrolyte reduces the generated positive charge, or “hole”, by replacing it with an
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electron [84]. Alternatives to dye-sensitized solar cells using textiles use other photosensi-
tizers in place of dye, including doped polymers or other solids. Perovskite solar cells have
much higher conversion efficiencies than dye-sensitized solar cells (29% possible), likely
due to a higher charge carrier mobility, long carrier diffusion length, and near instantaneous
charge–hole separation (~2 ps), although they require a solid state electrolyte [85]. Scalable
methods for textile photovoltaic manufacturing include optical fiber-style thermal drawing
with embedded electronics [86,87], wire coating [88], or inkjet printing [4]. For thermal
drawn fibers, functionality can be imparted pre-draw (preform assembly) or post-draw
(deposition or etching) [87].
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Energy from human motion can be collected by triboelectric or piezoelectric methods
operating at the pace of human motion, about 1 Hz [89]. Triboelectric energy is collected
from mechanical friction between pairs of materials with differing electron affinity in
four modes: single-electrode, lateral sliding, vertical contact-separation, and freestanding
triboelectric-layer [27]. Triboelectric energy is a natural choice for powering a wind sensor,
pedometer, pulse monitor, or sleep monitor [27]. Production methods include a coaxial
dielectric/electrode fiber, which is woven or knit, fabric bands woven as strips, spacer
fabrics made from 3D weaving or knitting, and layer fabrics [27]. Piezoelectric energy is
harvested by converting mechanical to electrical energy, e.g., heart rate, tactile sensing
(input), pressure, falls detection on floor [27]. Piezoelectric energy generators have a
sandwich structure of a piezo material between two conducting layers with a cotton
fabric separator to prevent electric shorting [27]. Piezoelectric polymers, such as PVDF
and polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE), and ceramics, such as lead
zirconate titanate (PZT), can be combined to improve the piezoelectric constant (more
ceramic) and reduce brittleness (more polymer) [27]. Nano-scale piezo materials are
sensitive to small forces, while fabrics made from piezoelectric yarns have a higher output
than the yarns [27]. Piezoelectric properties depend on the materials and processing.

2.5. Computer or Central Processing Unit

The computer or central processing unit, “CPU”, is the brain of the system. Computers
operate control systems, process information, and store data on or off garment [11,51].

The logic gates, e.g., transistors, process the information by performing logic opera-
tions. Transistors—defined by an electron gate, source, and drain—can be made by attach-
ing traditional elements, soft lithography, or evaporation [22]. Alternatively, logic gates
could be made from multistimuli-responsive polymers, although producing an “AND”
function requires two different stimuli to produce one response [5]. A computer must be
able to handle the amount of data produced by the components (Random Access Memory
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(RAM) and storage memory) and be updateable. Textile computers have transition states
and ambiguity between “1” or “0” [90]. While it is possible to make a textile computer [90],
most applications still use a traditional CPU, as with the LilyPad and Adafruit toolkit break
out CPUs, or a smartphone device.

2.6. General Applications of Electronic Textiles

Electronic textiles continue to garner interest from academia, government agencies,
and industry researchers. The following details a handful of the most promising applica-
tions of the last decade. For a more detailed review of electronic textile applications, please
refer to other excellent review articles [18,19].

Smart textiles are a medium for interactions between humans and computers. These
robots “link up human intentions with machine actions” [91]. Soft objects can be enhanced
to support interactions. A 3D printed elastomer network, “optical lace,” uses optics to sense
deformation [92]. Alternatively, a touch sensor or deformable robot can be made by cutting,
layering, and heat bonding conductive fabrics through “3D fabric printing” [93]. Interactive,
tactile learning is supported by electronic embroidered books [94], while “sonification” can
provide assistive auditory cues or the translation of non-audio data into sound [15]. Even a
sound system can be controlled by a textile touch sensor [94].

Patches can be used to control machines. For example, alphabet or coded numeral
signals can be relayed wirelessly through triboelectric interaction with a splitting ring
structure patch [91]. Alternatively, a four-mode controller can take advantage of clenching
motions detected with a PVDF microelectric-mechanical system (MEMS) printed onto
artificial skin and attached to the left and right wrist [95].

Clothing is another useful surface or medium. Glove-based devices can use gestures to
control machines [96]. For example, human visual cognitive load and attention switching
during driving can be decreased with a gesture-capture glove with embedded strain sensors
(Figure 5) [16]. Electronic devices can be controlled by a highly conductive yarn woven
into a touch sensitive sleeve with a consistent 95% recognition rate after 30,000 swipes [97].
The sleeves were woven from a highly conductive yarn composed of a copper wire core
wrapped in a braided 2-strand silk yarn and coated with polyurethane [36].
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Standard fiber spinning processes can produce bifunctional actuating/sensing fibers
for haptic feedback and user interaction sensing [98]. Alternatively, a co-rolled pre-
form thermally-drawn capacitor fiber can function as a 1D slide sensor (fiber) or 2D
touchpad sensor (woven fabric) [99]. A solution cast bicomponent dumbbell-shaped con-
ducting/insulating fiber woven into fabric can respond to five different types of stimuli
(Figure 6) [100]. Accounting for time allows a knit capacitive and resistive sensor fabric to
distinguish between complex no touch, touch, and metallic touch interactions after signal
processing with an Arduino-based program, “Teksig” [101].
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from Adv. Mat. Tech. Copyright 2018 Wiley.

Finally, smart textiles can encourage interactions between humans: bridging the gap
between interactivity and interconnectivity [4]. For example, a dress that changes color in
response to the wearer’s brainwaves [2] can externalize mood and encourage interaction.
Sharing a smart textile object can promote social interactions through joint discovery [102].
A gown bodice can recast a wedding ritual as a public sharing and melding of heart beats,
“Data Vows” [45]. The bodice was composed of an Adafruit Flora microcontroller, a Polar
One Heart Rate sensor, light-emitting diodes (LED), and a Karl Grimm silver conductive
thread [45].

3. Current Limitations
3.1. Wearer Needs

Wearables must be wearable and functional, or “work”. [58]. Appearance, comfort,
a light weight, user friendliness, durability, and a long battery life (24 h) or low elec-
trical power consumption are important to wearers [103,104]. They expect continuous
connectivity, energy efficiency, data security, and privacy [12]. End users may also have
environmental requirements [24,103–105], a strong preference about synthetics versus nat-
ural fibers [51,106,107], and a desire to have the product stand out or be concealed [1]. The
level of sensitivity to design are also specific to demographics, e.g., people with autism
tend to be more sensitive to textures, sounds, state cycling, hidden relationships, the poor
alignment of visual cues, and physical interaction [102]. Other concerns include pattern
reversibility [108], reconfigurability [12,103], interactions [108], game-like elements [14,109],
washability [82], and durability [22,103] throughout the product lifetime from the materials’
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selection and manufacturing to the device’s use and end of life [13]. Populations have
different needs and the conclusions of any user study are not universal [110]. Each end user
will have differing preferences, so human wear trials are essential to making an acceptable
product. Invoking these opinions before prototyping and throughout development will
lead to a better product–market fit and potential commercial success [14]. It is notable that
academic research has yet to launch commercially viable smart textiles.

3.2. Interdisciplinary Collaborations: United Intention with Divided Focus

Smart textiles’ research is collaborative; yet, fostering collaborations is a challenge [24].
Skills training for new textile techniques, sustainability and ethical requirements for manu-
facturing, and textile deliverables must be managed [106]. Research refines assertions into
accepted facts [111]. Disruptive technology, such as smart textiles, depends on challenging
the status quo; however, academic productivity depends on deep research in one area with
a track record of publications [12,112]. As a result, researchers tend to rush into “gap-filling”
instead of collaborative inquiry [7,12,112].

While interdisciplinary research has become more commonplace, collaborations for
smart textiles span a much wider range of disciplines, sectors, and countries; these include
scientists, artists, designers, computer experts, technologists, electrical engineers, manu-
facturers, and wearers in academia, government, and industry [11,15,103,113]. They are
united in exploring concepts for smart textiles yet separated in their approach.

On the one hand, scientists discover new materials and characterize their properties,
while engineers apply a material’s properties and functionalities to solve problems. On the
other hand, designers and artists move materials out of the science lab and into practical
applications. Artists question the underlying structures of what exists, how it is made, and
who participates in making or using it [90]. Designers learn a material’s uses by experiential
tinkering, broader contexts, and collaborative actions through material-based or holistic
design processes [4,8,51]; designs are based on form and tangible material aspects, such as
exploiting the sidedness and 3D nature of textiles for interactions [101]. Smart textiles may
be made from adaptive materials or materials made adaptive through design [8].

Another notable collaboration that profoundly affects smart textile functionality is
the interdependence of software and hardware [12]. Data collection [12], conversion to
actionable information [24], and on or “off textile” machine learning [14] must all work
within the physical limitations of the textile. Smart textiles share sensitive data—biometric,
behavioral, work, geolocalization, and mobility [103]—through a smartphone, gadget,
website/social media, or ambient display [3]; who has data access must be limited to
protect data and privacy [11,24]. Data security, the redundancy and the trustworthiness
of a network can be maintained through blockchains, software upgrades, patches, and
modifications [11,12].

Finally, the collaboration between textile and material scientists is central to making
smart textiles a reality. Material scientists investigate the connection between material mi-
crostructures and properties to extend fundamental knowledge. On the other hand, textile
scientists are grounded in the practical needs of scaling up production. Manufacturing
smart textiles at scale continues to be a challenge [2,14,15,24,97,106]. While textiles can
be produced at high production speeds [26], smart textile manufacturing depends on the
techniques needed to achieve functionality [14] and cost [11,27,51,114]. For example, fiber
extrusion is better suited to scale [100,114]. Production speed depends on how automated
the method is [27]; notably, integrating textiles and electronics remains mostly manual
to this date [13,22,43,65,97]. “Fab labs” [2], robotic processes [7], and desktop robotic 3D
printers [93] may support high volume custom manufacturing.

3.3. Quality and Testing Standards

It is notable that no smart textile testing or qualification standards exist [13,22], in-
cluding no standards for output testing [27], wearability, stability, washability, and energy
efficiency [82]. In fact, textiles and electronics have separate regulatory requirements [14].
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The International Electrotechnical Commission (IEC) TC 124, “Wearable Electronic De-
vices and Technologies”, is working on standards for materials (electrochromic films,
conductive yarns), components (electrical resistance testing, strain sensors testing, snap
buttons/modular), and devices (garment washability, step counting, finger movement on
glove, skin temperature, burn safety and “Smart Body Area Network”) [115]. Additionally,
support for consumer performance testing, e.g., in store changing rooms, is needed [11].

3.4. Prototyping

The ease of smart textile prototyping [13] depends on the availability of microcontroller
platforms such as Arduino; sensors and interconnects made from conductive textiles and
inks; and small ready to use sensors.

The two major toolkits, Arduino Lilypad and Adafruit (FLORA or GENNA), include
traditional electronic elements, conductive thread, and a microprocessor [116,117]. Toolk-
its are used by academic, do-it-yourself, and commercial practitioners and informed by
academic research [1]. Toolkits are open-ended with “wide walls” and low barriers to
entry, costing less than USD 50 [1,11,116,117]. Smart textile toolkits round and “feminize”
traditional electronics to fit textiles and have influenced traditional electronics kits to con-
tain larger holes for connections [1]. Toolkits can be enhanced with other commercially
available materials (Table 4).

Table 4. Commercial materials for prototyping e-textiles.

Component Company Description Ref.

Sensor + Actuator +
Interconnects Dupont

Stretchable inks for wearables:
carbon, silver, or silver/silver

chloride conductor
encapsulant material

[118]

Sensor + Actuator +
Interconnects FabInks

Smart fabric inks (ultraviolet (UV) or
thermal cured) interface,

encapsulation, conductor, dielectric,
piezoelectric, thermochromic,

electrode, sacrificial

[119]

Sensor Primo1D e-Thread RFID yarn: yarn twisted around chip
to hide it [103] [120]

Sensor + Actuator +
Interconnects

Bekaert Fibre
Technologies

Conductive yarn
1–80 µm diameter, 8–14 µm fibers [26,121]

Actuator Fabric Thermolactyl Triboelectric heating fiber [103]

Yet, toolkits have limitations. Toolkits only support electronic textiles built by attaching
hard electronics to soft textiles. The kits do not include fabric or disclose the properties of
“conductive thread” [1]. Kits provide compatible connections and components to launch
entry level investigators, i.e., hobbyists of the field [1]. Future kits should address the gap
between packaged toolkits and cutting-edge research. Moreover, future kits could use
interaction and positive aesthetics to encourage material expertise, network solutions, and
component design [1]. This would promote education for scholarly research and training
of the workforce for manufacturing and entrepreneurship.

3.5. Standardized Electronic Textile

A standard textile with built-in interconnects to which components are attached is
called a “universal smart textile system” [53], “simulated nervous system of sensors” [54],
connected intelligent textile [11], body area network [11], fabric circuit board [114], and
“second skin” [103]. A standardized electronic textile would replace custom development; it
would support faster development cycles by being mass producible, agnostic to end-use, a
customizable framework for interconnects, and for testing [12,13,53,114]. The standardized
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electronic textile would need to be washable, have redundant flexible connections for power
and data transmission, and a dense layout of sensor connection nodes to support tens
if not hundreds of reprogrammable sensors [53,103,114]. Piezo, conductive, and optical
lines could support non-textile inertial sensors and electrodes [53]. Alternatively, the
textiles—fibers, threads, yarns—could behave as electronic components [103].

However, a standardized electronic textile is challenging to make and use. First, defin-
ing and making connection points between sensors and wires requires flexible conductive
wiring, e.g., by looped stitch interconnects [53,122]. Second, device powering requires
continuous power generation, such as by hybrid energy harvesting [79]. Third, cutting and
sewing without destroying connections, fashionable designs for universal sizes and styles,
and moisture handling [53] must all be resolved before a standardized electronic textile can
be sold.

3.6. Commercial Products

The commercialization of smart textiles remains difficult [17]. The global wearable
market, which includes smart apparel, is expected to grow five-fold between 2016 and 2026
with about half the market going to global market leaders—Apple, Xiaomi, Fitbit, Huawei,
and Garmin [11]. While smart textiles lag behind gadgets, i.e., Fitbit and Apple Smart
Watch [11,103], smart eyewear has already switched formats to industrial (Google Glass
2.0, [123]) or contact lens (Mojo vision, [124]). Top tech and fashion brands have teamed
up to make smart textile apparel, cashing in on brand recognition; notable players include
Google (with Levi), Apple, Samsung, Intel, Ralph Lauren, Polar, and Under Armor [11].
Although the smart textile market is expected to grow [78], products continue to struggle.

Why is this? Startups may have rushed to be “first to market” and capitalize on “tech-
fetishism” [106]. Smart textile startups can quickly prototype products, which causes high
competition and market noise. Often, products fail to meet expectations or live up to the
hype. Most new technology products fail to convert the early adopters and tech evangelists
into mass market appeal [125]. Academic research has low technology readiness levels
(TRLs 1–2), while commercial products have high TRLs (6–9) [11]. Government labs, with
mid TRLs (3–5) [113], are instrumental in moving tech from academia to commercialization
by standards’ development. Finally, hidden risks, such as liability and lawsuits for medical
claims, may block continued success [126].

Commercial smart textiles can be divided into sensor fabrics and heating garments.
The oldest commercial sensor fabric on the market, the Reima Cyberia survival suit,
launched in 2000, has GPS, a hydrometer, thermometer, and embroidered electrodes [11].
Motorbike suits (Dainese D-AIR, [22,127]), safety shoes (Izome, [103]), running insoles
(Arion, [128]), and health garments (Myant [129], Texis Sense for Life [130], Numetrex,
SmartLife HealthVest, and Exmovere Exmobaby [3,113]) are available. Heating garments
tend to be for sport/athletic applications. Commercial resistive heating products include
Blaze Wear [131] and Team USA Olympic heated jackets [132]. The Mide SmartSkinTM
diving swimsuit [6] and Nike “Sphere React Shirt” [6] used responsive hydrogels or vents
to regulate temperature, although neither is available for sale. Tibtech produces conductive
heating yarns and fabrics for industrial de-icing [103,133]. In summary, while resistive
style heating is available, non-electronic adaptive thermal comfort products have yet to
take hold.

4. Outlook
4.1. New Textile Production Methods

New textile production methods include thicker digital printing (dispenser printing),
a 3D printing fabric, motorized stitch gathering, and laser cut folding. Dispenser printing
(DP) performs computer-aided printing to deposit an ink thickness similar to screen printing
after curing, i.e., a much thicker layer of metal than digital inkjet printing [134]. Three-
dimensional printers produce smart textile objects by layering cut off-the-shelf felt or
conductive fabric bonded with heat fusible adhesive (Heat-n-BondTM) [93]. The placement
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of cuts controls the deformation properties, and conductive fabric can be used to make
touch sensors, circuit paths, or interlayer vias [93]. A new–old method sews seams onto
fabric, which, when pulled, change the textile shape (lateral gather (pleat), horizontal
gather (bend), or diagonal simple/curved gather) to make an adjustable skirt length or
self-opening curtain when attached to sensors and a motor [72]. A conformable shoe sole
with foam-like compliance was made by Tachi-Miura polyhedral origami folding of PP
film on a 3D printed plastic guide reinforced with cotton thread [135]. These reframed
techniques provide greater responsivity.

4.2. A Smart Textiles Journal

Currently, no “e-Textile” or “Smart Textile” journal exists. Researchers publish in
discipline specific journals; in fact, most publications are outside of textile journals (88%)
even though almost a third (29%) of the researchers have a textiles background or affilia-
tion. Other interdisciplinary fields have a shared journal, e.g., “Additive Manufacturing”,
launched in 2014. An interdisciplinary field requires interdisciplinary information sharing,
e.g., user experience or tech adoption best practices into materials or electrical engineering
papers. A smart textiles journal should exist; some of the proposed journal areas with
possible fields that can contribute to e-textiles are displayed in Table 5.

Table 5. Smart textile research publication by disciplines.

Journal Focus Purpose Disciplines

Prototypes of
Wearables

Focused on e-textile system
(power, sensing/

actuating, connections).

Electrical and computer engineering,
information systems

User experience/
adoption of tech

Voice of the customer,
market analysis

Business, marketing, design,
computer–human interface (CHI),

psychology, philosophy

Materials processing
Material properties and

interactions, integration into a
textile or a wearable medium

Materials science, chemical
engineering, mechanical engineering,
plastics engineering, textile sciences

5. Conclusions

In conclusion, the smart textiles field is both mature and up-and-coming. E-textiles
contain multiple scales—fibers, threads or yarns, fabrics, garments, ensembles, and assem-
blies of textile wearers—across which smart interactions could be designed [5,7]. Surveys of
each component have highlighted the various mechanisms utilized to “sense” and “actuate”
while requiring some form of “power” that are “interconnected”. Applications are surveyed,
as well as the current limitations facing the e-textiles field, such as their commercialization,
standardization, prototyping, and highly interdisciplinary nature. Implementing inter-
actions designed for specific applications and wearers will help academic research gain
enough traction to leave the lab. More well-informed and coordinated interdisciplinary
collaborations are also crucial to solve the remaining challenges such as developing a
standardized electronic textile, battery-less stimuli responsive garments, and sustainable
manufacturing methods. The material palette is limited solely by the researcher’s cre-
ativity and encompasses polymers–metals–ceramics and fibers–films–fabrics. Perhaps
the most exciting, underdeveloped application area is textiles that make virtual reality a
tactile reality.
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