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Abstract: Face recognition is an important application of pattern recognition and image analysis in
biometric security systems. The COVID-19 outbreak has introduced several issues that can negatively
affect the reliability of the facial recognition systems currently available: on the one hand, wearing a
face mask/covering has led to growth in failure cases, while on the other, the restrictions on direct
contact between people can prevent any biometric data being acquired in controlled environments.
To effectively address these issues, we designed a hybrid methodology that improves the reliability
of facial recognition systems. A well-known Source Camera Identification (SCI) technique, based
on Pixel Non-Uniformity (PNU), was applied to analyze the integrity of the input video stream as
well as to detect any tampered/fake frames. To examine the behavior of this methodology in real-life
use cases, we implemented a prototype that showed two novel properties compared to the current
state-of-the-art of biometric systems: (a) high accuracy even when subjects are wearing a face mask;
(b) whenever the input video is produced by deep fake techniques (replacing the face of the main
subject) the system can recognize that it has been altered providing more than one alert message.
This methodology proved not only to be simultaneously more robust to mask induced occlusions but
also even more reliable in preventing forgery attacks on the input video stream.

Keywords: biometric; face recognition; PNU; Source Camera Identification; spoofing

1. Introduction

Face recognition is one of the most active applications of pattern recognition, image
analysis, and understanding [1], with it having become one of the most widely biometric
solutions in several security systems and real-world scenarios. Modern systems for crime
prevention, law enforcement applications, access control, and surveillance, such as Intelli-
gent Closed-Circuit Television (ICCTV) or IPV4 cameras systems, have attracted a great
deal of attention. These systems capture images from a CCTV/IP camera and apply a face
recognition algorithm to identify the detected subject and grant access to a specific gate or
restricted area. If the subject’s identity is verified as permitted, access is allowed; otherwise,
it is denied.

When these systems are used in sensitive areas (i.e., airports, military zone, etc.),
the integrity of the data used in the acquisition phase, together with the accuracy of the
biometric recognition, becomes a critical aspect of the security of the system.

The COVID-19 outbreak has created a series of new problems that are negatively
impacting the reliability of the previous generation facial recognition systems designed
for people who did not have anything covering their faces. On one hand, the wearing of
a facial mask drastically reduces facial recognition performances, since almost half of the
face is covered and no longer available for acquisition [2]. On the other, the restrictions on
travel and contact between people to limit the virus spreading can make the acquisition of
biometric data in a controlled environment complicated, if at times impossible. Masked
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Face Recognition (MFR) has gained more and more attention over the past two years. Due
to the loss of crucial information relating to the parts of the face such as the chin, cheeks, lips,
and nose, the facial recognition software used at various checkpoints [3] performs relatively
badly when there are masked faces. For authentication and verification applications such as
for unlocking phones, making digital payments, and carrying out public safety inspections,
among others, the failure of facial recognition methods in the case of face masks has created
significant challenges [4,5]. For example, the entry gates at public security checkpoints at
train and bus terminals have installed cameras that rely on a face recognition technology
that is unable to identify people wearing face masks/coverings [6]. Current research is now
focusing on the area of face mask spoofing as a result of the rise in fraud attempts in this new
real context. Additional characteristics must be introduced to make the biometric system
safer and computationally efficient against sneaky and unpredictably spoofing attacks.

This work proposes a facial recognition system that uses facial dynamics to effectively
recognize a subject, with and without a mask or face covering, in which the images ac-
quired for the enrollment phase are subjected to a forgery detection phase before accepting
their authenticity.

Face masks hide a significant part of the human face and make several facial features
unavailable for analysis. The applied recognition system aims to analyze the dynamics
of the periocular feature to increase recognition accuracy. A deep learning approach is
used to learn from the temporal features. A Convolutional Neural Network–Long Short-
Term Memory (CNN-LSTM) architecture is applied to the video sequences to use the facial
dynamics for the classification process, with only the periocular region (the area not covered
by a face mask) being taken into consideration.

In a context where there is an urgent need for a high level of security, it was possible
to introduce a further check on the integrity of the data acquired. We introduced an
identification technique, mostly based on the Pixel Non-Uniformity noise (PNU noise, for
short), which is widely used in current literature to automatically examine images under
investigation. PNU is a noise characteristic of digital camera sensors, and it is extremely
efficient when used for identification tasks, such as those performed by monitoring systems,
as well as to prevent fraud scams. Due to its effectiveness and reliability, its use has now
been extended to other relevant application domains such as biometric recognition to
resolve the integrity of their authentication systems.

To make the facial recognition system both more robust as well as more reliable even
in the case of counterfeiting operations, in combination with a facial recognition system that
can recognize masked faces with a greater accuracy, we have included an additional level
of security through the PNU-based Source Camera Identification (SCI, for short) approach,
which allows evaluating the integrity of video images.

In this biometric system, before or during feature extraction for the machine learning
approach, we introduced the SCI method to identify and possibly exclude those videos
whose frames have been tampered with or which, in any case, have a low level of reliability.

According to the hybrid technique described above, by exploiting the reliability and
accuracy of the PNU-based SCI approach, it is possible to make a more robust facial
recognition system when a subject is wearing a face mask or in the presence of attempts,
and in general, any biometric system.

The rest of the paper is organized as follows. In Section 2, we describe the aim of
this study. Section 3 discusses the current state of the art in face recognition systems.
Sections 4 and 5 present the experimental analysis. Section 6 discusses the results of the face
recognition procedure in combination with the PNU-based SCI method. Finally, Section 7
presents some conclusions.

2. The Face Recognition Problem

In recent years, facial recognition has become a particularly relevant topic, reaching
a relatively high level of accuracy under conditions where there is high variability in the
pose, expression, in terms of face size, ambient lighting, and distance from the camera. The
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use of face masks/coverings represents a new factor, which can often negatively affect the
recognition process.

This has drawn attention to the consequent threats and vulnerabilities that reduce the
reliability standard of face recognition and security systems. To improve the performance
of standard face recognition systems and identity verification, a fusion between hard and
soft biometrics is often applied [7–9].

This study considers the spatial and temporal features for face recognition in presence
of face masks/coverings. Consequently, the dataset includes video acquisitions of the same
subjects with and without a face mask. All the images, extracted from a single video, were
collected in a fixed number of partitions and referable to a subject with and without a mask.
Therefore the difference in performance cannot be attributed to changes in the camera
unless there has been tampering during the image acquisition phase. The SCI method
works on precisely this point. Any changes in the pose are not a determining factor since
the datasets are made up of frontal images. Conversely, a potential source of the variability
of the performance is given by the fact that people, regardless of whether they are wearing
a mask or not, vary their “recognizability”. This is where face recognition techniques play
a decisive role.

A biometric recognition system uses physical characteristics (e.g., fingerprints, iris,
face, ear, etc.) and/or behavioral characteristics (e.g., voice, signature, handwriting, etc.)
for the identification or recognition of a subject. Facial recognition addresses the problem
of identifying and/or authenticating a person from a photo or video using the human
face as the main biometric feature. It has also recently attracted attention in developing
deep learning methods, with the main advantage being that no pre-processing is required.
The network is fed directly with the images avoiding the features extraction phase. Con-
volutional neural networks, or ConvNet (CNN), are one of the most widely used deep
learning algorithms in computer vision and are currently the most performing facial recog-
nition methods for image classification and facial recognition activities [10,11]. The most
sophisticated models that use deep learning in multiple time domains complement the
Convolutional Neural Networks with the use of Recurrent Neural Network (RNN). For
example, to combine static and dynamic characteristics in a CNN-RNN framework, a Long
Short-Term Memory Network could be combined with convolutional layers. Long Short-
Term memory (LSTM) is an artificial recurrent neural network (RNN) in which connections
between the nodes form a direct or undirected graph along a timeline that allows them to
exhibit a dynamic temporal behavior [12].

2.1. The Source Camera Identification (SCI) Approach

The SCI problem concerns the identification of the digital camera used to acquire
the digital images and their integrity [13]. Current literature highlights how each digital
camera has its own unique Pixel Non-Uniformity Noise (PNU noise, for short), i.e., is the
characteristic noise left by the digital camera sensor when capturing images. The latter
could be used as a kind of fingerprint for identification activities.

There are multiple contributions to SCI methods and one of the most reliable and
robust SCI techniques proposed so far to extract noise (PNU) from a digital camera sensor
is [14] by Fridrich et al. The other contributions in line with the SCI methods are essentially
a variant of this algorithm.

There is a brief overview of this algorithm, since it used as a reference method in
our experiment.

2.1.1. The Fridrich et al. SCI Procedure

Let I be a digital image under investigation and C a digital camera. We are interested
in knowing whether I was probably taken using C.

First, extract the PNU noise from I and then correlate it with an estimation of the
reference sensor pattern noise (Reference Pattern, RP) of C.
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The identification made using the Fridrich et al. procedure can be summarized in the
following three phases:

Phase 1

With the following formula, we extract a Residual Noise (RN) from I :

RNI = I − F(I) (1)

where F is a denoising function, such as a Daubechies 8 low-pass filter wavelet. The
extracted noise RN, denoted as RNI , is a Pixel Non Uniformity (PNU) noise approximation
existing in I, since the latter cannot be directly obtained (see [14] for details).

Phase 2

The PNU pattern RP of C is estimated from a collection M of images taken with the
camera C. This can be done by averaging the RNs from a set of images taken using C as
defined in (2):

RPC =
∑M

i=1 RN(C)
i

M
(2)

Phase 3

To measure the similarity between RNI (i.e., the residual noise of I) and RPC (i.e., the
PNU pattern of C) a statistical correlation is applied. This can be achieved by using
one of several approaches such as the Circular Cross-Correlation Norm (CCN) (see [15])
statistic, the Peak-to-Correlation Energy (PCE) statistic (see [16]), and the Bravais-Pearson
Correlation (CCBP) ρC statistic (see [14]), used in this work and defined as follows:

ρC(p) = corr(n, PC) =
(n− n) · (PC − PC)

‖ (n− n) ‖‖ (PC − PC) ‖
(3)

where the identification occurs by comparing ρC(p) with a certain threshold θ, estimated
according to the Neyman–Pearson method. If the value of this statistic exceeds θ, then it is
probable that I was taken from C.

3. Face Recognition Systems

A typical video-based facial recognition system automatically detects face regions,
extracts features from the video, and recognizes the face’s identity if a face is present. In
surveillance, information security, and access control applications, facial recognition and
identification from a video sequence is an important problem. The recognition of faces
from video sequences is a direct extension of still-image-based recognition. Video-based
face recognition techniques use both spatial and temporal information.

Video face recognition originated from still-image-based techniques. This kind of
system automatically detects and segments the face from the video and then applies still-
image face recognition techniques [17–19]. In [20], the authors apply a dual-input CNN to
efficiently recognize the subjects only through the periocular area. The experimentation is
carried out on a video dataset after the extraction of facial images from the video frames.
Recently, video-based face recognition methods exploit both spatial information (in each
frame) and temporal information (such as the trajectories of facial features) [21]. A big
difference between these methods and the still-image-based techniques (i.e, [17]) is the use
of representations in a joint temporal and spatial space for identification. To extract temporal
characteristics from video sequences, Baccouche et al. [22] apply embedded LSTM units to
features extracted with a Scale-Invariant Feature Transform (SIFT) algorithm. By applying
this strategy to a CNN structure, a CNN-LSTM model is obtained, in which the LSTM
units are cascaded to a CNN. Iengo et al. [23] evaluate how a set of geometrical features,
defined as distances between landmarks placed in the bottom half of the face, changes
over time when a sentence is spoken. In [24], the authors explore a dynamic approach for
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biometric face recognition, considering both the periocular and labial dynamics of the facial
landmarks during the pronunciation of a sentence.

4. Our Contribution

With the COVID-19 pandemic and the difficulties of acquiring biometric data in
controlled environments, new facial recognition problems have emerged that seriously
endanger the reliability and security of the systems. As a result, several applications
nowadays have reduced their recognition performance. In this work, the designed hybrid
approach aims to improve access control systems based on face recognition. On the one
hand, the proposed face recognition approach, based on facial dynamics, faces the problem
of recognizing people wearing face masks/coverings. On the other, it cooperates with the
PNU-based SCI technique to detect any tampered or unreliable frames belonging to the
input video streams.

According to this procedure, in a controlled environment during the recognition phase,
the acquired video frames are subjected to a counterfeiting detection phase to validate their
authenticity. If a subject is correctly identified through the facial recognition system and all
the video frames are unmodified, then the permission/access is granted; otherwise, it is
denied. The applied methodology is shown in Figure 1.

Figure 1. Flow-Chart of biometric face recognition system with Source Camera Identification (SCI).
The facial recognition process and the SCI method work as long as both the procedures are successful.
Otherwise, the general system fails.

4.1. The SCI Procedure

It is nowadays possible to see specific real-world forensic scenarios, such as, for
example, a video that has been tampered with, i.e., falsified by adding sequences of frames
(alien frames) recorded using a different, unavailable device, or the camera is unavailable
but there is only a counterfeit video, originally recorded with that camera but containing a
variable percentage of alien frames [25].

Consequently, our attention is focused either on the problem of evaluating the integrity
of a video file [26], threatened with spoofing [27] or on the compliance of a target source
camera that was used to acquire the image (i.e., SCI) [14,28].

As noted in [29], digital video cameras use the same imaging sensors used by digital
cameras; therefore, it is possible to extend, with high reliability, the most relevant PNU-
based technique presented in [14] to detect forgeries in digital images and identify digital
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video cameras from video clips. Starting from these assumptions, we intend to apply
the SCI algorithm as an anti-spoofing measure to support a biometric recognition system,
such as a face, for instance, to certify the integrity of the image. It is therefore possible
to avoid criminal acts and fraudulent activities through a distributed system with a high
temporal performance.

4.2. The Face Recognition Procedure

Face recognition has recently gained a lot of attention as one of the most successful
applications in the computer vision field, especially in recent years. This trend can be
attributed to several factors, such as the wide range of commercial enforcement applications,
availability of suitable technologies and good user acceptance [1]. Even if there are several
application contexts, in this work, we focus on the recognition of the periocular region
dynamics to effectively recognize the subject even if the lower part of the face is covered by
a face mask.

Several researchers have tried to investigate and solve this problem [30]. It is worth
considering the performance of the typical deep neural network used for recognition
decrees when face masks are included in the test set. They increase when masked faces are
also included in the training set. In this case, focusing on the periocular region helps to
avoid having to deal with the presence of masks in the data. In addition, facial dynamics
are an added value that prevents the reduction in spatial information.

5. Experimental Analysis

Face recognition is a biometric technique designed to uniquely identify a person by
comparing and analyzing models based on facial characteristics/features. To increase its
reliability, the system must be able to distinguish the real face coming from an identifying
system under stressful conditions. It has become increasingly evident that the face recog-
nition algorithms offer a truthful performance in a real recognition system. To evaluate
how our algorithms work under practical conditions, we have implemented a hybrid facial
recognition system of live face detection that uses the sequence analysis of face images
captured by a camera as shown in (Figure 2). This system, in addition to allowing for facial
recognition with a mask through the processing of SCI, is also able to detect falsification
operations by blocking the process.

This counterfeit activity detection, such as the SCI method, works in combination with
the face recognition system (Figure 1).

Figure 2. Examples faces with and without masks from the M2FRED dataset.
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5.1. Technical Source Camera Identification (SCI) Information

To evaluate the integrity of the recorded video in this face recognition system, we
exploit a vanilla implementation of the Fridrich et al. procedure presented in Section 2.1.1.
We used the process described in Figure 3.

During the enrollment/registration phase, the selected device records a video. Once
the frames have been extracted, the SCI procedure (see Section 2.1) calculates the RP
(Reference Pattern) and the threshold θ. In a controlled environment, during the acquisition
phase, when the system needs to observe a suspicious subject with a face mask, it will
extract the frames from the recorded video and for each of them, it will calculate the RNs
(Residual Noises). Using the correlation index (see Equation (3)), it will compare them
with the RP generated in the enrollment (registration) phase. We consider the procedure
successful if, for all the frames present in the input video, the value of the correlation index
is greater than a certain threshold θ [25]. Depending on the value obtained, that is, if the
SCI method was successful, the face recognition system continues to work; otherwise, it
stops immediately. As shown in Figure 1, just like black boxes, the SCI procedure works to
identify counterfeit tasks contextually to the recognition process.

Figure 3. Source Camera Identification Process with a video.

5.2. Technical Face Recognition Information

The proposed CNN-LSTM architecture allows to extract the spatial characteristics
from each frame and the temporal characteristics between the frames. It is possible to
identify two basic steps in the facial recognition process: (1) a pre-processing phase, in
which the input videos are processed to obtain the frame sequences of the periocular region
and in which the data are standardized, and (2) an extraction step of the characteristics and
classification to have a structure that allows us to recognize the faces of the subjects. The
overall workflow is shown in Figure 4.
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Figure 4. A brief workflow of the face recognition method.

Phase 1

To extract the periocular area, it must first be identified in the image. For this purpose,
DLIB, an advanced machine learning library adopted mainly to detect the facial landmarks
of an individual, was used. Facial mark detection is defined as a key reference detection
activity points on the face (eyes, eyebrows, nose, jaw, mouth, etc.) and then tracing them to
determine their spatial coordinates. The system detects the face first, using a face detector,
then uses an un-predictor on the face found to obtain the positions. Both the detector, based
on the HOG + SVM technique, and the one based on the CNN, are contained in the DLIB
library. The predictor in DLIB was used, which detects 68 facial landmarks.

Phase 2

To perform the classification process, and thus recognize objects, a CNN2D-LSTM
architecture was used. The proposed model consists of three main modules (Figure 5):

Figure 5. The neural network architecture.

1. A CNN2D structure that receives an image as input and extracts the spatial features
and transfers them to the next layer.

2. A LSTM structure that extracts the temporal information related to the video sequence.
The recurrent layers are applied to the features extracted in the CNN2D module. The
obtained characteristics are sent to the next layer.

3. Fully connected layers for the classification task: this module generalizes the input
features giving as a response a label representing the identity of the subject.

The architecture uses a well-known CNN structure: VGG16 [11], for the image features
extraction. The latest layers (fully connected, ReLU, and Soft-Max) have been removed
from VGG16. A flattened layer is cascaded to the CNN to reduce the dimensionality of
the features.The LSTM and Fully Connected layers follow. The VGG16 network used for
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the features extraction was pre-trained on the VGGFace dataset. It consists of 3.31 million
images of 9131 subjects obtained through Google ImageSearch.

6. Results and Discussion

To evaluate the performance of the controlled hybrid recognition system, we perform
a large-scale experiment using both a dataset that already exists in current literature, as
well as a new one.

6.1. Datasets

The first dataset is M2FRED (http://biplab.unisa.it/home/m2fred, accessed on
30 May 2022). It was assembled for facial recognition purposes, and it is composed of
videos of 46 different subjects, with and without masks, captured indoors and outdoors.
For each subject, the video data acquired must be uploaded through a dedicated Google
module or via social media.

The above-mentioned acquisition procedure involves the recompression of the video,
which causes problems in the SCI method [31]. Then, we assembled a second small dataset,
named UntouchedVideo, made up of 48 videos from three distinct devices that register
the faces of different subjects, with and without masks, captured in internal and external
environments. These videos were downloaded directly to the storage computer without
any further compression. We also considered the problem of the “alien frame”, that is a
frame captured by a specific camera (or device) and then injected into a recorded video
using a different camera. Current literature [25] discusses how it is possible to detect the
inclusion of alien frames in standard videos (i.e., no deep fake technology applied). We
aim to demonstrate that, in the context of videos, this approach is still capable of detecting
altered frames with deep fake techniques. Therefore, we have assembled a small deep
fake video set consisting of six deep fakes generated from the videos of different subjects
belonging to the M2FRED dataset and six deep fakes generated from the second small
UntouchedVideo dataset.

We used the DeepFaceLab (https://github.com/iperov/DeepFaceLab, accessed on
30 May 2022) library to generate the deep fake videos.

6.2. Part A: Evaluating the Performance of the Face Recognition Method

To evaluate the performance related to the applied model, metrics such as accuracy,
precision, recall, and f1-score are calculated. Confusion Matrix and ROC curves are also
considered to assess the classification errors.

The results obtained by applying the CNN-LSTM model described in Section 5.2 are
shown in Table 1. It can be noted that this model, applied to masked subjects belonging to
the M2FRED dataset, achieves a precision of 0.96 and a recall, f1-score, and accuracy of 0.95.
In Figure 6, the ROC curves and the Confusion Matrix show good behavior of the method
for the classification task.

Table 1. Accuracy, precision, recall, and f1-score metrics for the face recognition system applied to
the M2FRED dataset.

Precision Recall f1-Score Accuracy

macro-avg 0.96 0.95 0.95
weighted-avg 0.96 0.95 0.95

0.95

The trained model was also applied to the six deep fake videos generated from the
M2FRED dataset. Our goal was also to check whether a simple facial recognition system is
reliable when processing tampered videos.

In Table 2, the results show that for each deep fake, the system classifies the subjects
based on the Source: this means the tampered videos can fool the facial recognition system.
The face superimposed on the video of subject 038 for deep fake 5 is classified as 027 rather

http://biplab.unisa.it/home/m2fred
https://github.com/iperov/DeepFaceLab
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than 036; it is worth noting how, in this particular case, the prediction score is very low. In
the remaining cases, the predicted identities are always correctly associated with the actual
identities of the Sources. The classification scores for each tempered video are also shown in
Table 2. In most cases, the probability for each classified subject is higher than 50%.

In this part of the experimentation, the most significant result highlighted that the
facial recognition system is not able to distinguish an original video from a tampered one.
Consequently, it was necessary to add a level of security to the biometric system.

Figure 6. ROC Curve (left) and Confusion Matrix (right) for the face recognition module on the
M2FRED dataset.

Table 2. The deep fake videos have two components: the Source video, which represents the identity
of the subject’s face applied to another video, and the Destination, which is the video on which the
fake face is applied.

Source Destination Predicted Score

deep-1 001 000 001 0.72

deep-2 000 001 000 0.58

deep-3 009 010 009 0.87

deep-4 013 016 013 0.49

deep-5 036 038 027 0.09

deep-6 038 036 038 0.83

6.3. Part B: Evaluating the Performance of the SCI Approach

We experimented to assess if the SCI technique described in Section 2.1 can detect
forgery operations in a biometric facial recognition system.

In the first step of the experiment, we considered the UntouchedVideo dataset in which
no artifacts were applied except video compression. With an estimated statistical correlation
with the Neyman–Pearson method (see Equation (3)), we measured the similarity between
the Residual Noise RN of each frame of the video under scrutiny and the Reference Pattern
RP of its digital sensor.

Then we calculated a specific threshold θ for each device, represented by the value
average correlation index between the RP of the device that recorded the video and the
RN of the respective frames.
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In the second step of the experiment, for completeness, we performed an experiment
on six videos generated from the M2FRED dataset, but for the above-mentioned compres-
sion problem, we obtained inconclusive results, as shown in Figure 7. Graphically the
correlation index values, calculated between the RP of a selected device, and the RNs of
the frames coming from the video recorded by that device, fluctuate above and below the
red line of the recognition threshold θ. In practice, the manipulations (i.e., recompression)
apply a bias, making it no longer recognizable. We came to the conclusion that in this
specific case, where the videos were uploaded via a dedicated Google module or via social
media, the SCI method does not work. Finally, we repeated the experiment on another six
videos generated from the UntouchedVideo dataset (see Table 3).

Table 3. Source: name of the devices used for the UntouchedVideo dataset. Device: device model;
DeepFake1 and DeepFake2 are the videos generated from the UntouchedVideo dataset. They are
obtained by superimposing the face of a selected video (Destination) on the face of the original
one (Source).

Source Device DeepFake1 DeepFake2

S1 iPhone 12 Pro DF_S1_S2 DF_S1_S3

S2 iPhone XS DF_S2_S1 DF_S2_S3

S3 iPhone 11 DF_S3_S1 DF_S3_S2

Figure 7. Correlation value between deep fake videos generated from the M2FRED dataset and
their sources.

We have measured the similarity between the RPs and the RNs values as in the
previous step and for each device the results were compared with the aforementioned
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recognition threshold. Whenever the correlation index between the RP and RN did not
exceed the θ threshold, then it was highly probable that the frame was unreliable. In this
case, the SCI method has identified possible alterations of the video under scrutiny causing
the failure of a manipulation attempt to pass the controls.

Figure 8 graphically presents the recognition threshold θ for each of the three devices,
taking into account the correlation between the RP devices and the RN videos. In all the
cases of deep fake videos, the aforementioned threshold θ was never exceeded by all the
frames of a video, this means that the SCI procedure recognized the videos. On the contrary,
the correlation index values, colored in red, between the RP of a device that recorded the
video and the RNs of the respective frames are always all above the red threshold θ.

For example, in Figure 8a, all the correlations carried out have been performed against
the RP of camera S1. The experiment confirmed that all the correlation values of the RN
from unmodified frames are positioned above the red line (the red points) when related
to the source camera. All the other correlation values are always below the threshold θ
because either the frames come from an artificial video (produced by AI) or the frames
have been produced by a different camera.

(a) Deepfake 1 (b) Deepfake 2

(c) Deepfake 3
Figure 8. In each sub-figure, (1) the threshold θ, represented by a red line, and (2) the correlation
between the RP devices and the RN videos are represented for each of the three devices. The points
are plotted considering the original frame position in the videos (x-axis) and the correlation value
(y-axis) between the RN (Residual Noise) extracted from the frame and the RP (Reference Pattern) of
the camera under scrutiny.
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6.4. Hybrid PNU-Based Facial Recognition Architecture

To make a biometric recognition system robust under conditions where a subject is
wearing a face mask/covering or in the presence of attempted fraud, we have designed a
system in which the facial recognition process and the SCI method work in combination
(see Figures 1 and 9). Consequently, a spoof attack is more unlikely to falsify a system based
on two techniques rather than one. At the end of our experiments, we have shown that,
even when the facial recognition system fails due to forgery operations, the SCI method
recognizes the counterfeit, allowing for the success of the hybrid biometric system.

Figure 9. Hybrid PNU-based facial recognition architecture: the left side represents the Pnu-based
SCI method and the right side depicts a facial recognition system.

7. Conclusions and Future Directions

In this paper, we wanted to focus on finding a methodology to improve face recognition
systems with when wearing face masks/coverings in cases and an attempt to commit fraud
is possible. Accordingly, we presented a hybrid biometric system considering two types of
activities: (i) the facial recognition from video and (ii) the acquisition device used to acquire
digital images and their integrity.

We analyzed the methods used for each activity, highlighting the need to comply
with the starting requirements. First, for the success of the entire hybrid recognition
system presented, it should be emphasized both the rigor with which the initial data must
be acquired during the registration phase and the availability of the device (or images
captured by the camera) in question. Starting from these assumptions, we conducted a
large-scale-experiment to determine the performance of the two different methods for
robust facial recognition, working on two datasets of different sizes, summarizing and
discussing the results. We also verified that, in cases where the biometric facial system fails,
particularly in the cases of videos, the SCI method can detect any manipulations.
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The results highlight how, in real-world scenarios, such as automated crowd surveil-
lance, access control, and restricted areas, identification of criminals, law enforcement
applications, and so on, the solution offered by the combination of the two methodologies,
which are (a) the process of identifying a device and image integrity and (b) the proposed
facial recognition system, improves the reliability of biometric recognition systems. To
improve the temporal performance, we are planning to carry out a feasibility study on
a biometric facial recognition system that combines both single systems in a distributed
hybrid approach by using an Apache-Spark system on SCI.
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