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Abstract: Workers at construction sites are prone to fall-from-height (FFH) accidents. The severity
of injury can be represented by the acceleration peak value. In the study, a risk prediction against
FFH was made using IMU sensor data for accident prevention at construction sites. Fifteen general
working movements (NF: non-fall), five low-hazard-fall movements, (LF), and five high-hazard-
FFH movements (HF) were performed by twenty male subjects and a dummy. An IMU sensor
was attached to the T7 position of the subject to measure the three-axis acceleration and angular
velocity. The peak acceleration value, calculated from the IMU data, was 4 g or less in general work
movements and 9 g or more in FFHs. Regression analysis was performed by applying various deep
learning models, including 1D-CNN, 2D-CNN, LSTM, and Conv-LSTM, to the risk prediction, and
then comparing them in terms of their mean absolute error (MAE) and mean squared error (MSE).
The FFH risk level was estimated based on the predicted peak acceleration. The Conv-LSTM model
trained by MAE showed the smallest error (MAE: 1.36 g), and the classification with the predicted
peak acceleration showed the best accuracy (97.6%). This study successfully predicted the FFH risk
levels and could be helpful to reduce fatal injuries at construction sites.

Keywords: fall-from-height; IMU sensor; deep learning; risk prediction

1. Introduction

Fall-from-height (FFH) accidents account for an extremely high proportion of accidents
at construction sites with a fairly high mortality rate. Choi et al. [1] conducted a comparative
analysis of accidents that occurred between 2011 and 2015 in three countries: the United
States, Korea, and China. Accidents were found to occur frequently at construction sites,
with the U.S. showing a 26% increase (from 781 to 985), while China and Korea showed a
28% decrease (2634 to 1891) and a 21% decrease (from 621 to 493), respectively. The average
mortality rate was the highest in Korea (17.9 persons), followed by the U.S. and China
(9.4 and 5.3 persons, respectively).

The Occupational Safety and Health Administration (OSHA) requires implement-
ing physical safety measures to reduce such accidents at construction sites [2]. Primary
protection measures include implementing guardrails, covers, safety nets, and physical
safety devices, while secondary protection measures include the use of a personal fall arrest
system (PFAS) whereby the impact of an FFH accident can be minimized [3]. A PFAS com-
prises a connector, full-body harness, lanyard, and rescue line, and may prevent a person
from falling when properly configured [4]. A PFAS cannot prevent FFHs but can effectively
avoid fatalities from FFHs [5]. Yang et al. [2] reported that fatalities due to losing balance
can be avoided when the PFAS is properly used; however, if a worker is suspended from a
PFAS for a prolonged time, there is a risk of suspension trauma, orthostatic intolerance,
or other serious injuries, and workers still sustain injuries due to the incompleteness of
a PFAS [6]. Furthermore, the effect of a PFAS is insignificant when a person falls from a
height below 15 ft, and accidents occur because workers do not properly wear PFAS due to
their inconvenience during work [7].
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To address the limitations of interrupting the movements of workers, some studies
have considered the use of visual devices [8–10]. Han et al. [8] analyzed four actions on
ladders using depth information measured by Kinect and classified unsafe actions with
90.9% accuracy. Fang et al. [9] defined unsafe behaviors as situations in which workers and
the structural supports overlap in construction. They developed an automatic computer-
vision system with 90% recall and 75% precision using CNN. Kong et al. [10] combined
computer vision with long short-term memory (LSTM) to predict unsafe actions from video
data. They determined the safety of actions based on the predicted trajectories. Their
model showed a mean intersection-over-union of 73.4%, mean absolute precision of 92.9%
(IOU: 0.5), and mean absolute precision of 68.1% (IOU: 0.7). However, the vision-based
system is not effective since workers might be obscured by structures on construction sites.

Researchers have actively developed fall detection algorithms to minimize injuries
in the elderly from falls using wearable sensors [11–13]. Threshold-based methods have
mainly been used for fall detection. Jung et al. [11] developed a fall detection algorithm
with an accuracy of 92.4% and a lead time of 280.25 ± 10.29 ms, evaluated on the SisFall
public dataset, and used a complementary filter to compute the vertical angles from the
IMU sensor data. Ahn et al. [12] developed a hip protection system for the elderly, which
comprises an IMU sensor, a non-gunpowder type inflator, and a wearable airbag with a
threshold-based fall detection algorithm, and 100% accuracy and a 401.9 ± 46.9 ms lead
time were obtained. Koo et al. [13] developed a post-fall detection algorithm based on
machine learning using an IMU sensor. They used five different ranking algorithms to
select feature subsets. The feature subsets selected by the T-score showed the best accuracy
of 99.86%.

Several studies have been conducted on developing FFH detection algorithms by
extending the aforementioned research [2,14,15]. Yang, et al. [2] performed near-miss fall
detection based on machine learning with IMU sensor data, where the algorithm showed
86.8% accuracy in the laboratory and 85.2% accuracy outdoors. Dogan and Akcamete [14]
performed an FFH detection study by calculating the fall height from three-axis acceleration
data, with an overall error rate of 10.8%. Kim et al. [15] developed an FFH detection
algorithm by calculating the vertical velocity and the trunk angles from IMU data and
reported that 100% accuracy and a lead time of 301.8 ± 87.8 ms were obtained.

In order to increase survival rates after FFHs [16], it is important to predict the risk
levels of falls. Arena et al. [17] experimentally confirmed that the peak acceleration of the
head is between 4 and 11 m/s2 during falls. The peak acceleration value is one of the key
measurement factors that can affect the severity of injury [18]. Kim et al. [19] proposed
a study to predict the impact of falls of the elderly with the peak acceleration value. A
regression analysis was performed using a deep learning algorithm based on IMU sensor
data, and its results showed a mean absolute percent error of 6.69± 0.33% and an r value of
0.93. The risk of FFH accidents can be represented using the peak acceleration value. Risk
prediction is more necessary and challenging to discriminate since FFH accidents result in
more fatal injuries.

In this study, an IMU sensor was attached to the subject to obtain data regarding
frequently observed or dangerous behaviors at construction sites. A human dummy was
used to acquire data for falls from 2 m or above. Regression analysis was performed using
various deep learning models (1D-CNN, 2D-CNN, LSTM, and Conv-LSTM) applied to the
three-axis acceleration, three-axis angular velocity, and their SVM feature vectors. The risk
level was estimated based on the predicted peak acceleration.

2. Materials and Methods
2.1. Experiment

A total of 20 healthy adult males (24.8 ± 2.0 years old, 173.5 ± 6.1 cm, 76.6 ± 13.0 kg)
were recruited from Yonsei University for the study. Participants who had musculoskeletal
problems were excluded. The experiment was conducted with the approval of the Yonsei
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University Mirae Campus IRB (1041849-202004-BM-042-02), and written consent was
obtained from the participants [20].

An IMU module based on MPU-9250 (InvenSens, San Jose, CA, USA) was attached to
the T7 position of the subject. The three-axis acceleration and angular velocity signals were
measured at a sampling frequency of 100 Hz. LabVIEW (National Instruments, Austin, TX,
USA) was used to save the data on a PC.

Fifteen general working movements (NF: non-fall), five low-hazard fall movements,
(LF), and five high-hazard FFH movements (HF) were selected based on the reports of safety
and health [8,21,22] and measured three times. For safety reasons, a dummy (Madamade,
Chuncheon, Gangwon-do, Korea) (height: 180 cm, weight: 10 kg) was used for the HF
experiments with fall heights higher than 2 m. Vertical and forward falling movements
(FFH) were performed by the dummy at heights of 2 m and 3 m. All movements were
repeated five times. Our previous study [15] revealed no differences between the data
obtained when a person fell forward from 0.7 m and when a dummy fell forward from the
same height using an SPSS-based independent sample t-test.

Table 1 represents the experimental movements in this study, comprising NFs, LFs,
and HFs. Four sets of HF movements (HF01, 02, 04, and 05) were performed using the
dummy, while HF03 was performed by participants. For all subjects, the experiments were
performed based on the videos that were made on the Internet.

Table 1. Experimental movements.

Non-Fall
(NF)

NF01 Sitting quickly and getting up NF09 Moving up and down in an elevator
NF02 Sitting and getting up comfortably NF10 Walking on a beam
NF03 Going up and down the stairs NF11 Walking on a beam with luggage
NF04 Going up and down a ladder NF12 Shoveling
NF05 Working with a pickaxe NF13 Stretching
NF06 Lifting (front) NF14 Climbing up and down a scaffold
NF07 Lifting (back) NF15 0.7 m jump
NF08 Lifting (side)

Low-Hazard
Fall (LF)

LF01 Forward trip LF04 Backward slip
LF02 Lateral trip LF05 Fainting
LF03 Forward slip

High-Hazard
FFH (HF)

HF01 2 m Vertical FFH HF04 2 m Forward FFH
HF02 3 m Vertical FFH HF05 3 m Forward FFH
HF03 0.7 m Forward FFH

2.2. Pre-Processing

For the training, 70% of the human data and 60% of the dummy data were used (30%
of the human data and 40% of the dummy data were used for the testing). Two sum vector
magnitude (SVM) values, acceleration SVM (ASVM) and gyro SVM (GSVM), were calculated
from the acceleration and angular velocity data measured by the IMU sensor [19]. Eight
features were used to train the deep learning models, which predicted the magnitude of
the impact acceleration. (Table 2). The data from 0.7 s to 0.2 s prior to the peak ASVM
value were extracted for the analysis (Figure 1). The data analysis was conducted on a
desktop equipped with Intel i7-12700 2.1 GHz, 32 GB RAM, NVIDIA GeForce RTX3060,
and Windows 11.

Table 2. Eight features used in this study.

No. Feature No. Feature

1 AX : x-axis acceleration 5 GX : x-axis angular velocity

2 AY : y-axis acceleration 6 GY : y-axis angular velocity

3 AZ : z-axis acceleration 7 GZ : z-axis angular velocity

4 ASVM: Sum vector magnitude
of acceleration 8 GSVM: Sum vector magnitude of

angular velocity
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Figure 1. An example of the window extraction.

ASVM =
√

Acc2
x + Acc2

y + Acc2
z (1)

GSVM =
√

Gyro2
x + Gyro2

y + Gyro2
z (2)

2.3. Deep Learning Models

Python 3.9 (Python Software Foundation, Wilmington, DE, USA) and the TensorFlow
2.9.0 library were used for deep learning. One-dimensional CNNs are mostly used for 1D
time-series analyses [23], whereas 2D-CNNs are generally used for image classification
or facial recognition in the form of 2D filters [24]. The long short-term memory (LSTM)
method is a neural network model devised to supplement the drawback of a recurrent
neural network (RNN), which is losing the first input information through multiple layers.
Unlike RNN, LSTM introduces a structure where major information from the previous step
is inputted into the next step [25]. Conv-LSTM utilizes the advantages of CNN and LSTM
and is particularly useful for time-series prediction [26]. Data features are extracted from
the convolutional layer of CNN, while LSTM receives the extracted features as input [27].

Figure 2 illustrates the structure of the four deep learning models. In Figure 2A,B,
1D-CNN and 2D-CNN models show two convolution layers in which overfitting is pre-
vented by reducing the computation process through the max-pooling layer [28]. Figure 2C
illustrates two layers of LSTM before the dropout layer. The Conv-LSTM comprised two
convolution layers and two LSTM layers, in which the max-pooling layer was positioned
after the convolution layer. Overfitting was prevented using the dropout (0.25) layer before
the output. The basic hyperparameters for the four models were as follows: The Conv1D
layer had a kernel size of 2 and a stride of 2. The max-pooling 1D and max-pooling 2D
layers were 2 and (2, 2), respectively. Conv2D had a kernel size of (4, 4) and a stride of (2, 2).
The activation function was ReLU, while the batch size of each model was 1. In addition,
an early stop function was used to prevent overfitting. The models with an LSTM layer
were set to include 50 epochs with 10 as patience. For the two CNNs, the epoch and the
patience were set to 200 and 100, respectively.

The number of convolution filters and LSTM memory units were optimized using a
grid search method. The numbers of filters in the first and the second layers for both the
1D-CNN and 2D-CNN were set to 8, 16, 32, and 64, and the numbers of units in the LSTM
were 8, 16, 32, and 64. The numbers of filters in the conv1D layer of the Conv-LSTM were
16 and 64, while the numbers of units in the LSTM layer were 16 and 64.
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Figure 2. Structures of deep learning models: (A) 1D-CNN, (B) 2D-CNN, (C) LSTM, and (D) Conv-LSTM.

2.4. Evaluation Methods

The errors between the measured and predicted values were calculated using two
error functions: the mean absolute error (MAE) and the mean squared error (MSE).

MAE =
1
N ∑N

i=1|ŷi − yi| (3)

MSE =
1
N ∑N

i=1(ŷi − yi)
2 (4)

where ŷi is the peak acceleration value predicted by the model, and yi is the peak ac-
celeration value measured in the experiment. The units of MAE and MSE are g and
g2 respectively.

The accuracy, sensitivity, and specificity were calculated as

Sensitivity (%) =
True Positives

True positives + False negatives
× 100, (5)

Speci f icity (%) =
True negatives

True negatives + False positives
× 100, (6)

Accurracy (%) =
True Positives + True negatives

True positives + True negatives + False positives + False negatives
× 100, (7)

where True positives is the number of FFHs detected as FFHs, False positives is the number of
non-FFHs detected as FFHs, True negatives is the number of non-FFHs detected as non-FFHs,
and False negatives is the number of FFHs detected as non-FFHs.

3. Results

Table 3 represents the best performance among the models trained with hyperparame-
ters. The smallest error (MAE: 1.46 g) was observed when the 1D-CNN model was trained
with the MAE and the number of filters in the first and the second layers was 16. The
error was the smallest (MSE = 6.02 g2) when the 1D-CNN model was trained with the MSE
and the numbers of filters in the first and the second layers were 64 and 8, respectively.
The smallest error (MAE: 1.61 g) was observed when the 2D-CNN model was trained
with the MAE and the numbers of filters in the first and the second layers were 32 and
16, respectively. The error was smallest (MSE = 9.51 g2) when the 2D-CNN model was
trained with the MSE and the numbers of filters in the first and the second layers were
32 and 16, respectively. The smallest error (MAE: 2.07 g) was observed when the LSTM
model was trained with the MAE and the numbers of units in the first and the second layers
were 8 and 16, respectively. On the other hand, the error was smallest (MSE = 12.20 g2)
when the LSTM model was trained with the MSE and the numbers of filters in the first
and the second layers were 8 and 64, respectively. The smallest error (MAE: 1.36 g) was
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observed when the Conv-LSTM model was trained with the MAE and the numbers of
filters in the first and the second layers were 64 and 64, respectively and the numbers of
units in the third and the fourth layers were 64 and 16, respectively. The error was smallest
(MSE = 5.69 g2) when the Conv-LSTM model was trained with the MSE and the numbers
of filters in the first and the second layers were 64 and 16, respectively and the numbers of
units in the third and the fourth layers were 16 and 64, respectively.

Table 3. Best performances of deep learning models (in terms of MAE and MSE).

Model Name MAE (Epoch) MSE (Epoch)

1D-CNN 1.46 g (183) 6.02 g2 (151)

2D-CNN 1.61 g (130) 9.51 g2 (187)

LSTM 2.07 g (18) 12.20 g2 (13)

Conv-LSTM 1.36 g (25) 5.69 g2 (49)
It is noted that the 1D-CNN showed smaller errors in prediction than the 2D-CNN in both the MAE and MSE.
Among four deep learning models, Conv-LSTM demonstrated the best prediction results, and LSTM the poorest.

Figure 3 shows the means and the standard deviations of the true and the predicted
values for all experimental movements. The NF movements, except for NF15 (jumping),
showed true values between 1 g and 4 g (5 g~9 g for NF15). The 2D-CNN and LSTM
predicted peak acceleration values of less than 10 g in NF15, but both the 1D-CNN and
Conv-LSTM trained by the MSE predicted values higher than 10 g. The LF movements
were within the range of 5 g~13 g, whereas most HF movements had values higher than
9 g. The LF movements, especially LF03 and LF04, showed larger deviations than the other
NF or HF movements. The LF03 and LF04 movements had peak acceleration values higher
than 10 g, while the other LF movements were in the range of 4 g~9 g. Most predicted
values in the LF were less than 9 g. The 1D-CNN, 2D-CNN, and LSTM (except Conv-LSTM)
had significantly underestimated predictions, although at least 9 g of the peak acceleration
values was measured in HF01. The vertical FFHs (HF01 and HF02) revealed smaller peak
acceleration values than the forward FFHs (HF04 and HF05). The 1D-CNN and Conv-LSTM
predicted peak acceleration values of HF movements beyond 10 g when estimated by the
MAE. It is noted that the 2D-CNN predicted peak acceleration values with the largest
deviation. The 1D-CNN and Conv-LSTM predicted the peak values in the HF movements
better than the others. Considering the predicted peak acceleration values in the LFs and
HFs, movements higher than 9 g could be defined as the threshold of FFH.

Table 4 presents the classification performance, assuming that a peak acceleration of
9 g or higher indicates FFH movements. The 1D-CNN showed better sensitivity (MAE:
83.3%, MSE: 87.5%) than the 2D-CNN (MAE: 4.2%, MSE: 79.2%), even though more than
90% accuracy was found in the 1D-CNN (MAE: 92%, MSE: 93.9%) and 2D-CNN (MAE:
90.7%, MSE: 96.5%). The LSTM demonstrated very poor sensitivity since its predicted
values were mostly small. Among all the deep learning models, the Conv-LSTM showed
the highest classification accuracy when trained by the MAE (97.6%).

Table 4. Classification performances.

Model

1D-CNN 2D-CNN LSTM Conv-LSTM

Error Function MAE MSE MAE MSE MAE MSE MAE MSE

Accuracy (%) 92.0 93.9 90.7 96.5 94.4 92.0 97.6 92.3

Sensitivity (%) 83.3 87.5 4.2 79.2 45.8 50.0 62.5 95.8

Specificity (%) 92.6 94.3 96.6 97.7 97.7 94.9 100 92.0
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Figure 3. True vs. predicted (MSE, MAE) values of trained models for different movements.

4. Discussion

Our study shows that the 1D-CNN had smaller errors than the 2D-CNN. This implies
that a 1D-CNN is more appropriate for time-series data. The Conv-LSTM showed the
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smallest errors among the others in both the MAE and MSE. The LSTM was used to predict
the peak values, while the CNN was efficient in extracting features.

An NF15 (0.7 m jump) can frequently occur at construction sites; it is not necessarily
a falling movement, but a dangerous one leading to an FFH. It showed larger predicted
values of peak accelerations than the other NF movements; thus, it can be classified as
an FFH. LF movements can easily occur at construction sites and are mostly predicted
within the range of 4 g~9 g, for which the 1D-CNN and Conv-LSTM models obtained
reasonable predictions. Such movements might not be too dangerous for the workers to
require a life-saving wearable airbag, but they still might lead to serious injuries for the
elderly during daily life.

In Figure 3, HF01 and HF02, vertical FFHs, showed relatively smaller peak acceleration
values than HF03, HF04, and HF05, representing forward FFHs. In vertical FFHs, the foot
first touches the ground during falling, which results in a smaller transfer of mechanical
energy and, therefore, a smaller impact compared to forward FFHs. In Figure 3, the
1D-CNN and the Conv-LSTM predicted HFs more accurately, showing the high peak
acceleration values, than the 2D-CNN and LSTM. The 2D-CNN and LSTM showed under-
estimated peak acceleration values since a data imbalance appeared between a large number
of NFs and a small number of HFs. This can be solved using data augmentation techniques,
but they have overfitting problems.

As for estimating errors in prediction, the MSE resulted in smaller deviations between
the sensitivity and the specificity of all deep learning models than the MAE. The MSE
amplified errors by squaring, and the errors in the LFs and HFs were larger than those
in the NFs. The MSE tended to focus on the LFs or HFs more than the NFs since deep
learning models train to minimize errors. The 2D-CNN trained by the MAE had the
poorest sensitivity (4.2%). The LSTM showed high accuracy (MAE: 94.4%, MSE: 92.0%), but
significantly low sensitivity (MAE: 45.8%, MSE: 50.0%). The sensitivity is more important
than the specificity since it is directly related to the notification of dangerous situations.
The 1D-CNN and Conv-LSTM showed higher sensitivity than the others. Thus, 1D-CNN-
or Conv-LSTM-based risk prediction algorithms would be more effective for safety issues.
A risk prediction algorithm can be used as a device to warn of risks and call for emergency
support when applied to a mobile application. In addition, the classification of NFs and
LFs from HFs may be helpful when used with protective equipment such as an airbag. The
aforementioned can lead to a reduction in the death rate.

There are some limitations to the study. First, our dataset does not represent all
movements at construction sites since it was obtained from the simulated movements
of only twenty participants. However, it is enough to represent major movements at
construction sites and sufficient for developing an algorithm for predicting the risk of
movements. Second, the developed algorithm tended to underestimate the risk of each
movement, since the amount of data in each class (NF, LF, and HF) was unbalanced. Several
augmentation techniques can be applied to solve this problem in the future.

5. Conclusions

The risks of FFHs at construction sites were predicted using IMU sensor data for
accident prevention. A total of 15 non-falls (NF), 5 low-hazard falls (LF), and 5 high-hazard
FFHs (HF) were selected as the experimental movements. Four deep learning models
(1D-CNN, 2D-CNN, LSTM, and Conv-LSTM) and two error functions (MAE and MSE)
were applied to predict the peak acceleration values at impact. The Conv-LSTM trained by
the MAE showed the smallest error (1.36 g). When the threshold of 9 g was applied as the
peak acceleration, the Conv-LSTM showed the highest accuracy (97.6%). Our algorithm
successfully predicted the risk of movements and can be applied to real construction sites
in the future. This study could be very helpful to prevent fatal injuries at construction
sites by providing not only proper feedback to avoid unsafe behaviors but can also prompt
treatment after accidents.
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