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Abstract: A distributed fiber optic hydrophone (DFOH) is a new type of fiber optic hydrophone
(FOH) with adjustable structure. The dependence of the directivity of a DFOH on array structure
is theoretically and experimentally studied. The directivity function of a sensing channel and that
of a DFOH are derived. Based on the directivity function, the simulations are performed. Finally,
the theoretical analysis is demonstrated by the experiments performed on Qingyang lake, and the
results reveal that the longer sensing channel length guarantees the lower first-order side lobe and the
narrower main lobe. As the channel length increased from 1 to 3, the main lobe width and first-order
side lobe height decreased by 4.9◦ and 6 dB, respectively. In addition, channel spacing is irrelevant
to directivity as the spacing is shorter than the wavelength. As the channel spacing increased from
0 to 1, the variations of the main lobe width and first-order side lobe height are lower than 0.5◦ and
0.94 dB, respectively. This study would provide guidance for the structure design of a distributed
fiber optic hydrophone in signal processing.

Keywords: distributed fiber optic hydrophone; directivity function; channel length; channel spacing

1. Introduction

Distributed acoustic sensing (DAS) is an attractive fiber optic sensing technology for
spatially continuous acoustic signal measurements over long distances. By using a wide
range of optical cables, various vibration sources in the surrounding environment can
be sensed with high sensitivity and located precisely [1–4]. DAS has been widely em-
ployed in many fields such as railway transportation [5,6], perimeter security [7], pipeline
security [8,9], etc. Applying DAS technology to the field of underwater acoustic sensing
gives birth to a new type of fiber-optic hydrophone (FOH), distributed fiber optic hy-
drophone (DFOH). Conventional FOHs are point sensors and need to be formed into arrays
to detect acoustic signals [10–13]. A DFOH functions as an FOH array and interrogates
acoustic signals utilizing DAS technology. Compared to a conventional FOH array, a
DFOH has some unique advantages. Firstly, it can pick up underwater acoustic signals
continuously in space thanks to the DAS technology. Secondly, as shown at the bottom
of Figure 1 [14], a DFOH is basically comprised of only fiber. However, as shown at the
top of Figure 1, a conventional FOH consists of many fiber optic components such as
fiber couplers and Faraday rotation mirrors. A simple structure of a DFOH makes it more
reliable than a conventional FOH.

A FOH array is designed to orientate acoustic signals, and its directivity is specified
by usage of a directivity function. The width of the main lobe and the height of the side
lobe are two key parameters of a directivity function, and they are expected uniquely in
different practical use. The two parameters are determined by the array structure of a
FOH array such as the length of a sensing channel and the space between two adjacent
channels. For a conventional FOH array, the array structure is fixed. Accordingly, the
directivity function of the array is unique, which limits the array in widely practical use.
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Benefiting from DAS technology, the sensing channel length and sensing channel space
of a DFOH are set in signal processing and thus are changeable. This makes a DFOH
perform changeable directivity and be applicable to various practical use. To meet the
directivity requirement in a particular application, the array structure of a DFOH has to be
carefully designed in signal processing, and the dependence of the directivity function on
the array structure of a DFOH is expected firstly. Currently, there are few studies reported
on the dependence of the directivity function on the array structure of a DFOH. Lu et al.
developed a DFOH and analyzed its performance [15]. Only the response of a sensing
channel on the orientation of detected acoustic signals was theoretically analyzed, and the
directivity function of the DFOH was not studied. Besides, no experiments were performed
to verify the theoretical analysis.
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Figure 1. The development history of the structure of the FOH: (a) Conventional TDM, FDM architec-
tures; (b) Inline Michelson; (c) Low Finesse Fabre-Perot; (d) Distributed fiber optic hydrophone.

This paper focuses on the dependence of directivity function on the array structure
of a DFOH. The directivity function of a sensing channel and that of a DFOH are derived.
Based on the directivity function, the simulations are performed to theoretically analyze the
dependence of the array directivity function on the array structure. Finally, the theoretical
analysis is verified by the experiments. In the experiment, a DFOH system including a
DFOH and a DAS system based on phase-sensitive optical time-domain reflectometry
(Φ-OTDR) is utilized [16].

2. Directivity Function of a DFOH

We shall firstly define the structural parameters of a DFOH. Typically, a DFOH is
comprised of a sensing fiber wrapped continuously around an elastic cylinder at a certain
wrapping ratio R. Here, the ratio R is defined as the ratio of the length of a wrapped fiber
to the length of the elastic cylinder. On the signal processing end, a DFOH is virtually
divided into a sequence of discrete sensing channels in tandem with identical space d, and
the number of the channels is N. The length of a sensing channel is L = G/R, where G
refers to the gauge length in a DAS system. For a DAS system that interrogates a phase of
Rayleigh backscattering light-waves (RBLs) along a sensing fiber [17,18], G can be specified
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arbitrarily. As a result, the length L of a sensing channel is adjustable. Channel spacing d
can be shorter than the length of a sensing channel L since the channels are virtually
divided and initial points can be selected arbitrarily. In other words, two adjustable sensing
channels can overlap each other, which is impossible for a conventional FOH array.

2.1. Directivity Function of a Sensing Channel

A sensing channel in a DFOH transduces external acoustic signals to the phase change
of a Rayleigh backscattered light (RBL). As shown in Figure 2, L is the length of a sensing
channel, x is a reference position in the channel, and s is the distance between x and the
initial point of the channel [19,20]. As a far-field acoustic signal orientated at an angle θ to
the radial direction of a sensing channel is imposed on the sensing fiber wrapped on the
channel, the refractive index of the fiber at position x of the sensing channel is changed by

∆n(x) = Pη cos
(

2π

λ
sin(θ)x − ωt

)
(1)

where P, ω, and λ are the sound pressure, angler frequency, and the wavelength of the
acoustic signal, respectively, and η is a composite response coefficient [21,22]. Accordingly,
the phase change as the output of the sensing channel is calculated as [23–25]

∆φ = 2
∫ x+(L−s)

x−s

2π

λl
∆n(x)dx (2)

where λl is the wavelength of a light-wave propagating in the sensing fiber, and the
coefficient 2 arises from the round trip that a light-wave undergoes. Applying Equation (1)
to Equation (2) gives (see Appendix A for the detailed derivation)

∆φ = ∆φ0 cos
[

2π

λ
sin(θ)x + ϕi − ωt

]
(3)

where ϕi = 2π sin(θ)(0.5L − s)/λ, ∆φ0 = 4πPηLB1/λl is the amplitude of the output
phase ∆φ, and B1 is a coefficient and is expressed as

B1 = sin c(
L
λ

sin θ) (4)
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Equation (3) indicates that the output phase ∆φ of a sensing channel oscillates at the
identical frequency to the acoustic signal with a phase delay ϕi determined by s, L, and θ.
In addition, the amplitude of the phase is governed by the coefficient B1. As Equation (4)
reveals, B1 varies with θ. As a result, the amplitude of the output phase ∆φ becomes
directive, and this directivity is more obvious as the ratio L/λ becomes larger. Considering
the dependence of B1 on θ, B1 is defined as the directivity function of a sensing channel.

Essentially, a sensing channel is equivalent to a sequence of point sensors continuously
distributing along the sensing channel with identical spacing. Because the acoustic signal
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arrives at the sensors at a different time, there exists a constant phase delay δϕ between the
output phase of two adjacent sensors, and δϕ various with θ. The output phase ∆φ of a
sensing channel is the sum of the output phase of all the point sensors, and its amplitude is
determined by δϕ. Since δϕ varies with θ, the amplitude ∆φ0 becomes directive. As the ratio
L/λ increases, the phase delay between the output phase of two points sensors located
at two ends of the sensing channel increases, and thus the amplitude of ∆φ0 becomes
more directive.

2.2. Directivity Function of a DFOH

The directivity of a DFOH results from the phase delay between two adjacent sensing
channels. In order to eliminate the impact of the phase delay ϕi in Equation (3) on the
directivity of a DFOH, the reference positions of all the sensing channels in the DFOH
are selected at the identical position relative to their own initial points. For simplifica-
tion, s = 0.5L is set in Equation (3). Accordingly, ϕi = 0 is obtained, and Equation (3)
is reduced to

∆φ = ∆φ0 cos
[

2π

λ
sin(θ)x − ωt

]
(5)

To obtain the directivity function of a DFOH, a DFOH is considered as a linear discrete
FOH array consisting of a sequence of discrete sensing channels in tandem with identical
space d, and the number of the channels is N. Adding up the output phase changes of all
the sensing channels leads to an output phase of a DFOH. The normalized amplitude of
the output phase is the directivity function of the DFOH, and is given by:

B =

∣∣∣∣sin c( L
λ sin θ) · sin(N dπ

λ sin θ)

N sin( dπ
λ sin θ)

∣∣∣∣
= B1B2

(6)

Equation (6) indicates that the directivity function of a DFOH is the product of the
directivity functions of a sensing channel and a conventional linear discrete FOH array. In
addition, Equation (6) reveals that the directivity function of a DFOH is dependent on the
structure of a DFOH such as the channel length L and channel spacing d.

3. Directivity Dependence of a DFOH on Array Structure Parameters

For a well-developed FOH array, the directivity function of the array is fixed since
the channel length and channel spacing cannot be changed. In comparison, the channel
length and channel spacing of a DFOH are adjustable, which makes it possible to desire
the directivity function of a DFOH even if the DFOH is well developed. In this section,
the simulation proceeds based on Equation (4) to analyze the effects of channel length and
channel spacing of a DFOH on the directivity function, especially focusing on the effects
on the main lobe and side lobe of the directivity function. Considering the fact that the
total length of the well-developed DFOH is fixed, the total length of the DFOH is set as a
constant in the following analysis. Besides the structure of a DFOH, the directivity function
is also determined by the wavelength of an acoustic signal, as Equation (4) indicates. In
order to study the universal law applicable to acoustic signals of all wavelengths, rather
than the law only for a particular wavelength, the channel length and the channel spacing
are normalized as L/λ and d/λ, respectively.

3.1. Channel Length

The dependence of directivity function B on L/λ is analyzed firstly. In the simulation,
the total length of a DFOH is set as dN/λ = 10 with N being the number of sensing
channels. In the case of d/λ = 0.25, four directivity functions are simulated and are
presented in Figure 3a as L/λ are set as 0.25, 0.75, 1, and 6. The widths of the main lobes
and the heights of the first side lobes are shown in Table 1. The simulation results show
that as L/λ increases from 0.25 to 6, the widths of the main lobes are 5.04◦, 5.04◦, 5.04◦, and
4.41◦, respectively. The widths of the main lobes remain stable in the case of L/λ < 1 and
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decrease in the case of L/λ > 1. In addition, the height of the side lobes at the same angle
decreases as L/λ increases, and it decreases more dramatically at larger angles. The heights
of the first side lobes are −13.26 dB, −13.41 dB, −13.54 dB, and −25.31 dB, respectively. The
conclusions mentioned above are also valid in the cases of d/λ = 0.75, which are confirmed
by the simulation results shown in Figure 3b and Table 2.
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Table 1. Main lobe widths (◦) and first side lobe heights (dB) in the case of d/λ = 0.25.

L/λ 0.25 0.75 1 6

Main lobe width 5.04 5.04 5.21 4.41
First side lobe height −13.26 −13.41 −13.54 −25.31

Table 2. Main lobe widths (◦) and first side lobe heights (dB) in the case of d/λ = 0.75.

L/λ 0.25 0.75 1 6

Main lobe width 5.21 5.21 5.16 4.47
First side lobe height −13.11 −13.26 −13.40 −25.93

The dependence of directivity function B on the channel length analyzed above origi-
nates from the directive response of a sensing channel B1 to external acoustic signals. As
Equation (2) indicates, the response of a sensing channel is more directive as the sensing
channel becomes longer, leading to more of a directive response from a DFOH.

3.2. Channel Spacing

The effect of channel spacing is analyzed in this section. The total length of a DFOH
is set to dN/λ = 10 as in Section 3.1. When L/λ = 0.25, three directivity functions are
simulated and are shown in Figure 4a as d/λ is set as 0.25, 0.5, and 0.75. The widths of
the main lobes and the heights of the first side lobes are shown in Table 3. The simulation
results show that when d/λ increases, the widths of the main lobes are 5.04◦, 5.04◦, and
5.21◦, respectively. Additionally, the heights of the first side lobes are −13.26 dB, −13.21 dB,
and −13.11 dB, respectively. Both the main lobes and the first side lobes change slightly in
the above simulation, and it is also valid when L/λ = 6, which is shown in Figure 4b and
Table 4. Specifically, when L/λ = 6, the widths of the main lobes are 4.41◦, 4.41◦, and 4.47◦,
respectively. Additionally, the heights of the first side lobes are −25.31 dB, −25.27 dB, and
−25.93 dB, respectively.
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Table 3. Main lobe widths (◦) and first side lobe heights (dB) in the case of L/λ = 0.25.

d/λ 0.25 0.5 0.75

Main lobe width 5.04 5.04 5.21
First side lobe height −13.26 −13.21 −13.11

Table 4. Main lobe widths (◦) and first side lobe heights (dB) in the case of L/λ = 6.

d/λ 0.25 0.5 0.75

Main lobe width 4.41 4.41 4.47
First side lobe height −25.31 −25.27 −25.93

The dependence of directivity function B on the channel spacing analyzed above only
covered the case of d/λ < 1, and this is because grating lobes will appear when d/λ > 1.
In time domain signal sampling, a similar phenomenon occurs when the sampling period is
larger than the signal period. Therefore, it is important to avoid d/λ < 1 in the DFOH array.

4. Experiment Verification

Experiments are performed on Qingyang lake using a self-developed DFOH system
including a DFOH of 8 m and a DAS system. The DFOH consists of a sensing fiber wrapped
uniformly around an elastic cylinder at a wrapping ratio R of 10. The DAS system employed
in the experiment is self-developed, and the details of the system are introduced in [16].
Probe pulses of 50 ns pulse duration interrogate the DFOH at a rate of 100 kHz. In addition,
the sampling rate of the DAS system is fDAQ = 250 Mbps. Therefore, the minimum channel
spacing in fiber length is d f = c/2n fDAQ = 0.4 m, where c is the speed of light in vacuum,
and n is the group refractive index. Accordingly, the minimum channel spacing in a DFOH
is dmin = d f /R = 0.04 m. The channel length is specified in signal processing by the design
of gauge length such that L = G/R is satisfied. During the experiments, the acoustic signal
oscillating at 1000 Hz (corresponding to a wavelength of 1.5 m) is emitted from an acoustic
source fixed at a position 5 m beneath the surface of the lake.

Firstly, directivity dependence of a sensing channel on channel length L is experi-
mentally verified. The output of a sensing channel is a time-varying phase ∆φ oscillating
at 1000 Hz, and the amplitude of ∆φ is linearly proportional to directivity function B1
for a certain L, θ, and λ. During signal processing, channel length L is changed, and the
amplitude of ∆φ as a function of L is presented in Figure 5. The amplitude for each channel
length L in Figure 5 is the average value of phase amplitudes of ten contiguous channels
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spaced by dmin = 0.04 m. The results show that the phase amplitude varies with L in the
way of a sinc function. Since the amplitude of ∆φ is linearly proportional to B1, the results
in Figure 5 confirm B1 as a sinc function of L, which is consistent with Equation (4).
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After experimental verification of the directivity of a sensing channel, the dependence
of directivity on DFOH structure is experimentally verified. In signal processing, d/λ is
selected as 0.2 m. Directivity functions of the DFOH in the case of L/λ = 1, 1.5, and 2 are
calculated as the sum of the outputs phase of all the sensing channels and are presented in
Figure 6a. The results in the figure show that as L/λ increases from 1 to 2, the widths of
the main lobes decrease from 14.6◦ to 10.4◦. In addition, the height of the side lobes at the
same angle θ decreases as L/λ increases. The conclusions mentioned above are also valid
in the cases of d/λ = 0.5, which are confirmed by the calculated results shown in Figure 6b.
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Figure 6. Experimental results of beam patterns at different channel lengths at a certain channel
spacing: (a) d/λ = 0.2; (b) d/λ = 0.5.

To specifically verify the dependence of directivity function B on the sensing length,
the height of the first-order side lobe and the width of main lobe are calculated using the
experimental results in the cases of L/λ increasing from 1 to 3 in the step of 0.2. Figure 7a
presents the calculated side lobe height as a function of L/λ in the case of d/λ = 0.2.
Also presented in Figure 7a are the simulation results of the side lobe height calculated
using Equation (4). Both experimental results and simulation results in Figure 7a show a
downtrend. Specifically, as the L/λ increased from 1 to 3, experimental results decrease
from −5 dB to −11 dB, and the simulation results are reduced from −14 dB to −24 dB. Due
to the noise in the experimental environment, the height of the side lobe obtained in the
experiment is higher than that in the simulation.
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function of channel length.

Figure 7b shows the width of the main lobe obtained both in experiments and in
simulations, showing a downtrend as L/λ increases. Specifically, the width of the main
lobe in the experiment becomes narrower from 14◦ to 9.1◦, and the width of the main lobe
in the simulation decreases from 9.5◦ to 8.6◦. The noise in the experiment causes the width
of the main lobe to be larger than that in the simulation.

The effect of channel spacing on the directivity function of a DFOH is also experi-
mentally studied. The array length is set at 8 m, and L/λ is selected as 1.5. Directivity
functions of the DFOH in the case of d/λ = 0.2, 0.5, and 0.8 are calculated and are presented
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in Figure 8a. The results in the figure show that as d/λ increases from 0.2 to 0.8, the widths
of the main lobe decrease from 11.6◦ to 10.4◦. In addition, the heights of the first-order side
lobe decrease from −8.39 dB to −9.04 dB. Both the widths of the main lobes and the height
of the first-order side lobes change slightly. The conclusions mentioned above are also valid
in the cases of L/λ = 2, which are confirmed by the calculated results shown in Figure 8b.
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Figure 8. Experimental results of beam patterns at different channel spacings at a certain channel
length: (a) L/λ = 1.5; (b) L/λ = 2.

The dependence of directivity function B on the sensing spacing is specifically verified.
The d/λ is set from 0 to 1 in the step of 0.02. The L/λ is selected as 2. The first-order side lobe
height and main lobe width are calculated using the experimental results and are presented
in Figure 9. The calculated first-order side lobe height presented in Figure 9a is stable at
about −8 dB, and its maximum value is only 0.94 dB higher than the minimum value.
Figure 9b presents the calculated main lobe width. The main lobe width is stable at around
7◦, and the gap between its maximum value and minimum value is 0.5◦. Also presented in
Figure 9 are the simulation results of fist-order side lobe height and main lobe width. The
simulation results show the same stable trend as the experimental results. However, the
noise in the experiment causes different specific values between the simulation results and
the experimental results.
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5. Discussion

Both the simulation results and the experimental results show that the directivity of
a DFOH is related to the channel length but not to the channel spacing. Essentially, the
directivity of a DFOH is partially governed by the directivity of sensing channels. As stated
in Section 2, the directivity of the sensing channel becomes more obvious as the channel
length increases, resulting in a more obvious directivity of the DFOH, such as narrower
width of the main lobe and lower height of the first side lobe. However, the directivity of
the sensing channel is independent of the channel spacing, so the change of the channel
spacing has no effect on the directivity of the DFOH.

To realize optimal performance of a DFOH, two steps are expected. Considering the
inherent advantage of a DFOH in terms of arbitrary structure design, one is supposed to step
firstly to make clear the directivity dependence of a distributed fiber optic hydrophone on
array structure, which is the goal of this paper. To further optimize the array beamforming
of a DFOH, effort on array signal processing is expected in the second step. For example, the
influence of weighting functions (such as Dolph–Chebyshev weighting) on the directivity
pattern of a DFOH is expected to be studied. Another example is to introduce a super-
directivity method (such as minimum variance distortionless response and deconvolved
conventional beamforming) to the array signal processing of a DFOH. The second step is
essential and will be investigated in future work.

6. Conclusions

In this paper, the dependence of the directivity of a distributed fiber optic hydrophone
on array structure is theoretically and experimentally studied. The directivity function
of a channel B1 is obtained by analysis of the output phase of a sensing channel in a
distributed fiber optic hydrophone, and the directivity function of a distributed fiber optic
hydrophone is derived by adding up the output phase of all the sensing channels. Based on
the directivity function, simulations are performed, and the results reveal that the longer
sensing channel length guarantees lower first-order side lobe and narrower main lobe
of B. In addition, the simulation results indicate that the channel spacing is irrelevant to
B as long as the spacing is shorter than the wavelength of the detected acoustic signal.
Experiments are performed, and the results confirm the theoretical analysis. This study
would provide guidance for the structure design of a distributed fiber optic hydrophone
in signal processing and promote the distributed fiber optic hydrophone in the field of
sound orientation.
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Appendix A

The detailed procedure for obtaining Equation (3) is given by
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∆φ = 2
∫ x+(L−s)

x−s
2π
λl

Pη cos
( 2π

λ sin(θ)x − ωt
)
dx

= 4π
λl

Pη λ
sin(θ)2π

[
sin
( 2π

λ sin(θ)(x + L − s)− ωt
)
− sin

( 2π
λ sin(θ)(x − s)− ωt

)]
= 4πPηL

λl
sin c

(
sin(θ)L

λ

)
cos
[ 2π

λ sin(θ)x + 2π
λ sin(θ)(0.5L − s)− ωt

]
= ∆φ0 cos

[ 2π
λ sin(θ)x + ϕi − ωt

] (A1)
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