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Abstract: In seismic assessment of continuous girder bridges, plastic hinges form in bridge piers
to dissipate seismic energy through nonlinear restoring forces. Considering temporal and spatial
variations of ground motions, seismic evaluation of the bridges involves nonlinear stochastic vibration
and expensive computation. This paper presents an approach to significantly increase the efficiency
of seismic evaluation for continuous girder bridges with plastic hinges. The proposed approach
converts nonlinear motion equations into quasi-linear state equations, solves the equations using
an explicit time-domain dimension-reduced iterative method, and incorporates a stochastic sampling
method to statistically analyze the seismic response of bridges under earthquake excitation. Taking
a 3 × 30 m continuous girder bridge as an example, fiber beam-column elements are used to simulate
the elastic–plastic components of the continuous girder bridge, and the elastic–plastic time history
analysis of the continuous girder bridge under non-uniform seismic excitation is carried out. Results
show that the computation time is only 5% of the time of the nonlinear time history approach while
retaining the accuracy. This study advances the capability of rapid seismic assessment and design for
bridges with localized nonlinear behaviors such as plastic hinges.

Keywords: bridge vibration; localized plasticity; nonlinear restoring forces; nonlinear stochastic
vibration; plastic hinge

1. Introduction

Seismic evaluation and design of bridges play essential roles in improving resilience of
life-line infrastructure. Continuous girder bridges are one of the most widely used types of
bridges in highway and railway applications due to their advantages such as convenience
of construction, high mechanical performance, and low cost. Continuous girder bridges
are often supported by reinforced concrete piers. In seismic design of bridges, bridge piers
are strategically designed to generate plastic hinges under high-intensity ground motions,
to protect bridges from catastrophic collapse [1]. Typically, a plastic hinge is formed at
the bottom section of a reinforced concrete column under earthquake excitation [2]. The
plastic hinge possesses nonlinear restoring forces that dissipate seismic energy through
yielding of steel bars and cracking and crushing of concrete, as well as interfacial slippage
between steel bar and concrete [3]. Energy dissipation thus mitigates damage in the other
parts of the bridge and facilitates post-earthquake condition assessment and repairing of
damaged bridges [4]. Formation of a plastic hinge also changes the structural stiffness
and natural frequencies, thus altering the structural response in an earthquake. Seismic
evaluation of bridges with plastic hinges involves nonlinear structural dynamics. In
addition, ground motions involve random temporal and spatial variations [5]. Therefore,
seismic evaluation and design of bridges involves nonlinear structural dynamics and
random earthquake excitations.

Currently, seismic evaluation and design of bridges mainly uses a response spectrum
method [6], which does not fully consider the nonlinear structural dynamics and random
excitations. It is desired to develop effective approaches to perform nonlinear stochastic
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dynamic analysis. To this end, different approaches were proposed, such as nonlinear dy-
namic analysis [7–9], perturbation analysis [10], and statistical linearization [11]. Nonlinear
dynamic analysis of bridges considers nonlinear material properties and the formation
of plastic hinges, but random earthquake excitations are not considered. Statistical or
equivalent linearization and perturbation analysis provide a general method to address
random vibration problems [12], but many of those approaches are inconvenient to apply
in real practice. In general, many equivalent linear systems are established at different time
instants, inefficient for bridges subjected to spatially varying stochastic ground motions.
Recently, a tail-equivalent linearization approach has been proposed to analyze nonlinear
structural dynamics under spatially varying stochastic ground motions and shows good
promise in the context of nonlinear stochastic dynamic analysis [13,14]. Simulation of ran-
dom processes offers another promising avenue to address nonlinear stochastic dynamic
analysis [15]. However, as a random sampling method in nature is time consuming since
it involves analysis of many samples. To improve the computational efficiency, explicit
time-domain solutions were proposed to reduce the time consumption in the analysis
of each sample [16]. These related advances offer new opportunities for improving the
computational efficiency of nonlinear stochastic dynamic analysis with spatially varying
ground motions.

Based on the above important development, this research aims to develop an approach
to perform nonlinear stochastic dynamic analysis for bridges subjected to spatially varying
ground motions with high efficiency. The proposed approach takes advantage of the feature
of localized plastic hinges to improve the computation efficiency because the nonlinearity is
only considered locally rather than globally, different from conventional nonlinear dynamic
analysis [7]. The proposed approach converts nonlinear motion equations into quasi-linear
state equations, adopts explicit time-domain analysis and dimension reduction methods
to solve the equations, and incorporates a stochastic sampling method to statistically an-
alyze the seismic response of bridges under random earthquake excitations [16,17]. The
proposed approach is implemented into a representative case study on a three-span contin-
uous girder bridge with two reinforced concrete piers under spatially varying stochastic
ground motions. Nonlinear restoring forces of plastic hingers in the piers are considered.
The explicit analysis method is expected to achieve higher efficiency and convergence
performance than the implicit analysis methods in previous research. The novelty and
contribution of this research is mainly reflected by the development of the approach to
significantly improve the efficiency of nonlinear stochastic dynamic analysis of bridges
under spatially varying ground motions. The approach is expected to greatly advance the
capability of rapid seismic evaluation of bridges. The remainder of the paper includes three
main sections: Section 2 elaborates the approach for nonlinear stochastic dynamic analysis
of continuous girder bridges. Section 3 discusses the case study for implementation of the
proposed approach. Section 4 summarizes the conclusions of this research.

2. Methodology

The flowchart of the proposed approach is shown in Figure 1. With an input bridge,
the mass, damping, and stiffness matrices are determined, thus obtaining the equation of
motion. For a specific bridge, the restoring forces of plastic hinges are determined. With
the equation of motion and restoring forces, the implicit equation of motion is converted
to explicit expressions based on the equation of state. The explicit equations are solved
through explicit time-domain analysis and dimension reduction. The solution of the
equations represents the solution of the given bridge under a specific ground motion.
To evaluate seismic responses of the bridge under random earthquake excitations, more
ground motions are considered based on simulation of random processes, which generates
different samples of ground motions. For each sample of ground motions, the nonlinear
dynamic response of the bridge is analyzed using the proposed approach. Finally, the
statistical result of the seismic response of the bridge is delivered as the output.
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Figure 1. Flowchart of the proposed approach to perform nonlinear stochastic dynamic analysis.

The detailed techniques that are incorporated in the proposed approach are elaborated
in the following subsections. Section 2.1 presents the equation of motion of continuous
girder bridges. Section 2.2 introduces a nonlinear restoring force model of plastic hinges
in reinforced concrete piers. Section 2.3 details the derivation of the equation of state for
explicit time-domain analysis. Section 2.4 elaborates the dimension reduction method.
Section 2.5 discusses the simulation of random process.

2.1. Equation of Motion

A general model of continuous girder bridges is illustrated in Figure 2. A bridge
is divided into a number of elements representing the girders, supports, and piers. The
numbers of free nodes, supporting nodes, and piers are denoted by n, m, and l, respectively.
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According to the theory of structural dynamics [17], the equation of motion is
expressed as: [

Mss 0
0 Mbb

]{ ..
Xs..
Xb

}
+

[
Css 0
0 Cbb

]{ .
Xs.
Xb

}
+[

Kss Ksb
Kbs Kbb

]{
Xs
Xb

}
+

[
D 0
0 0

]{
Fr(Xl)

0

}
=

{
0

Pb

} (1)

where Xs is the displacement of free nodes; Xb is the displacement of supporting nodes;
Xl is the relative displacement of the nodes of the plastic hinges in the piers; D is the
indicator matrix of the position of the restoring force in the plastic hinge region; Fr(Xl) is
the horizontal restoring force column vector of central plastic hinges; Pb is the force due to
ground motions; M, C, and K are the mass, damping, and stiffness matrices, respectively;
and subscripts s and b represent free nodes and supporting nodes, respectively.

According to Equation (1), the following equation can be derived by rewriting
Equation (1).

Mss
..
Xs + Css

.
Xs + KssXs ≈ −KsbXb −DFr(Xl), (2)

Equation (2) is rewritten according to Equation (1), and all parameters are the same as
that in Equation (1).

2.2. Restoring Force Model of Plastic Hinges

Different types of restoring force models were proposed in the literature [18], such
as the bilinear model, modified bilinear model, equivalent bilinear model, hysteresis
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model, and Bouc–Wen model. The Bouc–Wen model is numerically tractable and has been
extensively used for modeling hysteretic systems [19], showing desired performance in
simulating dynamic behaviors of plastic hinges. The Bouc–Wen model contains components
from a viscous damper, a spring, and a hysteretic component, expressed as:

Fr = Cb
.
u + α

Fy

Dy
u + (1− α)FyZ, (3)

.
Z =

γ

Dy
z|z .

u
∣∣− β

Dy
z2 .

u +
A

Dy

.
u, (4)

where Cb is the generalized viscous damping ratio; α is the ratio of the generalized stiffness
of the plastic hinge after it is yielded and the original stiffness; Fy and Dy are the general-
ized yielding force and generalized yielding displacement(curvature) of the plastic hinge,
respectively; u and

.
u are the generalized relative displacement and velocity of the plastic

hinge; z is the hysteretic variable; and coefficients γ, β, and A are the model parameters
depending on the shape of the hysteretic curve. In this research, coefficients γ, β, and A are
equal to 0.5, 0.5, and 1.0, respectively.

2.3. Equation of State for Explicit Time-Domain Analysis

With the restoring force model of plastic hinges, Equation (2) can be rewritten as:

Mss
..
Xs + (Css + Cse)

.
Xs + (Kss + Kse)Xs = −KsbXb −KhZ, (5)

where Kse, Kh, and Cse are the equivalent stiffness, hysteretic stiffness, and equivalent
damping matrices, respectively; and Z can be expressed as:

.
Z = g(t, U, Z(t)) U =

.
Xt −

.
Xb, (6)

where
.

Xt and
.

Xb are the velocities of the top and bottom nodes of the plastic hinge, respectively.
To solve for the displacement (X) from Equation (5), it is necessary to know Z. To

solve for Z from Equation (6), it is necessary to know the velocities (
.

Xt,
.

Xb). It is time
consuming to directly solve the coupled equations expressed in the implicit form. This
research proposes to convert the coupled equations into the state equation [20,21]:

.
V = HV + F(t), (7)

V =

{
Xs.
Xs

}
F(t) = WF(t) =

{
0

Mss
−1

}
F(t)

H =

[
0 I

−Mss
−1(Kss + Kse) −M−1

ss (Css + Cse)

] (8)

F(t) = −KsbXb −KhZ, (9)

The solutions of Equations (7)–(9) are expressed in Equations (10) and (11) [20], when
F(t) is linear in the time interval ∆t and the initial control is V0(t0) = 0.

Vi =
i

∑
j=0

Ai,jF(tj), (10)

F(ti) = −KsbXb(ti)−KhZi, (11)

where A(i,j) are the coefficient matrices dependent on i, and i = 1, 2, . . . , p. When i = 1, A1,0
= S1, and A1,1 = S2. When i = 2, A2,0 = TA1,0, A2,1 = TS2 + S1, and A2,2 = A1,1. When i ≥ 3,



Sensors 2022, 22, 6311 5 of 15

A(i,0) = TA(i−1,0), A(i,1) =TA(i−1,1), and A(i,j) = A(i−1,j−1). T is the exponential matrix. S1 and
S2 are shown as:

S1 =
(I− T)W

H2∆t
+

TW
H

, (12)

S2 =
(T− 1)W

H2∆t
− W

H
, (13)

Based on Equations (10)–(13), the coefficient matrices of each time instant are de-
termined through iterations, once A(i,0) and A(i,0) are determined, thus solving the state
equation. This study incorporates the Runge–Kutta method to improve computation
precision in the iterations [22,23]. The recursion formula is expressed as:

Zi(sk+1) ≈ Zi(sk) +
1
6
(k1 + 2k2 + 2k3 + k4), (14)

k1 = hg(ti−1, Zi−1), (15)

k2 = hg(ti−1 +
h
2

, Zi−1 +
k1

2
), (16)

k3 = hg(ti−1 +
h
2

, Zi−1 +
k2

2
), (17)

k4 = hg(ti−1 + h, Zi−1 + k3), (18)

where sk = kh, k = 0, 1, . . . , n − 1; and h = ∆t/n. When k = 0, Zi (sk) = Z(i−1). When k = n,
Zi(sk) = Zi.

Then, the structural dynamic response and hysteretic variable can be determined fol-
lowing the flowchart in Figure 3. Given an initial value of the hysteretic variable Zi, the cor-
responding state V i can be solved using Equations (10) and (11) and Equations (12) and (13),
in turn obtaining (

.
Xt) and (

.
Xb), which are plugged into Equations (14)–(18) to obtain the

updated Zi. This process is continued until the termination criterion is satisfied. In this
research, the adopted criterion is expressed as:

‖Vi,j − Vi,j−1‖
Vi,j

≤ ε, (19)

where ε is the target precision; and operator ‖*‖ is the Euclidean norm.
The solving process illustrated in Figure 3 is formulated in Equations (24) and (25).

According to Equations (24) and (25), an iteration is explicitly performed at each time
instant. Once the coefficient matrix A(i,i) is generated, the matrix is retained and used
in sequential calculations. In each time step, the calculation only involves Ai,iF(ti) and

g
( .

Xt,
.

Xb, Zi

)
. Therefore, the proposed approach is expected to achieve high computational

efficiency. The performance of the proposed approach is tested through a case study, as
elaborated in Section 3.

Zi−1,0 = Zi−1
F(ti) = −KsbXb(ti)−KhZi,j−1

Vi,j =
i

∑
j=0

Ai,jF(tj)

Zi,j = Zi(sn_)

(20)

2.4. Dimension Reduction

This research presents a dimension reduction technique to further improve the com-
putational efficiency. It is noted that, in Equation (11), only one term contains the hysteretic
variable Zi, and the other nodal forces are determined. The hysteretic variable is only
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related to the velocities of the two ends of each plastic hinge. Based on this understanding,
V i is expressed as:

Vi = Ṽp

( .
Xi,t,

.
Xi,b

)
+ V̂i

( .
Xi,t,

.
Xi,b

)
, (21)

where Ṽp

( .
Xi,t,

.
Xi,b

)
is directly associated with the nodes of the plastic hinges; and V̂i

( .
Xi,t,

.
Xi,b

)
is not directly associated with the plastic hinges. Correspondingly, Equations (10) and (11) can
be rewritten as:

Vi =
p

∑
j=0

Ãp,JF(tj) +
p

∑
j=0

Âp,JF(tj), (22)

F(ti) = −KsbXb(ti)−KhZi, (23)

According to Equations (14)–(18) and Equation (22), iterations are performed to calcu-
late Zi, which is then plugged into Equation (23) to obtain the structural dynamic response.
This solving process is the same as that in Section 2.3, but the number of equations is
significantly reduced because the number of nodes involving plastic hinges in the piers is
much smaller than the total number of nodes of the bridge.
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2.5. Simulation of Random Processes

Based on the solving process of the equation of motion of the bridge under a single
ground motion, simulation of random processes is incorporated to consider the stochastic
variation of the ground motion [24,25]. Simulation of random processes generates samples
of ground motions. The total number of ground motions is denoted as N. The q-th sample
is denoted as Fq(t), and q = 1, 2, . . . , N. The nonlinear dynamic response of the bridge under
the q-th sample of ground motion can be determined following the process elaborated
in Sections 2.1–2.4. It should be noted that, once the coefficient matrix is determined in
the first ground motion, the coefficient matrix is sustained and directly used in calcu-
lations for the other ground motions without making any change, thus improving the
computational efficiency.
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After the dynamic responses of the bridge under the N ground motions are determined,
the statistical data are obtained for each component of structural responses. For component
vi, the mean and standard deviation are calculated as:

E(vi) =
1
N

N

∑
j=1

vij, (24)

σvi
=

√√√√ 1
N − 1

N

∑
j=1

[
vij − E(vi)

]2, (25)

3. Case Study
3.1. Bridge Description

There is a 3 × 30 m prestressed concrete continuous girder bridge on a certain first-
grade highway (the elevation layout is shown in Figure 4a). Its basic parameters are as
follows. Bridge width is 17.5 m. The cross-section of the main girder, 2 m in height, adopts
a single box with three cells. The double-column piers with circular solid sections are 6 m
in height and 1.6 m in diameter, with its pile foundation 1.5 m in diameter. The bridge
abutment is a U-shaped gravity one with an enlarged foundation. Fixed pot bearings are
set on the No. 2© pier (denoted as P2), and movable bearings are set on the other piers or
abutments. The overall cross-section layout of the bridge is shown in Figure 4b.
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tive model of the reinforcement adopts the Kent–Part model, which is suitable for re-
peated periodic loads, such as seismic load, as depicted in Figure 6. The parameters of 
concrete and steel bars calculated according to the model are shown in Tables 2 and 3. The 
model constraints are handled as follows: the pier bottom is simulated by a consolidation 
mode, the connection between pier and beam by an ordinary elastic bearing, and the con-
nection between abutment and beam by an ordinary constraint mode. After the above 
work, the parameters involved in the Bouc–Wen model are input, the output response 
index is defined, and then the ground motion parameters are defined. In this process, a 
large number of seismic loads are input, and finally the calculation and analysis are car-
ried out. Since the focus is on the explicit iterative method applied to the rapid evaluation 
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Figure 4. Illustration of the bridge (unit: cm): (a) longitudinal profile showing spans of bridge; and
(b) the transverse profile showing the width of the bridge.

The bridge girders, piers, and foundations are made of concrete reinforced using
deformed steel bars. The concrete grades of the bridge girders, piers, and foundations are
C50, C40, and C30 respectively [26]. The material properties and geometrical properties of
the bridge are listed in Table 1.
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Table 1. Basic parameters of the bridge structure.

Area (m2) Moment of Inertia Iy (m4) Moment of Inertia Iz (m4) Elastic Modulus (GPa) Density (kg/m3)

Girder 12.49 6.70 228.91 34.5 2549
Pier 2.01 0.32 0.32 32.5 2549

The whole bridge model is established with OpenSees. The section type of the model is
selected as “fiber section”, and the element type as “element BeamWithHinges”, which can
be used as the carrier of the centralized plastic hinge analysis. The non-confined concrete
is divided into 2 parts in the radial direction and 18 parts in the circumferential direction.
The confined concrete is divided into 4 parts in the radial direction and 18 parts in the
circumference. The Mander model is adopted for the constitutive model of constrained
and unconstrained concrete in this analysis, as shown in Figure 5. The constitutive model
of the reinforcement adopts the Kent–Part model, which is suitable for repeated periodic
loads, such as seismic load, as depicted in Figure 6. The parameters of concrete and
steel bars calculated according to the model are shown in Tables 2 and 3. The model
constraints are handled as follows: the pier bottom is simulated by a consolidation mode,
the connection between pier and beam by an ordinary elastic bearing, and the connection
between abutment and beam by an ordinary constraint mode. After the above work,
the parameters involved in the Bouc–Wen model are input, the output response index
is defined, and then the ground motion parameters are defined. In this process, a large
number of seismic loads are input, and finally the calculation and analysis are carried out.
Since the focus is on the explicit iterative method applied to the rapid evaluation of seismic
performance of continuous girder bridges, soil–structure interaction is not considered.
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Table 2. Mander constitutive parameters of pier fiber section concrete.

Type (C40) Elastic Modulus Ec (MPa) fc (MPa) Yield Strain Peak Strain Ultimate Strain

non-confined concrete 31623 40.00 0.0014 —— 0.02
confined concrete 31623 41.72 0.002429 0.002 0.013084

Table 3. Park constitutive parameters of pier fiber section steel.

Type Es (MPa) fy (MPa) fu (MPa) εy εsh εsu

HRB400 200,000 400 540 0.002 0.01 0.1

According to Clause 3.4.2 of Reference [27], for B-class bridges, the energy dissipation
part is mainly located at the pier under the action of an earthquake, and the potential
plastic hinge area of the double-column pier is at the pier bottom. In this paper, the plastic
hinge is also set to form at the bottom of the pier. In accordance with the cross section
and reinforcement, the moment–curvature relationship of the pier section is plotted in
Figure 7. The yielding force is Fy = 4169 kN/m. The initial stiffness is K0 = 4169 kN/m.
After yielding occurs, the stiffness is Ky = 41.69 kN/m.
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The damping matrix of the bridge is determined using the Rayleigh damping
model [28,29], and the mass and stiffness coefficients are equal to 0.26088 and 0.00073,
respectively. In the Bouc–Wen model of the restoring force of plastic hinges, coefficients
γ, β, and A are equal to 0.5, 0.5, and 1.0, respectively. The target precision in Equation (19)
is ε = 10−5.

3.2. Power Spectrum Model of Ground Motions

In general, the soil conditions of different bridge piers are different. In this research,
it is assumed that piers P1 and P2 are respectively supported by hard soil and medium
soil, according to [30]. The propagation direction of the earthquake is from P1 to P2, both
of which are subjected to the longitudinal correlated earthquake excitations. The Clough–
Penzien model of ground motion [31,32], which has a double filtering feature, is adopted
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to describe the auto-power displacement spectrum of the time history of ground motion,
expressed as:

Skk(ω) = S0
ω4

k + 4ζ2
k ω2

k ω2

(ω2
k −ω2)

2
+ 4ζ2

k ω2
k ω2
× 1

(ω2
sk −ω2)

2
+ 4ζ2

skω2
skω2

, (26)

where S0 is the magnitude of spectrum, S0 = 9.413 × 10−3 m2/s3, corresponding to
an earthquake magnitude of M8 and an earthquake level of E2 [33]; ωk and ζk are the natu-
ral frequency and damping ratio of soils, respectively; and ωsk and ζsk are the frequency
and damping parameters of the filter. The values of ωk, ζk, ωsk, and ζsk are listed in Table 4.

Table 4. Parameters of the Clough–Penzien spectrum.

Site Condition ωk (rad/s) ζk ωsk (rad/s) ζsk

Soil 1 20.94 0.6 1.5 0.6
Soil 2 10.0 0.4 1.0 0.6

3.3. Spatially Varying Excitation

In simulation of spatially varying earthquake excitations, this research considers the
spatial correlation between ground motions, and the spatial correlation is described using
the Luco–Wang model [34,35], as expressed in Equation (27):

∣∣∣ρjk(ω, djk)
∣∣∣ = exp

[
−
(

αωdjk

vs

)2
]

, (27)

where ρjk is the coherence function of the stationary random processes xj(t) and xk(t) at
the support points j and k; ω is the natural frequency; djk is the projection of the horizontal
distance between support points j and k along the direction of wave propagation; α is the
correlation coefficient; and vs. is the propagation velocity of the earthquake wave. In this
research, the values of α and vs. are 0.2 and 600 m/s, respectively.

Although the value of the cut-off frequency ωu of the multi-point ground motions
has no influence on the proposed method in this article, it is still set as more than 5 times
of the fundamental frequency according to Reference [33]. The duration of earthquake T
should be several times longer than the fundamental period of the bridge. The frequency
interval dω and the time interval dt are selected according to the Shannon sampling law [33].
Therefore, the cut-off frequency of the multi-point ground motions is ωu = 15π rad/s. The
duration of the earthquake is T = 10 s, which is the total duration of earthquake excitation
required for calculation and analysis. The frequency interval is dω = ωu/N, where the
interval number N is equal to 300. The time interval is dt = 0.01 s.

3.4. Results and Discussions

In order to verify the accuracy of the method proposed in this paper, 500 groups of
ground motion samples are generated by using the ground motion simulation method
mentioned in Reference [33] and the ground motion power spectrum parameters introduced
in Sections 3.2 and 3.3. Next, these ground motion samples are applied to the bridge
described in Section 3.1. Then, the traditional Newmark-β method and the explicit time-
domain dimension-reduced iterative method established in this paper are used to analyze
the random seismic response of the bridge.

When the ground motions are applied to the bridge, the calculation results are shown
in the figures below. Figure 8 shows a time-history diagram of the bending moment at
the bottom section of P2 where plastic hinges are formed. Figure 9 shows displacement
time-history diagram at the top section of P2. It can be seen that the calculation results
which are generated by the two methods mentioned above—the explicit time-domain
dimension-reduced iterative method and the Newmark-β method—are basically consistent
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with each other. They are almost coincident at most moments, and the maximum error
remains within 10% (the error is defined as the absolute value of the difference between the
two methods divided by the calculated value of the Newmark-β iterative method), which
verifies the accuracy of the explicit time-domain dimension-reduced iterative method in
this paper. Throughout the analysis, the numerical stability of the explicit method is always
checked. After several analyses, it is shown that the dimensionality reduction iteration has
good stability and can be used to analyze local nonlinear random response problems.
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Figure 8. Time-history diagram of the bending moment at the bottom section of P2.
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Figure 9. Displacement time-history diagram at the top section of P2.

In order to check the development of the plastic deformation of the pier section, the
bending moment–curvature at the bottom section of P2 in Figure 10 is given. It can be
concluded that, under non-uniform seismic excitation, the pier enters the elastic–plastic
state and its stress behavior exhibits highly nonlinear characteristics. The method proposed
in this paper is aimed at this characteristic.

Table 5 shows a time-consuming comparison of two methods, 250 s with the explicit
time-domain dimension-reduced iterative method and 5000 s with the Newmark-β method.
That is to say, the calculation and analysis time of the two methods for each seismic wave
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input is about 0.2 s and 10 s respectively. Obviously, the explicit time-domain dimension-
reduced iterative method proposed in this paper has higher computational efficiency. This
is mainly because this method only performs nonlinear dimension reduction iterative
calculations on the elastic–plastic fiber elements of the pier column, which avoids the
repeated inversion of the dynamic stiffness matrix and reduces the number of unknowns
in the nonlinear equation system. Additionally, the traditional Newmark-β method needs
to bundle all the degrees of freedom of the bridge together for iterative calculation. In
addition, it can be seen from the derivation process in Section 2 that, since the responses
have explicit expressions and the coefficient matrix only needs to be formed once, with the
increase in the total number of degrees of freedom, the advantages of this method proposed
in the paper are more obvious.
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Figure 10. Bending moment–curvature diagram at the bottom section of P2.

Table 5. Time-consuming comparison of the two methods.

Method Time (s)

explicit time-domain method 250
Newmark-β method 5000

It should be pointed out that the calculation time of the explicit time-domain dimension-
reduced iterative method mainly includes two parts. One part is used to construct the coeffi-
cient matrix in the explicit expression of dynamic response shown in Equations (10) and (11),
which takes 215.9 s. The other part is used for the dimension-reduced iterative calculation,
which only takes 34.1 s. However, the coefficient matrix only depends on the parameters of
the structure itself, which only needs to be calculated once, and can be used repeatedly in
all the sample analysis of the subsequent random simulation.

The calculation accuracy and efficiency of the explicit time-domain dimension-reduced
iterative method for elastoplastic time-history analysis are verified, and the basic knowledge
of probability theory can be further used to obtain the statistical values of each control
section. Thus, the statistical values can be applied to evaluate its seismic performance
quickly according to the corresponding bridge seismic design code, such as in reference [26].

The average, standard deviation, and maximum value of structural response are
needed to evaluate the seismic performance of the bridge structure under random earth-
quake action. Table 6 shows the statistical values of bending moment at the bottom section
of pier 2 under the excitation of 500 groups of displacement time history, the average value,
the average value of the standard deviation, and the average value of its absolute maximum,
which can be calculated by Equations (22)–(25). Taking the standard deviation time-history
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curve of the bending moment as an example, which is shown in Figure 11, the standard
deviation value changes greatly at the beginning, but it becomes stable after a period of
time. When the statistical values are obtained, the seismic performance evaluation of the
bridge can be carried out.

Table 6. Statistical value of the bending moment at the bottom section of P2.

Average Value × 103 (kN·m)
Average Value of the Standard

Deviation × 103 (kN·m)
Average Value of the Absolute

Maximum × 103 (kN·m)

1.89 6.22 18.04
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4. Conclusions

This research presents an approach to evaluating the seismic responses of continuous
girder bridges with plastic hinges formed at the bridge piers. The approach is developed
to achieve high computational efficiency in the nonlinear stochastic dynamic analysis of
bridges. The approach is implemented into a case study on a typical three-span continu-
ous girder bridge with reinforced concrete piers. Based on the above investigations, the
following conclusions are drawn:

(1) The proposed approach is accurate. The seismic performance evaluation of contin-
uous girder bridges mainly focuses on the seismic performance of piers with fixed
hinges. The seismic performance evaluation index is mainly based on pier top section
displacement, pier bottom section bending moment–curvature, etc. The time history
diagrams of pier top section displacement and the pier bottom section bending mo-
ment are consistent with the response characteristics of general dynamic problems, so
the accuracy of the method can be known.

(2) The proposed approach significantly improves the computational efficiency. Once
determined in the first round of analysis, the coefficient matrices in the equations are
preserved throughout the analysis. Preservation of the coefficient matrices simplifies
the computation process, thus improving computational efficiency. Such improve-
ment is particularly relevant for seismic evaluation because the evaluation involves
stochastic processes and requires repeated computations. Compared with the con-
ventional nonlinear time history dynamic analysis performed, the computation time
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of the proposed approach is only 5%, and the maximum error of the displacement
of the pier top section and the bending moment of the pier bottom section is within
10%. The high efficiency of the proposed approach is achieved by the combination of
multiple techniques such as explicit time domain analysis using the state equations,
the precision integration method, and the dimension reduction method.

(3) The proposed approach represents an explicit nonlinear dynamic analysis method.
The bending moment–curvature diagram shows an oval shape, which indicates that
the central plastic hinge area of the continuous girder bridge pier has significant
nonlinear characteristics and can dissipate certain ground motion energy. Under the
current Chinese seismic design code, these problems are typical local nonlinear prob-
lems (nonlinearities occur near the pier bottom or pier top section with fixed hinges),
and the explicit iterative dimension reduction method can be used to ensure the high
efficiency of seismic performance evaluation. Compared to the conventional meth-
ods, which implicitly solve the equations of motion based on iterative computation
involving matrix inversion, the proposed explicit method is expected to have better
convergence performance. It is worth noting that the dimension reduction utilizes the
unique feature of localized plastic hinges. The dimension reduction method is likely
applicable to other nonlinear stochastic dynamic problems involving local plasticity.

(4) The proposed approach has good generality and can be applied to solving similar
problems. The kinematic equation of bridge structure is established based on the gen-
eral dynamic principle. Then, the nonlinear restoring force of the pier column bottom
section is described by the Bouc–Wen model, and the nonlinear motion equation of
the continuous girder bridge under multi-point seismic excitation is rewritten into
a quasilinear equation, which is also established by combining with the Runge–Kutta
method and a precise time-history integration method. The explicit dimension re-
duction iterative method in time domain adopted in this article is essentially a rapid
method for solving local nonlinear random vibration of a class of problems, which is
applicable as long as the problem can be described as a local nonlinear problem and
contains an explicit nonlinear restoring force model. The above methods are not only
appropriate to continuous girder bridges, but also applicable to the analysis of similar
problems of other bridges.
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