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Abstract: Railway switches and crossings (S&Cs) are critical, high-value assets in railway networks. A
single failure of such an asset could result in severe network disturbance and considerable economical
losses. Squats are common rail surface defects of S&Cs and need to be detected and estimated at
an early stage to minimise maintenance costs and increase the reliability of S&Cs. For practicality,
installation of wired or wireless sensors along the S&C may not be reliable due to the risk of damages
of power and signal cables or sensors. To cope with these issues, this study presents a method
for collecting and processing vibration data from an accelerometer installed at the point machine
to extract features related to the squat defects of the S&C. An unsupervised anomaly-detection
method using the isolation forest algorithm is applied to generate anomaly scores from the features.
Important features are ranked and selected. This paper describes the procedure of parameter tuning
and presents the achieved anomaly scores. The results show that the proposed method is effective
and that the generated anomaly scores indicate the health status of an S&C regarding squat defects.

Keywords: railway switch and crossing; vibration; squat; anomaly detection; unsupervised machine
learning; anomaly score; point machine

1. Introduction

In recent years, rail transportation has gained significant attention due to its potential
to relieve road and air congestion and environmental problems. Railway traffic in Europe
has experienced a significant rise in both transporting passengers and freight in Europe [1,2].
In EU-15 countries, the passenger-kilometres and the rail freight ton-kilometres increased
28% and 15%, respectively, between 1990 and 2007 [3]. The increased volumes of freight
and passenger traffic are challenges that need to be addressed because they set higher
requirements on the maintenance and renewal process. To keep the railway transporta-
tion efficient, comfortable and safe under such circumstances, innovative maintenance
techniques of the critical components are vital.

Railway switches and crossings (S&Cs) are important components of railway trans-
portation infrastructure. A failure in the S&C could lead to delays globally in the system
and considerable economical loss. Since S&Cs include movable parts, and are the discon-
tinuous points of the rail geometry, they encounter high failure rates [4]. Maintaining and
renewing the S&Cs across the rail network is expensive [5]. According to Cornish et al. [6],
S&Cs have consumed 24% of the maintenance and 23% of the renewal budget against only
5% of the track miles in the U.K. In 2018 alone, S&Cs cost 530 MSEK, which is around 10%
of the entire maintenance budget in Sweden [7]. In the worst case, such a failure could even
result in catastrophic accidents due to derailments.

Due to safety concerns and their high maintenance costs, monitoring the status of
S&Cs and performing preventive maintenance is important. Many studies have been
performed to monitor the status of S&Cs. Most of the studies use wayside mounted sys-
tems. Liu et al. [8] experimented with two different systems. One was equipped with a
3D accelerometer and a speed detection sensor to describe crossing degradation, and the
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other was a video gauge system (VGS) to detect and quantify ballast conditions. However,
the measurements were sensitive to the speed and the type of the train. Data from the same
train type and with similar speeds were needed. Boogaard et al. [9] presented a method
of utilising both accelerometers and a strain gauge mounted 50 mm below the crossing
frog. Only the vibration data of the furthest measuring point from the tip of the nose were
presented in the study. The results showed the advantages of combining two different mea-
suring methods for monitoring the crossing nose. However, the proposed approach was
focused on measuring the dynamics of the frog in the S&C. Barkhordari et al. [10] proposed
a method of employing a wayside system to measure the track acceleration to monitor
ballast degradation. However, this method does not provide continuous condition monitor-
ing. Milosevic et al. [11] developed a condition-monitoring approach of railway crossing
geometry by using measured and simulated track responses. Kerrouche A. et al. [12] pro-
posed an experimental strain-measurement approach for monitoring the crossing nose
of railway S&Cs, However, Both of these studies focused on the crossing nose instead
of the whole S&C. The Axle Box Acceleration (ABA) system can also be used to monitor
the status of the S&C. Wei et al. evaluated the degradation at a railway crossing using
ABA measurements [13]. However, the study focused mainly on the uneven deformation
between the wing rail and crossing nose and local irregularity in the longitudinal slope of
the crossing nose.

Squats are one type of rail defect. According to Grosonni et al. [14], one-third of the
recorded failures at the crossing panel are squat-related. Molodova et al. presented a
series of studies on utilising ABA to explore the influence of different parameters and
to implement an automatic squat-detection method [15,16]. However, these studies are
aiming for normal tracks, and the situation for an S&C is more complicated. In addition,
the ABA signal is dependent on the property of the axle box, the condition of the wheel
axle bearings and the wheel profiles. Cho [17] proposed a similar method for detecting
squat defects using the ABA measurement with signal processing and wavelet spectrum
analysis. This study has the same drawback as the other ABA-based methods.

As critical components in railway infrastructure, S&Cs are required to be reliable in
order to prevent delays and avoid fatal accidents [12]. Nowadays, manual inspection at
fixed intervals is still the most commonly used way to assess the status of S&Cs [18]. These
manual inspections encounter human errors and can lead to severe accidents. Manual
inspection can also place inspectors in danger as regular physical access to the railway is
inevitable. A plausible solution to this conundrum can be to automate the process of squat
detection and monitor the health status of S&C to obtain more frequent updates of the
status information, reduce the cost of inspections, reduce system down-time and increase
safety. Anomaly-detection techniques are suitable for finding the segments of S&C that
contain squats among the healthy data.

In most of the prior studies using wayside monitoring techniques, sensors were
either installed on the side, underneath the rails or mounted on the sleeper to collect the
data. These approaches of installing wired or wireless sensors are not practical due to an
increased risk of damaged power and signal cables or sensors themselves under normal
operation or during maintenance activities. A possible solution to overcome this issue is to
make use of the protective environment within the point machines to host the sensors. This
study proposed an approach of positioning the accelerometer inside the point machine to
estimate the overall health condition of the S&C. The accelerometer was installed on one
rod of the point machine with customised aluminum holder. This positioning provides
good protection for the accelerometer against harsh weather conditions. An electrical
power supply is also easily accessible from the point machine. Previously, the sensors were
either installed on the axle box of the train [13,15–17], on the bogie of the train [19–21],
directly on the rail [22,23] or underneath the rail [24,25]. This study proposes a new
processing procedure which combines classical time-domain features with features derived
from scale-averaged wavelet power (SAWP) with the help of wavelet techniques and
utilises an unsupervised anomaly-detection algorithm called isolation forest to predict the
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anomaly score. This combination has not been yet utilised to process vibration data from
the railway application. The previous studies used only time domain features [13,16,26]
and supervised machine-learning algorithms [1,26]. The objective of this study is to enable
continuous monitoring of the S&C to estimate its general health condition and to reduce
the human interventions on track for the inspection purpose. Previous studies focused only
on individual defects on normal rails [16,27,28].

The rest of the paper is organised as follows. Section 2 presents the materials and
methods. Section 3 presents the results and discussions. Section 4 presents the conclusions
and the future works.

2. Materials and Methods

The basic idea behind the current study is that the vibration at the point machine is
affected by the squats on the rail head of the S&C. Squats may lead to defects, which can
result in system failure during normal railway operations. The vibration is the result of a
dynamic response to the wheel–rail interaction. If the rail has squats, then the vibration
signal will also change its property. Therefore, analysing the vibrations can be effective in
estimating the health status of the S&C.

The experiment for this study was carried out along a testbed including a full-scale
S&C and a 6-tonne bogie wagon. Two levels of squats were introduced manually with
1 mm and 4 mm maximum depth. The vibration sensor is mounted at the point machine.
Several signal-processing steps were applied to the original signal and 11 features were
extracted for each segment of the signal. The features were the root mean square (RMS),
standard deviation, shape factor, kurtosis, skewness, peak-to-peak amplitude, impulse
factor, crest factor and clearance factor from time domain and the number of peaks and the
total peak power from the SAWP. These features were used as input to an unsupervised
anomaly-detection algorithm named isolation forest to predict if a section contained squat
defects or not. By combining the results of each individual segment, the health condition
of the whole S&C could be assessed. A detailed description of the methods used for this
study are described in the sub-sections below.

2.1. Track Layout and the Testbed

In this study, an approach was presented to investigate how to detect and evaluate the
health status of an S&C regarding squat defects by using unsupervised machine learning.
The experiment was performed with a testbed located at luleå University of Technology
including a full-scale S&C and a 6-tonne bogie wagon. This bogie wagon has two axles,
and the distance between them is 2.5 m. The S&C used has a dimension of 1:16 and a length
of 38.14 m. The accelerometer was mounted on the point machine to provide a protective
environment for the accelerometer and easy access to electricity. The vibration signal and
the corresponding speed information were measured. The test site is shown in Figure 1
and an illustration of the testbed is shown in Figure 2. The squats were labelled from A
to K. S0 and S1 were two stop blocks mounted on the two ends of the rails in the through
direction. The point machine is 5.86 m from the stop block S0.

Figure 1. View of the test site.
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Figure 2. Test bed schematic diagram and accelerometer placement. The squats are labelled from A
to K. S0 and S1 are stop blocks in the through direction.

To simulate two different squat levels, the squats were manually introduced stepwise
with 1 mm and 4 mm maximum depths. The dimensions of the squats with two different
levels were measured and are presented in Table 1. The sensor used was KS91C. It has
a measuring range of 0.3–37,000 Hz, sensitivity was 10 ± 20% mV/g and the resonant
frequency was greater than 60 kHz (+25 dB). The position of the accelerometer is visualised
in Figures 2 and 3. The vibration in the z-direction was measured. The accelerometer was
glued to the aluminum holder which was mounted on one rod of the point machine.

Table 1. Dimension measurements of the two squat levels.

Squat Name
Squat

Diameter 1
(mm)

Max Depth 1
(mm)

Squat
Diameter 2

(mm)

Max Depth 2
(mm)

A 43 1.2 62 3.7
B 41 1.0 61 3.9
C 42 1.0 63 3.7
D 42 1.0 66 4.4
E 0 0 65 3.7
F 42 1.1 65 4.2
G 42 1.0 64 3.7
H 42 1.5 62 4.7
I 42 1.4 62 4.3
J 42 1.2 63 4.4
K 42 1.1 61 4.1

Figure 3. Sensor mounted on one rod of the point machine for extra protection.
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2.2. Test Procedure and Data Acquisition

The experiment was performed as follows. Three different test cases were performed.
The bogie wagon travelled from S0 to S1 without squats, with squats of 1 mm depth and
with squats of 4 mm depth. Each test case was repeated 3 times. In total, 9 instances
were recorded. The vibration data were measured with the accelerometer installed at the
point machine. A data acquisition platform DAQ9174 was utilised to capture the vibration
data and feed them to the computer directly. The sampling frequency of the platform was
51.2 kHz. The speed was measured with a customised tachometer with Hall effect senor
A3144 and neodymium magnets. An Arduino Uno unit was utilised to send the revolution
per minute (RPM) data of the left back wheel via WiFi to the computer. The controlling
system was implemented in VI code running in LabVIEW 2019.

2.3. Signal-Processing Procedure

The signal-processing procedure for this study is described in Figure 4. The vibration
signals were initially filtered with a third-order Butterworth band-pass filter with 50 Hz
and 2.5 kHz cutoff frequencies. The band-pass filter was used to filter away the frequencies
with noise and preserve the useful information. A wavelet magnitude scalogram was
utilised as a tool to help decide the cutoff frequency of the band-pass filter. The process
is explained by using the following example. A piece of vibration data with a squat
defect was extracted and evaluated with wavelet transform. Figure 5 presents the wavelet
magnitude scalogram of squat G in a 4 mm case. It showed that the main energy of the
response for the squat defect was around 200 Hz to 400 Hz. There was also a second
frequency band around 500 Hz to 2000 Hz. This implied how the band-pass filter should
be designed. The filtered signals were aligned and truncated to equal length. This step
makes it possible to compare the results from different runs in the results. It could also
be utilised in future studies to accurately extract the position information. Further, the
signal was down-sampled to one-tenth of the original frequency. As the band-pass filter
has a cutoff frequency as high as 2.5 kHz, the original signal with sampling frequency at
51.2 kHz contains redundant information. A sampling frequency at 5 kHz was enough to
preserve all the useful information. To make the calculation easier, 5.12 kHz was applied.
The output signals were processed in two separate paths after that. On one path, the signals
were directly segmented into 400 equal-sized segments and 9 corresponding time-domain
features were extracted. The features used in this study were RMS, standard deviation,
shape factor, kurtosis, skewness, peak-to-peak amplitude, impulse factor, crest factor and
clearance factor. On the other path, wavelet denoising was applied. The denoising was
set at a level 9 decomposition, with Symlet 4 wavelet, Empirical Bayesian denoise method
with median thresholding and level-dependent noise estimator. The SAWP was calculated
from the output signal. Two features, the number of peaks and the total peak power, were
extracted from the SAWP time series and assigned to each segment. In total, 11 features
were generated. The extracted features are also described in Table 2.

Bandpass filter Align & truncate Down-sampling 1/10

Segmentation

Wavelet denoise Convert to SAWP Segmentation

Acceleration data Features

Figure 4. Signal-processing diagram.
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Figure 5. Magnitude scalogram of squat G in a 4 mm case.

Table 2. Extracted features.

Feature Number Feature Type Feature Name

1 time domain RMS
2 time domain standard deviation
3 time domain shape factor
4 time domain kurtosis
5 time domain skewness
6 time domain peak to peak amplitude
7 time domain impulse factor
8 time domain crest factor
9 time domain clearance factor
10 SAWP number of peaks
11 SAWP total peak power

2.4. Wavelets

The concept of wavelet transform can be traced back to 1909 when Harr introduced
the first wavelet. Wavelet transform can be divided into two categories, namely, continuous
wavelet transform (CWT) and discrete wavelet transform (DWT).

CWT is a very powerful tool for time-frequency analysis and can be viewed as replac-
ing the short-time Fourier transform’s “time-frequency window” gt,ξ with a “time-scale
window” Ψa,b. However, calculating all wavelet coefficients at all scales is computationally
expensive, and it contains a high amount of redundant information. DWT is a good alterna-
tive in some cases. DWT works similarly to a band-pass filter and it can be performed for
a signal on several levels. Each level decomposes the original signal into approximations
(the low-frequency part) and details (the high-frequency part). The next level of DWT is
carried out on the approximations of the previous level. Mathematically, the DWT of a
function f (x) is defined as the integral transform of f (x) with wavelet functions Ψa,b(x),
when scales and positions are based on powers of two. It is defined as follows:

DWT(a, b) =
1√
a

∫ +∞

−∞
f (x) ∗Ψ

(
x− b

a

)
dx (1)
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where
a = 2j, b = k2j,

(
k, j ∈ Z2

)
(2)

Here a is called the scale factor and represents the scaling of the function, and b is called
the shift factor and represents the temporal offset of the function. Wavelet denoising utilises
DWT to decompose the original signal to obtain the wavelet coefficients, thresholding
the coefficients and reconstructing the signal with reverse DWT [29]. Wavelet denoising
has been widely utilised to denoise different vibration signals. Chen et al. proposed a
wavelet denoising method for the vibration signals collected from wind turbines [30].
Chegini et al. [31] proposed a new application using imperial wavelet transform denoising
in bearing fault diagnosis. He et al. [32] constructed a distributed acoustic sensor technology
using multi-level wavelet decomposition denoising for condition monitoring of the heavy-
haul railway. More details of the wavelet denoising technology implementation and
application can be found in “Wavelet Denoising” by Luo and Zhang [33].

When applying wavelet denoising, a few parameters and the thresholding method
needed to be decided. The maximum level of decomposition depended on signal length (N).
The data acquired yielded a maximum number of decomposition levels of 21. Levels of
coefficients influenced the kurtosis of the signal [34]. Increasing the number of levels of
decomposition would lead to more aggressive denoising but also distort the output signal
more. Empirical testing with different levels yielded 9. The wavelet function should reflect
the features presented in the signal in the time domain. However, since the primary interest
in this study was the SAWP time series, the different types of wavelet functions would yield
the same qualitative results [35]. Symlet 4 (sym4) was chosen. There were a few methods
that could be used to determine the denoising thresholds. Empirical Bayesian, block
James–Stein, false discovery rate, minimax estimation, Stein’s unbiased risk estimation and
universal threshold were tested. The influence on the SAWP is insignificant [35]. Since the
signal without noise was not available, a quantitative comparison could not be performed
in this case. Empirical Bayesian with median thresholding was chosen.

2.5. SAWP

The SAWP time series over scales s1 to s2 is defined as follows [35]:

W̄2
n =

δjδt

Cδ

j2

∑
j=j1

∣∣Wn
(
sj
)∣∣2

sj
(3)

where
sj = s02jδj , j = 0, 1, . . . , J (4)

J = δj−1log2(Nδt/s0) (5)

Cδ is scale independent and a constant for the selected wavelet function, δj is a factor
for scale averaging, δt is the sampling period and j1, . . . , j2 represent scales over which
the SAWP is computed. s0 is the smallest resolvable scale and J determines the largest
scale. Wn(s) is the continuous wavelet transform of a discrete sequence. N is the number of
points in the time series [36].

This can be utilised to examine fluctuations in power over a range of scales, which is
exactly what was needed to detect the power burst in the vibration signal when a wheel hits a
squat or a gap. This power time series will be utilised later to extract two peak-related features.
The threshold for the detection of peaks was set to 2.5× 10−8 g2. The threshold was chosen
empirically. Figure 6 shows an example of the identified peaks in a 4 mm squat depth case.
The corresponding number of peaks in each segment and their total power were calculated.
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Figure 6. Scale-averaged wavelet power (SAWP) peaks found for a 4 mm squat case.

Isolation Forest

An isolation forest is an unsupervised anomaly-detection technology based on the
idea of isolating anomalies instead of profiling the normal points. Given a set of obser-
vations, the isolation forest algorithm selects a random sub-sample of the observations
and assigns them to a binary tree. The algorithm starts by selecting a random feature
from d-dimensional features. A split is then done on a random threshold in the range of
the selected feature. If the value of one observation is less than the selected threshold, it
goes to the left branch; otherwise, it goes to the right. With such an approach, a node is
split into left and right branches. This process continues recursively until all data points
are completely isolated or when the max depth is reached. The above steps are repeated
to construct random binary trees until all observations are isolated. Those points that
are easier to isolate and with smaller path lengths will thus have higher anomaly scores.
A comprehensive description of the isolation forest algorithm is given by Liu F.T. et al. [37].

The 11 features extracted were first scaled using normalisation. The scaled features
were evaluated and selected by using both PCA and Laplacian score. After applying the iso-
lation forest algorithm, each segment received an anomaly sore. The threshold of anomaly
score to separate the healthy data and the anomalies were decided by finding the knee
point. After the hyperparameters were decided, two possible indicators were proposed.

3. Results and Discussions
3.1. Segmentation

All signals were aligned to have the same starting points and truncated to 350,000 samples
for each signal. The signal was segmented into 20 segments and the anomaly scores
achieved cannot pinpoint the precise defect location. To be able to obtain more accurate
positioning of anomalies the number of segments was increased to 200 and 400, respectively.
In the 400 segment case, since the speed of the bogie never exceeds 2 m/s each segment
corresponds to around 0.17 s and will not be more than 0.34 m. This achieves a resolution
that can be used in identifying the individual defects. The results of the influence of
segment size are shown in Figure 7.
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Figure 7. Example anomaly score for a no-squat case with different segment sizes.

3.2. Feature Extraction

A total of 11 features were extracted from both the processed time-domain signal and
the SAWP time series. The features can be grouped into two categories. The RMS, standard
deviation, shape factor, kurtosis, skewness, peak to peak amplitude, impulse factor, crest
factor and clearance factor are time-domain statistical features. The number of peaks and
total peak power are extracted from the SAWP. All the extracted features are summarised
in Table 2.

3.3. Feature Scaling

The two most used types of feature-scaling techniques are normalisation and stan-
dardisation. Normalisation is also referred to as max-min scaling, and standardisation is
also referred to as Z-score normalisation. The normalisation scales the input feature values
to the range of [0, 1], while standardisation converts the input feature values to obtain zero
mean and a unit standard deviation. Since the PCA algorithm requires input features to
have zero mean and a unit standard deviation, the features were standardised.

3.4. Feature Selection

Two different approaches for feature selection were utilised. The first method utilised
PCA. The accumulated PCA feature importance score is presented in Figure 8. The first
five features in the PCA space captured 96.55% of all the useful information. The second
method employed the Laplacian score for feature selection. The redundant features were
removed using the cross-correlation values between the features. Usually, the Laplacian
score is defined as Lr = 1− sr where sr is a score for each feature [38]. However, MATLAB
only uses the second term sr which represents the feature importance. Therefore, a lower
Laplacian score is equivalent to a higher feature importance score, which indicates the
corresponding feature is more important. The Laplacian feature importance was calculated
and ranked using MATLAB and the results are shown in Figure 9. The correlations between
the most significant feature and the others are calculated. The procedures for removing
correlated features are as follows. The most important feature was selected and the cross
correlation between it and the rest of the features was calculated. The features that had
a higher correlation value than 0.9 with the most important feature were removed. This
procedure was repeated for the second most important feature in the remaining feature
set. This process stopped when there were no two features left that had a cross correlation
value higher than 0.9. As a result, the remaining features are features 10, 11, 9, 8, 5 and 6.
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Figure 8. Accumulated PCA feature ranking.
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The results of utilising different groups of features were compared. Figure 10 shows
an example of the anomaly scores for a test case with no squat with different feature groups.
The anomaly scores using PCA space features and the Laplacian score-selected features
are shifted down with 0.5 and 1 correspondingly for better visualisation. The numerical
comparison using mean root squared error (MRSE) is presented in Table 3. The anomaly
scores generated by using all features and the PCA space features are very similar. This can
be explained because the selected 5 PCA space features explain 96.55% of the variance of
all features combined. The anomaly scores generated by using Laplacian score-selected
features and the PCA space features are also very similar. This shows both feature selection
approaches generate similar anomaly scores and are acceptable. However, the anomaly
scores generated by using all features and the Laplacian score-selected features are slightly
more different with around double MRSE values. The Laplacian score approach only
removed five redundant features that are highly correlated with the selected most important
features and the anomaly score difference is still small. Plotting and comparing the anomaly
scores for those two cases verifies that the difference is so small that it is reasonable to
assume similar performance.
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Figure 10. Example anomaly score for a no-squat case with different features.

Table 3. MRSE calculation for different feature set.

Test Run All Features vs. PCA All Features vs.
Laplacian PCA vs. Laplacian

MRSE MRSE MRSE

0 mm_1 8.23× 10−4 1.90× 10−3 6.12× 10−4

0 mm_2 8.26× 10−4 1.80× 10−3 5.13× 10−4

0 mm_3 1.00× 10−3 2.10× 10−3 5.24× 10−4

1 mm_1 7.91× 10−4 1.80× 10−3 6.26× 10−4

1 mm_2 8.55× 10−4 2.10× 10−3 8.40× 10−4

1 mm_3 8.27× 10−4 1.90× 10−3 7.28× 10−4

4 mm_1 7.46× 10−4 2.00× 10−3 7.59× 10−4

4 mm_2 8.45× 10−4 2.10× 10−3 7.91× 10−4

4 mm_3 8.23× 10−4 2.10× 10−3 7.63× 10−4

From a performance point of view, either group of features could be utilised for further
study. However, because of the curse of dimensionality, a higher dimension of features
leads to exponentially increased computational efforts [39]. Therefore, it is reasonable to
choose either the PCA space features or the Laplacian score-selected features. A drawback
with PCA space features is that the generated features are linear combinations of the
original features and they become less interpretable and lose their physical meanings [40].
Those two reasons combined justify that it is reasonable to choose Laplacian score-selected
features for further study.

3.5. Threshold for Anomaly Score

A threshold should be provided to decide what an anomaly is. The descend-sorted
anomaly scores against the index of all 9 instances are plotted in Figure 11. Each instance
contains 400 segments and these 9 instances contain 3600 segments in total. The knee point
method was applied and it was found that the point with index 436 was the knee. This
corresponded to around 12% of the total segments. Therefore, the 88th percentile should
be used as the threshold. This is verified by plotting the anomalies using the 88 percentile
together with the vibration signal. An example of the results for a 4 mm case is presented
in Figure 12. By using the 88th percentile, most of the anomalies were found without
introducing unexpected false alarms.
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Figure 12. Example anomaly detection for run 1 of the 4 mm squat case with the 88th percentile as
the threshold.

3.6. Anomaly Indicator for the Whole Switch

All the test cases and the corresponding anomaly score above the threshold are pre-
sented in Figure 13. This shows clearly that with increased squat depth more anomalies are
found, which indicates the health status of the S&C is degraded. It can also be observed
that the different test runs were well aligned at the beginning; however, with a different
speed profile for each run, the spotted defects also encounter a different drift. They are no
longer well aligned after a while. This, however, would not influence the result as utilising
the anomaly score as an indicator of the health status of the S&C.
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Figure 13. Anomaly scores above the 88th percentile threshold for all test cases.

One indicator could be calculating the sum of all anomaly scores and using the mean
value for each test scenario. From the test data, the observed scores are 11.65, 20.31 and 29.59
for the S&C with healthy, 1 mm deep and 4 mm deep squat cases.

Another indicator could be the mean value of the number of anomalies for each test
scenario. From the test data, the average number of anomalies was 18.67, 32.67 and 45.00
for the S&C with healthy, 1 mm deep and 4 mm deep squat cases.
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4. Conclusions and Future Works

The present study demonstrates that it is possible to use the proposed method to extract
features and utilise unsupervised anomaly-detection techniques, such as the isolation forest
to detect the squat defects. The following conclusions can be drawn:

• The study shows that accelerometers placed within the protective environment within
a point machine can be utilised for monitoring defects such as squats along the S&Cs
of the railway infrastructure.

• The signal-processing procedure of extracting features from both the time domain
vibration signal and the SAWP is effective and promising.

• Skewness, peak to peak amplitude, crest factor, clearance factor, Nr. of peaks and total
peak power are ranked to be the top features for anomaly detection.

• The selected five PCA space features explain 96.55% of all the variance in the features.
• Anomaly-detection algorithms can be utilised to generate anomaly scores to indicate

the health state of the S&C regarding squat defects. Using knee point technique, 12%
of the total segments of all nine instances were determined to be anomalies.

• The mean value of the total anomaly scores for each test scenario increase from 11.65
to 20.31 and 29.59 for the S&C with healthy, 1 mm deep, and 4 mm deep squat cases.
The values for 1 mm and 4 mm cases are almost 1.7 and 2.5 times greater compared to
the healthy case, respectively.

• The mean value of the number of anomalies for each test scenario increases from 18.67,
32.67 and 45.00 for the S&C with healthy, 1 mm deep and 4 mm deep squat cases.
The values for 1 mm and 4 mm cases are almost 1.7 and 2.5 times greater compared to
the healthy case, respectively.

• An isolation forest algorithm is suitable for anomaly detection related to the squat defects.

Since isolation forest is an unsupervised machine-learning technique, no labelled data
are needed to train the model. By learning from the unlabelled data, a model is built
and can be utilised to perform anomaly detection on the new data. It is promising to
utilise such an approach to enhance the safety and reliability of S&C. One future study
would be to verify the approach with data from S&C in a real railway network. Another
interesting future study could be to take into consideration such parameters as train type,
load and speed among the indicators and extend the method. The future study will also
include enhancing the current data set and carrying out a comparative study where the
results of the proposed unsupervised anomaly-detection model will be compared to other
anomaly-detection methods such as neural networks. In the future, a nationwide condition-
monitoring system for S&Cs could be developed by combining such an approach and the
concept of federated learning.
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