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Abstract: Accurate and fast contact detection between a robot manipulator and objects is crucial for
safe robot–object and human–robot interactions. Traditional collision detection techniques relied
on force–torque sensors and Columb friction cone estimation. However, the strain gauges used in
the conventional force sensors require low-noise and high-precision electronics to deliver the signal
to the final user. The Signal-to-Noise Ratio (SNR) in these devices is still an issue in light contact
detection. On the other hand, the Eccentric Rotating Mass (ERM) motors are very sensitive to subtle
touch as their vibrating resonant state loses immediately. The vibration, in this case, plays a core role
in triggering the tactile event. This project’s primary goal is to use generated and received vibrations
to establish the scope of object properties that can be obtained through low-frequency generation
on one end and Fourier analysis of the accelerometer data on the other end. The main idea behind
the system is the phenomenon of change in vibration propagation patterns depending on the grip
properties. Moreover, the project’s original aim is to gather enough information on vibration feedback
on objects of various properties and compare them. These data sets are further analyzed in terms of
frequency and applied grip force correlations in order to prepare the ground for pattern extraction
and recognition based on the physical properties of an object.

Keywords: active vibration sensing; tactile sensing; contact detection

1. Introduction

Vibrations are undoubtedly vital to us. Without them, for instance, we could not
detect events needed to manipulate an object or even walk. Therefore, vibration sensing
has attracted the attention of scientists since the era of Leonardo da Vinci, who pioneered
the investigation of friction and slippage [1]. Frictional resistance between object and hand
lets us grasp an object when we apply enough force at the contact points [2]. This force
prevents the body from slipping and, therefore, from falling. Even though we may grasp
objects—when volumetric boundaries of a body fit into the hand—with form closure [3],
true dexterity appears when we grab and manipulate objects with force closure [2]. We
finely control both the fingertip motions [4] and the forces at the points of contact with a
grasped object to prevent its slippage [5]. Thanks to the sense of touch in our fingers that
can detect friction-induced vibrations [6–8], these forces can increase almost immediately
if the object starts to slip. Indeed, a person’s visual acuity cannot affect the ability to
manipulate. On the other hand, the absence of touch sense—through anesthetizing the
fingertips as shown in the experiments on lightning-up matches [9]—dramatically impairs
object manipulation capability.

Humans can effortlessly manipulate objects and tools by applying precisely controlled
forces. In fact, robot hands are rather crude in terms of manipulation skills compared with
humans [10]. The effectiveness of the mechanisms for object manipulation was evaluated in
the First Amazon Picking Challenge [11] and the DARPA challenge, which was highlighted
in [12]. The human hand can detect contact with an object and prevent the grasped object
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from falling—thanks to its advanced tactile sensing—by detecting and rapidly correcting
applied forces. This is hard to replicate in mechatronic systems, such as robot hands or
prostheses, where sensorimotor skills for contact detection and slippage control is more
limited compared with real hands [13].

With the aim to close the gap in sensorimotor skills in robots, slip detection systems
based on vibrations have been developed by researchers for both prehensile (e.g., grasping
an object for a pick-and-place task) and non-prehensile (e.g., pushing an object or typing
a keyboard) manipulation. In both cases, tactile signals have been used for detection of
the current manipulation phase (contact/no contact, slippage, sliding, etc.) [14]. Contact
detection was also used for object exploration, recognition, and material classification as
surveyed in [15–18]. Depending on the transduction type of the tactile sensor—it can
be dynamic or static according to the time response and may represent an array of data,
vector or scalar— a stable grasp can be assessed from contact forces [19], contact pressure
profile [20,21], and friction-induced vibrations [22,23].

Traditionally, tactile sensing approaches relied on collision detection techniques, where
industrial force–torque sensors are the golden standard [15]. Unfortunately, the microelec-
tromechanical systems (MEMS) used in these conventional force sensors require low-noise
and high-precision electronics. Advances in force gauges allowed the miniaturization of
these force sensors and led to better sensing performance. Nevertheless, the Signal-to-Noise
Ratio (SNR) is still a burden towards light contact detection [24].

In force sensor-based approaches, most approaches are seeking for the stability of a
grasp rather than contact detection. The stability is evaluated by the ratio of normal-to-
tangential reaction forces and the static coefficient of friction. Slippage avoidance is ensured
by maintaining an object within the Coulomb friction cone. The tangential force can be
obtained by force–torque sensors [2]. The analogous principle is applied for preventing
rotational slippage by the estimation of rotational friction, which is more complex to model
than the linear one [25]. In [26], the rotational slippage was leveraged to manipulate a
cylinder so that it undergoes a desired motion due to gravity. Other approaches can rely
on dynamic friction models that allow the prediction of a slip. For example, using a force–
torque sensor installed on a robot hand, [19] estimated the coefficients of the dynamic
LuGre friction model of contact with an unknown object through two exploratory motions.
The breakaway friction ratio was then computed to predict slippage.

One of the first approaches within this group is described in [27]. The authors detected
the loosing of a contact due to slippage by calculating changes in tactile pattern represented
by a matrix in which the increase, decrease, and absence of any change in force correspond
to values 1, −1, and 0, respectively. Slippage is derived by summing and subtracting the
neighbor elements in a 4 × 4 tactile sensing array attached onto a prosthetic hand. New
generations of these sensors have better spatial resolution and more numbers of tactile
elements (tactels). Data from such tactel arrays, such as the 16 × 16 grid of force-sensitive
resistors [28], can be treated as a grayscale image [29]. Similar to image features in vision,
tactile image features of the contact pressure profile can be computed for the estimation of
a stability of a grasp. Ref. [30] detected the slippage of an object by analyzing changes of
feature points of the tactile image. Data was collected from a 44 × 44 array of piezoelectric
sensors installed on an industrial manipulator. Before the actual motion of the grasped
object in a slip event, there are some feature points that remain on previous positions and
points that have moved. The ratio of the immobile points to the moved points indicates the
slip event.

An optical tactile sensor for slip detection based on a similar approach was delineated
in [31,32]. The authors of these papers do not take into account the robot itself, i.e., robot
kinematics. In contrast, [21] consider grasp stability as a probability distribution that
depends on the combination of contact pressure profiles and robot configuration. They
evaluated grasp stability using supervised machine learning algorithms. Processing such
tactile sensing arrays at fast-enough sampling rates is a challenge. Studies in human haptic
perception have shown that the change in contact state is detected by rapidly adapting
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mechanoreceptors that can capture only high-frequency components of the contact force [9].
The next group of methods for contact detection are inspired from this biological hint.

Dynamic vibrotactile sensors can be used to distinguish textured surfaces by dragging
a rigid probe across it. The probe transmits temporal signals only. The induced vibrations
can be used for surface classification. The aforementioned mechanoreceptors in human
hands are the candidates for mimicking them in robot hands. Artificial tactile sensors with
fast response (such as accelerometers, microphones, piezoelectric and capacitive sensors,
barometers with fluid media, and recently event-based cameras [33]) provide information
about vibrations at the contact point. Information about vibrations can be further used for
slip detection and haptic object exploration. The dynamic response of the tactile sensing
arrays was mainly limited by the sampling rate of reading devices. For instance, in [23], the
sensing bandwidth was limited by the sampling rate of a commercial capacitance-to-digital
converter (300 Hz for AD7147), whereas the bandwidth of a single tactile sensor can reach
up 5 kHz of bandwidth [22].

Achieving stable grasp by detecting mechanical vibrations was first implemented for
a hand prosthesis [34]. A more detailed review on slip detection is presented in the works
of [13,35,36]. Dynamic tactile signals can be processed directly in time and frequency
domains. One of the straightforward ways of detecting the slippage is to trigger it based on
the presence of a high-pass-filtered tactile signal [37]. Similarly, in [38], signals of a higher
bandwidth piezo-electric sensor were analyzed in time domain to detect a slip. In order to
increase the performance, the robot hand was driven by pneumatic muscles rather than
electric motors of PR2 robot grippers. An alternative way to detect slip is to transform
tactile signals to the frequency domain and calculate the spectrum power, e.g., as in [22].
Tactile and audio (speech) signals are similar in their flow with respect to time. In this
connection, the authors of [39] utilized the advances in speech recognition to discriminate
object–gripper slip from object–world slip.

The aforementioned methods can be classified as passive sensors. In other words,
external stimuli must be applied to detect, for example, an event of contact with an object or
even human touch. In contrast, we are interested in making robots detect a subtle physical
contact with the environment or even slight touch from a human operator. To achieve
this goal, we leverage the low-cost Eccentric Rotating Mass (ERM) motors that are very
sensitive to touch as their vibrating resonant state loses immediately. The vibration, in this
case, plays a core role in triggering the tactile event, be it contact with the object during
grasping or in human–robot interaction. Therefore, we present an algorithm for active
sensing that increases the reliability of light contact detection. The active detection system
depends on (a) a MEMS accelerometer installed in the soft fingertip of a robot gripper
and (b) an ERM motor on the opposite fingertip. The contact event with an object may be
considered as a condition in which the frequency of the ERM-induced vibrations deviate
from the predetermined one that corresponds to the non-contact state.

The challenge that we take on in this paper is related to the field of sensor design and
signal processing for contact detection. Our method is applicable in autonomous robot
manipulation and human–robot physical interaction. To validate our approach, we built
a test bench consisting of two fingertips and industrial robot gripper. We reinforce our
experimental results by the numerical analysis of physical contacts by leveraging mass–
spring–damping mechanical models. Indeed, our method is based on the investigations
of the role of the mechanical impedance of the grasped object, which is applicable for any
type of robot physically interacting with the world, e.g., during human–robot interaction,
as briefly discussed in the experimental part of this paper.

In the following sections, we introduce our active contact sensing algorithm
(Section 2.1). Then, we present an experimental setup which was designed to test our
approach for various applications (Section 2.3). After that, we describe experiments and
their parameters. Next, the experimental results are presented and analyzed with the appro-
priate statistical tests (Section 3). We conclude the paper by discussing the research issues
in slip detection and our future plans for touch-driven learning approaches (Section 4).
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2. Methods
2.1. Active Vibration Tactile Sensor

Our proposed active vibration tactile sensor is illustrated in Figure 1. The sensor
consists of three main parts: (i) 3D printed plastic robotic fingers (“bones”) covered with
silicone rubber (“tissue” and “skin”) and mounted on Schunk EGN100 gripper, (ii) a
vibration source (a coin vibration motor), and (iii) an accelerometer ADXL 345. An object
can be grabbed by changing the position of the fingers attached to the gripper. We consider a
scenario where the robot hand grabs a single object, which can be rigid (steel) or soft (rubber
silicone). For the sake of simplicity of the experimental verification, we design the objects
to have cubic shapes (blue cube in Figure 1). The vibrations are injected using the coin
10 mm × 3 mm ERM vibration motor placed inside the rubber skin of the finger (green
disk). The vibrations are registered using the accelerometer placed inside another finger
(pink cuboid). The squeezing force is registered using a commercial Wittenstein multi-
axial force and torque sensor HEX21. The injected vibrations can propagate through the
attached gripper and the squeezed object (in case of contact). Since the system consists of
multiple rigid and flexible links between parts, the total actuation chain supports multiple
resonance modes sensitive to any change in the chain. When the object is connected
to the robot hand, the actuation chain resonance frequencies can change significantly,
demonstrating the method’s high sensitivity. In the next section, we explain the changes
in the resonance modes by introducing a simplified multi-body system represented using
lumped components such as masses, springs, and dampers.

Figure 1. Rendered illustration for the experimental setup: the setup allows for squeezing a given
object and registering the natural resonance frequencies supported in the system with the given
experimental object. The object is hanging in-between the fingers of the gripper. The red arrow
indicates the squeezing movement of the gripper executed along the x-axis; (A) object for grabbing;
(B) Wittenstein F/T sensor; (C) ADXL 345 accelerometer; (D) silicone fingertips printed with FormLabs
(Elastic 50A); (E) 10 mm × 3 mm coin ERM vibration motor; (F) plastic finger bone (printed with
Ultimaker PLA); (G) interchangeable plastic plates for mounting of the printed fingers onto Schunk
EGN robotic gripper; (H) Schunk EGN100 robotic gripper; (I) photograph of experimental setup.

2.2. Lumped-Element Model of Robot Hand Gripper

In this section, we describe our active vibration sensor using a simplified mass–spring–
damper circuit representation [40,41]. The schematic illustration of the model is depicted
in Figure 2. Despite its simplicity, such a mass–spring–damper model has been successfully
applied to the analysis of locomotion [42–45], demonstrating the ability of predicting im-
portant features of human body motion, including the ground reaction forces, fluctuations
of the kinetic energy, etc. Therefore, we apply a lumped circuit analysis to explain the
physics behind the sensitivity of our sensor and predict the optimal operating frequency
given the parameters of the fabricated sensor.
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Figure 2. Illustration of a simplified lumped-element system used to model the vibration resonances
of the robot hand gripper. In the model, the robot hand was separated into several blocks, such as
parts of fingers (bone, tissue, and source), a gripper Schunk EGN100, and an object between the
fingers of the robot hand. In turn, each block can be represented using lumped elements (mass,
spring, and damper), as shown in the top left corner of the panel. Depending on the material and
geometry, all elements of the hand are modeled using masses mi, springs ki, and dampers ci. The
whole system is attached to the ground (an office table).

The sensor is divided into several interlinked blocks that contain rigid (“bones”,
gripper) and nonrigid (“tissue”, “skin”) parts, as shown in Figure 2. Each block contains
mass mi, spring ki, and damper ci. For simplicity, we assume a 1D motion of each block
while maintaining the method’s validity. Moreover, all materials are modeled using the
Kelvin–Voigt model, i.e., the spring and damper connected in parallel. Thus, the motion of
the block can be described with the following equation:

mi ẍ + ci ẋ + kix = fi, (1)

where x is the coordinate, and fi is the force acting on the block i. In practice, the forces
between the blocks are nonlinear functions of spring deformations. However, in our
model, the forces are assumed to be linear functions. The spring constants ki and damping
coefficients ci are estimated using the material properties [46]. The vibrations are injected
by the “motor” block, which has two nodes connected to “tissue” and “skin” blocks. One
of the nodes introduces a displacement u = usrceiφ (where usrc and φ are the amplitude and
phase of the displacement) which is then the transmitted to the adjacent blocks. Moreover,
the whole system is analyzed frequency domain, i.e., the frequency of displacement is
changed in the range [1, 1000] Hz to observe the response of the natural resonances to the
external source of vibrations. The response of our sensor to the vibration is analyzed by
registering the displacement of the accelerometer’s mass ma.

First, we assume the case when the fingers do not touch the object. Therefore, for both
fingers, one node of the masses of “skin” blocks is connected to a free node. By writing
the motion equations for all blocks and introducing the matrices for mass M, stiffness
K, and damping coefficient C, the governing equations of motion can be written in the
following form:

Mẍ + Cẋ + Kx = f , (2)
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where f is an vector of forces. Such a system of differential equations can be solved
analytically. However, a more practical approach is to use a numerical software. To this
end, the Lumped Mechanical System Module of the commercial numerical solver COMSOL
Multiphysics (COMSOL Inc., Burlington, MA, USA)™ was used to solve the system for
our parameters. The obtained numerical spectrum for the system without touching an
object (solid blue line) is plotted in Figure 3A. Several peaks corresponding to the natural
resonances of the system can be observed in the plot. The vibration from the source is
transmitted to the accelerometer through the gripper and other finger. Note that in the
numerical experiment, we do not account the external vibration noises, which can be
injected from the surrounding environment through the table.

Figure 3. Numerical (for a simplified lumped-element model) and experimental results for the
vibration resonances of the robot hand gripper. (A) The numerical spectra for the vibrating system
without touching an object (solid blue line) and after the contact event (dashed red line). A significant
displacement of resonant frequencies (marked with red and green dots for “no contact” and “contact”
cases, respectively) and change in their amplitudes indicate the presence of a new element. (B) The
experimental spectra for the vibrating robot hand system without touching an object (solid blue line)
and after the contact event (dashed red line). After contact, the resonance frequencies slightly shift,
while the amplitudes of the peaks change significantly (peaks for “no contact” and “contact” cases
are shown with red and green dots, respectively).

In the next step, we consider a weak link (a low stiffness of skin kskin) between the
object and the fingers of the robot hand, emulating a light touch. Even such a slight
change in the vibration propagation chain results in a significant displacement of resonant
frequencies (dashed red line in Figure 3A). Therefore, the touch event can be detected
by analyzing the spectral response of the vibration sensor. Moreover, the stiffness of
skin and tissue depends on the applied force or the grip force. Hence, it is possible to
estimate the applied force by measuring the changes in amplitudes of resonance peaks and
their frequency shifts. We use these phenomena in our active vibration tactile sensor and
experimentally demonstrate the touch event detection in the results section.

2.3. Experimental Setup

A 2-finger parallel gripper Schunk EGN100 (SCHUNK GmbH & Co. KG, Lauf-
fen/Neckar, Germany) (Figure 1H) was used for the experimental procedure of gripping
an object. Provided with precise position, velocity control, and availability, it fits perfectly
into the purpose of this research. Custom artificial fingertips were modeled and produced
by 3D printing to simplify the grip data collection. Each finger consists of two main parts:
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a plastic base (Figure 1F,G) and a silicone tip (Figure 1D). The plastic base simulates the
bone in the fingertip of a real human finger and provides stability to the structure when
high forces are applied. Silicone tips were produced using FormLabs Elastic 50A Resin
(Formlabs, Somerville, MA, USA) to reach a remote simulation of the real elasticity of a
finger combined with the ability to print complex structures needed for the project. One
finger contains a 3-axis accelerometer ADXL345 (Figure 1C) for the collection of vibrations
that propagate in the system (sampling frequency—2.5 kHz) and a Wittenstein HEX-21
F/T sensor (Figure 1B, sampling rate—1 kHz, recommended force range—0–50 N) used for
the calibration and comparison between real and registered touch events. The other finger
contains a coin ERM vibration motor (Figure 1E, generated frequency—approx. 130 Hz)
for generating vibrations. Data gathering is implemented using Teensy 3.2 with package
communication with ROS, where the packets of 5 samples are sent at a frequency of 500 Hz.

2.4. Spectral Analysis Algorithms for Contact Event Detection

A spectrogram was used for the visual representation and preliminary identification of
event trigger patterns. Data analysis and touch detection are executed via ROS framework
and GUI written in Python. The spectrogram is refreshed at a rate of 100 Hz, dynamically
detecting changes in the FFT of a signal acquired from the accelerometer. The trials showed
that a moment when the object enters the system (gripper establishes contact with the
object) could be identified by the pattern change in the specific frequency window of
570–580 Hz (Figure 4). Moreover, the proposed frequency bandwidth provides excellent
isolation from the noise generated by the moving gripper. The frequency window location
and width depend on the object’s properties and setup in general and can vary for different
test objects. Such intricate dependence will be studied in future works. Nevertheless, for
the current configuration, the proposed frequency range is optimal.

Figure 4. Spectrogram of a preliminary trial zoomed in on the operational frequency window. (A) The
spectral response used for contact event detection (highlighted in red) that belongs to the frequency
range of 570–580 Hz; (B) The noise generated by active gripper movement (highlighted in blue).

Therefore, the touch event detection algorithm seeks the changes in peak amplitude
of frequencies in the chosen range. To ensure a high accuracy rate (i.e., to prevent false
detection), the trigger condition or threshold for the touch event was set to be double
(obtained from preliminary tests) the noise level 2µvib, as shown in Figure 5A. A binary
signal was used to register the touch event, where the ‘0’ value signifies the absence of
touch and ‘1’ marks the occurrence of a touch event.

The trigger condition for touch events registered by the force sensor was implemented
analogously. However, unlike the active vibro-sensor, post-processing of the obtained
experimental data was performed by applying a moving average filter to simulate real-time
smoothing (Figure 5B). The contact event trigger threshold was defined to be 1.6µF/T ,
where µF/T is the average noise level for the force sensor (≈0.015 N). Although lower than
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our proposed sensor, such a threshold was found to provide an optimal accuracy rate of
contact detection (with false detection for lower threshold and non-detection for higher
values). Below, we provide the descriptions for the experimental procedures and spectral
patterns for gripper–object contact detection and grasped object–human contact detection.

Figure 5. Results for object contact detection experiments. (A) Filtered by moving average (solid black
line), raw data (solid blue line) for the amplitude change in resonance peak (≈580 Hz), and the standard
deviation σvib (semitransparent red area). The noise level and threshold are shown with horizontal
orange and green lines, respectively. (B) Filtered (solid orange line) and raw (solid blue line) force data
(HEX21) for a singular trial, with standard deviation σF/T (semitransparent blue area) and noise level
and triggering threshold (horizontal red and black lines, respectively). (C) Touch events for 10 trials
detected by VibroTouch sensor (9 red dots) and force sensor (8 blue crosses). (D) No grip established,
the gripper is in motion; (E) Case 1: actuating finger reaches contact point with the object first; (F) Case 2:
finger containing force sensor reaches contact point with the object first.

2.4.1. Gripper–Object Contact Detection

In the scenario of the gripper–object interaction, the experimental procedure for the
detection of established contact between the gripper and an object is the following:

1. The gripper’s fingers close the gap between them with a speed of 0.01 mm/s due to
the limiting maximum sampling frequency (≈30 Hz) of obtaining a proper gripper
position. The dimensions of an experimental cube (side length of 17.65 mm) were used
as a guide for controlling gripper displacement, with the gripper’s initial separation
slightly wider than the object’s width. Therefore, the range of gripper displacement is
from 0 mm to the position of the approximate dimensions of the object (where touch
is supposed to happen). Hence, the maximum distance traveled by fingers is equal to
2.35 mm;

2. During this light-squeeze movement performed by the gripper, GUI collects the data
from the force sensor and resonant peak amplitude changes in a specific bandwidth,
actual gripper position, and touch event signal;
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3. The same procedure is repeated 10 times to ensure the repeatability of the experiment,
sensor’s high sensitivity, and high accuracy rate (≈90%), with corresponding post-
processing of data (averages, standard deviations, etc.).

2.4.2. Grasped Object–Human Contact Detection

The second experimental procedure is aimed at establishing the event of human or
any other external stimuli touching the object grasped by the gripper. The experimental
procedure is the following:

1. Establishing the grip with a force of 1 N along the z-axis (Figure 6B) using force control
with the feedback provided by HEX21;

2. Beginning data acquisition: collect synchronously peak frequency from the specified
frequency range and force along the y-axis;

3. A human or an external stimulus enters the system by applying pressure on the object
along the y-axis 5 times (Figure 6C).

In this experimental case, the preliminary trials showed that the main changes in the
frequency response that are also robust to the noise coming from the gripper movements
happen to be the most prominent in the bandwidth of 180–250 Hz. Other resonance
frequencies, despite exhibiting similar behaviors, have not been chosen as an indicator due
to weak amplitude peaks and overlap with gripper-induced noises.

As a triggering condition, analogously to the gripper–object case, a threshold for
both of the signals is used in order to register the events of an external stimulus entering
the system (human touch). The threshold for the force sensor was set to be equal to
δF/T = 0.3N, as anything below this threshold can result in false detection due to sensor
noise. For the vibroactive sensor, the triggering condition was set to >3% change in the
resonance frequency (obtained from the initial calibration buffer).

Figure 6. Results for the human–object contact detection experiments. (A) Stage 1—No grip established,
the gripper is in motion; (B) Stage 2—Grip established with a gripping force of 1N; (C) Stage 3—Human
applies pressure on the object grasped by the robotic gripper; (D-top) force data (HEX21) with trigger
regions for human touch detection; (D-bottom) control frequency signal (HEX21) with trigger regions
for human touch detection; (E.1) frequency spectrum region corresponding to Stage 1; (E.2) frequency
spectrum region corresponding to Stage 2; (E.3) frequency spectrum region corresponding to Stage 3.
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3. Results

In this section, we present the experimental results for the different scenarios of
the robot gripper coming into contact with objects and humans backed up by analytical
model simulations.

3.1. Gripper–Object Contact Detection

Figure 5A shows the normalized peak amplitude (at 580 Hz) evolution obtained from
the vibroactive sensor (solid blue line), filtered by the moving average in the 50 samples’
window signal (solid black line) with standard deviation σvib (semitransparent red area).
The touch event threshold and noise levels are shown with horizontal dashed orange and
green lines, respectively, and the touch event with a green dot marker. Here, the filtered
normalized resonance peak amplitude signal shows a significant change at the moment of
contact event compared with the noise level µvib before the contact, supporting the initial
claim of vibroactive sensors, exhibiting excellent signal-to-noise-ratio (SNR). On the other
hand, filtered force sensor data (solid orange line) demonstrate a lower difference between
the trigger signal (dashed black line) and regular noise σF/T (dashed red line). Therefore,
a delay in the contact detection with the force sensor is more prominent than the active
vibrational sensor, since the force sensor requires a more significant force to be applied,
which impedes detecting light touches. In fact, it registers a squeezing event rather than
a touch event, and the latter could naturally happen first. For instance, Figure 5E,F show
two different scenarios of contact that are more likely to occur. In one scenario (Figure 5E),
the actuating finger reaches the contact point with the object before the sensing finger. In
another case (Figure 5F), the sensing finger touches the object first. In both scenarios, the
changes in the actuation chain are enough to trigger the VibroTouch sensor, while the force
sensor requires a steady squeezing force between fingers.

Finally, the detected touch events for both sensors are shown in Figure 5C, which
were obtained consecutively in 10 trials to determine light contact events. For both sensors,
SNRs were calculated to describe their sensitivities quantitatively. In the case of the force
sensor, the average SNR ≈ 8 is notably smaller than for the vibroactive sensor SNR ≈ 18.
Moreover, this figure shows that the VibroTouch sensor detected 9 out of 10 touch events,
while the force sensor detected 8 events.

3.2. Grasped Object–Human Contact Detection

Contact frequency changes obtained during the preliminary experiments were verified
during consecutive experiments in Figure 6. Spectrogram data in Figure 6E effectively
represents all of the aforementioned stages of an experimental procedure. Shaded region
(1) illustrates gripper movement during force control procedure, (2) is where the force
condition was achieved and brief calibration is executed for future frequency change
comparison, and (3) are the five events of a human entering a vibrational system.

As it can be seen from the results on Figure 6D, the indicated threshold strongly
correlates with events marked by the force sensor (chosen as "true" contact event). Thus,
the sensor has proven to effectively determine the events of humans or any other external
stimulus coming into contact with the system while maintaining robustness against gripper
movement noise. The video of experimental human contact detection is available in
Supplementary Materials.

4. Discussion and Conclusions

The proposed active VibroTouch sensor allows extremely sensitive contact detections,
which, unlike other passive vibration sensors, does not require high energy collisions
between the robot manipulator and manipulated objects. Such a sensitivity improves
operational safety since low-speed robot hand—object and grasped object—human interac-
tions are possible. The increased sensitivity of the sensor is achieved by actively injecting
vibrations into the system and monitoring any change in its resonance modes, instead
of relying on the vibrations produced by the collisions. Moreover, the presence of the
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external vibration source improves its robustness to the vibration noises that are inevitably
generated by the moving parts of manipulator. In addition to the robustness to the vi-
bration noise, the proposed sensor is potentially robust to the acceleration-induced errors
in the force sensors since the natural resonances depend less on the external acceleration.
However, the acceleration indifference is a subject for future investigations. Furthermore,
in more precise object manipulations, when a quasi-static approximation of the gripper
positions is employed, our active vibration sensor still outperforms the traditional contact
detection schemes based on the estimation of the force change thanks to the resonance
nature of the detection scheme. Another clear advantage of our active VibroTouch sensor
over other collision detection sensors is the low cost of the components (for instance, when
compared with MEMS-based force sensors) and easy implementation into existing robot
manipulator setups.

On this account, it should be noted that the low-cost ERM motor in our VibroTouch
sensor might not be suitable for long, continuous operation. This should not be an issue in
real-world scenarios since the sensor could be driven by pulses and be off when the contact
with an object is established.

The sensitivity and robustness of the proposed sensor can be further improved by
modifying both vibration source and detection parts. For instance, by implementing a
higher frequency source and controlling its phase component, it is possible to increase the
signal isolation from noise. Moreover, by employing an analog accelerometer instead of the
digital sensor, a higher sampling frequency can be achieved. Furthermore, by increasing the
number of phase-controlled vibration sources, we can improve the reliability of the method
against false detections. Our proposed contact detection method can be implemented in
an embedded system such as a microcontroller, and, therefore, increase the dexterity of
modern robotic systems.

Our proposed scheme can be extended to force and object analysis. For instance, since
the stiffness of the “skin” layer of “fingers” has a nonlinear dependence on the applied
force, the latter can be estimated by calibrating the sensor on known objects. Moreover,
since the object properties (such as stiffness, mass, and damping coefficients, as well as
the roughness of the contact surface) are parameters included in the system, they can be
estimated from its spectral response as well. However, such analysis requires decoding a
complex nonlinear multi-variable function, which is non-trivial task. A possible solution
is to take advantage of machine-learning-based approaches that have demonstrated a
tremendous potential for such data-driven tasks.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s22176456/s1, Video S1: Human-object Contact Detection Experiments via
Active Tactile Sensing
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