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Abstract: During the assembly process of the rear axle, the assembly quality and assembly efficiency
decrease due to the accumulation errors of rear axle assembly torque. To deal with the problem, we
proposed a rear axle assembly torque online control method based on digital twin. First, the gray
wolf-based optimization variational modal decomposition and long short-term memory network
(GWO-VMD-LSTM) algorithm was raised to predict the assembly torque of the rear axle, which
solves the shortcomings of unpredictable non-stationarity and nonlinear assembly torque, and the
prediction accuracy reaches 99.49% according to the experimental results. Next, the evaluation
indexes of support vector machine (SVM), recurrent neural network (RNN), LSTM, and SVM, RNN,
and LSTM based on gray wolf optimized variational modal decomposition (GWO-VMD) were
compared, and the performance of the GWO-VMD-LSTM is the best. For the purpose of solving
the insufficient information interaction capability problem of the assembly line, we developed a
digital twin system for the rear axle assembly line to realize the visualization and monitoring of the
assembly process. Finally, the assembly torque prediction model is coupled with the digital twin
system to realize real-time prediction and online control of assembly torque, and the experimental
testing manifests that the response time of the system is about 1 s. Consequently, the digital twin-
based rear axle assembly torque prediction and online control method can significantly improve the
assembly quality and assembly efficiency, which is of great significance to promote the construction
of intelligent production line.

Keywords: digital twin; gray wolf optimized variational modal decomposition; long short-term
memory networks; torque prediction; online control

1. Introduction

The bolt connection is one of the most widely used connection methods in the rear axle
assembly, which is a key part of the automobile manufacturing process [1]. By applying a
certain torque on the bolt pair, the connecting pieces are fixed to each other, so the design re-
quirements can be met. Due to simple methods, cost-effective and easy supervising, torque
control method [2] has been commonly used for automobile assembly, which is directly
related to vehicle quality and operational reliability. Many factors, such as the material,
diameter, and surface roughness of threads, the surface friction coefficient of bolts and
connecting parts, the precision of tightening tools, rotation speeds, and the sequence of the
tightening process, have a significant influence on the final torque result [3]. Due to the fac-
tors of the vibration of tightening guns, fixture wear, the plastic deformation of workpiece
materials, and the accumulation of positional deviation, the output torque of tightening
guns cannot meet the current assembly requirements, affecting the assembly quality of
the rear axle. Therefore, an effective assembly torque prediction and control method is
required to ensure the stability of the rear axle assembly. Furthermore, high-precision
assembly torque prediction models and control methods can avoid high-cost and long-term
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measurement processes. Many researchers have tried to develop the prediction methods
of bolt assembly torque, and the models mainly include mechanism model methods and
artificial intelligence methods [4–6].

The torque prediction method based on the mechanism model is to establish torque
prediction mathematical model by considering fixture shape, material properties, assembly
error, contact mechanics, and other factors. According to the difference in tightening torque
of bolts, Kang et al. [7] put forward a contact mechanics algorithm to predict the bolt bottom
torque by the parameters of surface topography, root-mean-square height, and hardness.
Using Physical Experiment and Finite Element Simulation Method, Ekrem Oezkaya et al. [8]
developed a torque prediction method based on a combination of geometric and mechanism
models to predict torque values during automatic tapping. According to the variation of
SiCp/Al6063 material properties and the relation between torque and tool life, Teng Dou [9]
presented a finite element constitutive model for composites to predict thrust and torque
during drilling. Zhen Zhang et al. [10] proposed a linear acoustic method based on wave
energy dissipation (WED), and used the Hertz contact theory model to predict the loosening
torque of bolts. Fengrui Liu [11] studied the influence of the randomness of the opening
strength and characteristics of the laminate, geometric parameters, and clearance on the
bolt torque, and proposed a composite multi-bolt tightening torque prediction method. Eiji
Shamoto [12] proposed a torque prediction in bolted connection. By studying the torsional
contact model of connecting bolts and utilizing finite element analysis to extract and solve
linear phenomena, the author realized the prediction of contact parameters and torque. T.
Dang Hoang [13] used Latham and Crockoft’s energy model to perform calculations in
elastoplastic with/without damage, and considering the tightening torque and clearance
parameters, used a finite element simulation method to predict the stress relaxation of
bolted connections.

In torque prediction methods, due to the low parameter identification of the mechanism
model, the bolt assembly torque cannot be accurately predicted. Therefore, many researchers
have adopted artificial intelligence methods to predict assembly torque based on historical
and real-time data. Ali Djerioui [14] proposed a torque predictive control (PTC) method
for permanent magnet synchronous motor (PMSM), by improved gray wolf optimization
algorithm (GWO). Kairong Hong [15] studied some key parameters such as torque, and
established the relation model between torque and thrust of cutter head based on long
short-term memory (LSTM) network to realize the forecast of shield machine cutter head
torque. Shi Gang [16] used variational mode decomposition (VMD) to decompose the
cutterhead torque of shield machine, and established a multi-step forecast model to predict
the cutterhead torque of shield machine. Chengjin Qin [17] developed a multi-step forecast
model of cutterhead torque based on adaptive decomposition method by using the original
cutterhead torque data as input. X. Xia [18] realized the prediction of bearing torque by using
improved neural network first-order weight coefficients and Volterra series. According to
the experimental results, the five prediction models have small prediction errors and high
accuracy advantages. Mahdi Bagheripoor [19] used finite element simulation method to
obtain process parameters, and used artificial intelligence methods to forecast the rolling force
and torque of a hot rolling mill. Weiying Zeng [20] proposed a neural network engine torque
method, by using a single hidden-layer neural network structure, and this method effectively
improves the prediction accuracy. Zhang et al. [21] extracted features from the shield machine
torque feature data and uses a hybrid multi-model approach to predict torque.

Due to the dynamic change of assembly torque, manufacturing enterprises urgently
need to realize the online control of assembly torque on the production line under the
premise of obtaining the prediction value of assembly torque, and combine the historical
data and real-time data to supervise and visualize the status of the production line [22].
In 2002, Grieves [23] proposed the concept of digital twins, describing the relationship
between physical entities and virtual entities. In previous studies, Qinglin Qiet al. [24]
studied the basic model and method of digital twin, and established the technical route of
digital twin, which provided technical support for its application. Fei Tao et al. [25] raised
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a five-dimensional model of a digital twin workshop, which provides the mechanism and
data support for the health prediction of production line equipment [26–28]. Tao et al. [29]
proposed the basic application of digital twin in the workshop, and introduced the work-
shop information interaction method in detail, and it provided support for the construction
of a digital twin production line. Fei Shen [30] introduced digital twin technology in
the oil and gas production process, realized the visualization of oil and gas production
process, and monitored the status of production equipment, which improved the safety
and production efficiency of oil and gas production. Li Shi [31] developed the digital
twin system of the aerospace assembly workshop, integrated the workshop’s logistics
information, product information, production scheduling information, etc., and optimized
the workshop production efficiency to achieve precise production control of the production
line. Xin Tong et al. [32] added sensing equipment to the machine tool, collected data
during the production process of the base machine tool, and realize the visualization of the
machine tool production process and the monitoring of machining status by a machine tool
digital twin system. Liu et al. [33] raised a product quality monitoring method by digital
twin technology, and the product quality was monitored and the production process was
controlled by collecting and analyzing the relevant data of the production line. Zengya
Zhao [34] proposed a feedback control method for workpiece surface roughness prediction
and adaptive surface roughness stability through digital twin technology.

With the wide application of six-axis robotic arms in production, it has become a com-
mon way for the rear axle assembly process to use the robotic arm to drive the tightening
gun to output assembly torque [35]. However, due to the accumulation of errors in the
attitude, output angle, and other factors of the tightening gun during the assembly process,
the assembly torque cannot meet the quality requirements of the body, and the assembly ef-
ficiency is affected. In addition, the production line assembly torque fluctuations, resulting
in the assembly workpiece not satisfying the quality requirements, increasing the assembly
time and cost. Therefore, an effective method is needed to realize assembly torque predic-
tion and control. From the above literature research, the current methods for parameter
prediction are mainly based on physical model and data-driven methods. The physical
model prediction method has poor prediction accuracy due to low parameter identification,
while the data-driven method has high prediction accuracy for stationary data and poor
prediction effect for non-stationary data. In the face of dynamic and random assembly
torque, only the method of directly predicting the original torque data is obviously less
effective. The VMD decomposition algorithm “decomposes-reconstructs” the original data,
which can convert non-stationary data into stationary data, reduce data complexity and
improve the accuracy of assembly torque trend prediction. Aiming at the high complexity
and high dynamic characteristics of rear axle assembly, a torque prediction and on-line
control method of assembly bolts digital twin model is raised by using the characteristics of
virtual–real interaction of digital twin. Therefore, the specific problems solved in this paper
are as follows: (i) Aiming at the non-stationary characteristics of the original assembly
torque, the assembly torque prediction based on ‘decomposition-reconstruction‘ and an
artificial intelligence method was proposed. (ii) Aiming at the problem of insufficient
information interaction in assembly line, the digital twin system of rear axle assembly line
was developed to realize the visualization and supervising of assembly process. (iii) The
torque prediction module was coupled to the digital twin system for real-time prediction
and online feedback control of assembly torque. The article structure is divided into seven
parts, the organization of the other sections is listed as follows: In Section 2, we build the
general architecture of the proposed method. In Section 3, the digital twin rear axle assem-
bly line model was established. In Section 4, a variational modal long short-term memory
network GWO-VMD-LSTM torque prediction algorithm based on gray wolf optimization
is proposed. In Section 5, testing and comparisons of torque prediction algorithms. In
Section 6, the method combining the proposed predictive model with digital twin realize
an online control of assembly torque. Finally, the conclusions and future work are given.
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2. Overall System Architecture

With the purpose of realizing the prediction and online control of rear axle assembly
torque, we needed to establish a real-time data acquisition system. The collected data was
transferred to the data storage platform after processing, and the assembly process was
supervised by the digital twin system. By using the collected data, the real-time prediction
of assembly torque was realized. Finally, the online control of assembly torque was realized
through the decision module. Figure 1 shows the overall architecture of the rear axle
assembly line digital twin system, including three modules:
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Figure 1. Overall architecture of the rear axle assembly line digital twin system.

1. Data acquisition module: This module acquires the real-time data of the physical rear axle
assembly line. The collected data includes: status data, torsion angle, torque data, etc.

2. Data processing module: This module realizes the function of data filtering, data model-
ing, data fusion, data analysis, and data storage. The collected data will be processed to
reduce data redundancy and ensure validity. Then, the data was stored in a structured
way after data analysis and fusion to make system development convenient.

3. Service module: The specific aspects of application services based on digital twin are
as follows: (i) equipment state supervising and visualization of the assembly process,
(ii) assembly torque prediction, and (iii) feedback control of the assembly process.
Firstly, virtual model of the assembly line was established, and the virtual assembly
line was driven by the real-time data, so the supervising of assembly parameters
and visualization of the assembly process were realized. Then, a torque prediction
algorithm model was proposed by analyzing the data of the assembly line to provide
intelligent decision-making for the assembly line. Finally, the control command is
generated to realize the online control of assembly torque.

3. Build Digital Twin Rear Axle Assembly Line Model
3.1. Twin Element Modeling

The virtual rear axle assembly line must reflect all the characteristics of the real
assembly line, the virtual model, and reflect the production status of the real assembly line.
The virtual production line needs to be constructed from the perspectives of production
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products, production equipment, and production environment. Therefore, the specific
factors to be considered are as follows:

1. Products twin modeling At different stages of the process, different models of products
correspond to different parts, accompanied by order, quality, coding, and other full-
lifecycle information, which can be stored in the virtual label of each product in the
digital space using data interfaces, and at the same time drive the evolution of the
product’s component composition according to its process information.

2. Equipment twin modeling For the purpose of realizing the mapping of the twin
model to the physical entity, the equipment model must be ensured that the three-
dimensional size information and behavior rules are highly consistent with the physi-
cal entity. The twin model needs to establish a virtual–real communication transmis-
sion interface to obtain real-time data from the device, and define relevant virtual
behavior rules to realize data-driven model behavior.

3. The twin modeling of assembly line environment The twin modeling of production
environment mainly includes the field lighting of assembly line, the main production
equipment material, texture, mapping, auxiliary equipment construction, factory
building, etc., rendering the real production environment to improve the visual
fidelity of twin model. In addition, the environmental temperature, humidity, and
other data collected by the sensors need to be applied to the virtual scene to ensure
high consistency between virtual and reality.

3.2. Virtual–Real Mapping

The relationship between data and model is increasingly important to construct the
digital twin system. In the collected data, the command data is used for the starting and
ending behavior of the model, and the state data is connected to the state behavior of the
model. As shown in Figure 2, the mapping relationship between the geometric model and
the rule behavior of the physical manipulator, the tightening gun, the assembly equipment
data, and the virtual model was constructed.
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3.3. Virtual–Real Interaction

Virtual–real interaction is the bridge between virtual assembly line and physical
assembly line. The realization of virtual–real interaction includes three steps: Firstly, with
the purpose of realizing the interaction between virtual line and physical line, all kinds of
data of physical assembly line are collected. Radio frequency identification, wireless sensor
network, intelligent instruments, and various sensors are used to collect physical assembly
line data and supervise the producing process. Secondly, based on the collected assembly
line data, a high-speed and stable customized data transmission protocol is designed to
synchronize and integrate data. When the assembly line is abnormal, such as abnormal
bolt assembly torque, abnormal data will be sent to the virtual assembly line for abnormal
data analysis and positioning visualization. Finally, because of the function of the digital
twin model with simulation verification, the initial condition data of different working
conditions are simulated to obtain the parameters in the operation process, and the optimal
parameters are obtained by optimization.

4. Torque Prediction Model Based on GWO-VMD-LSTM
4.1. Variational Modal Decomposition

Variational mode decomposition (VMD) is a completely non-recursive variational
mode decomposition method [36], which can obtain the optimal center frequency and finite
bandwidth for every mode in the decomposition process. Compared with the empirical
mode decomposition (EMD) method [37], VMD has better decomposition performance for
strong random and non-stationary signals, and the decomposed subsequences are more
regular. However, the drawback of VMD is that the total models K and penalty factor α
need to be manually set. The optimal K and α can be obtained by gray wolf optimization
algorithm and permutation entropy in this paper. This part will be described in Section 4.3.

The non-stationary data X(t) is decomposed into Kth intrinsic mode functions (IMFs)
by VMD. Each modal component uk (k = 1, 2, . . . , K) corresponds to a certain central
frequency ωk. In the decomposition process, the sum of all modes is equal to the original
data f (t). The expression of the VMD is listed as:

min
{uk},{ωk}

K
∑

k=1

{
‖σt[(δ(t) +

j
πt ) ∗ uk(t)]e−jωkt‖

2
2

}
s.t.

K
∑

k=1
uk = f (t)

(1)

In this equation, f (t) is the original data, δ(t) means the unit pulse function, t represents
timestamp, “*” is convolution operation, uk and ωk represent the kth modal component and
the corresponding central frequency, respectively, and K is the total number of modes. A and
λ(t) are introduced to transform constraint problem Equation (1) into unconstrained problem:

L({uk}, {ωk}, λ) = α
K
∑

k=1
‖ σt[(δ(t) +

j
πt ) ∗ uk(t)]e−jωkt ‖2

2 + ‖ f (t)−
K
∑

k=1
uk(t) ‖2

2 +

[
λ(t), f (t)−

K
∑

k=1
uk(t)

] (2)

In the equation, λ(t) is a Lagrangian operator, α is a quadratic penalty factor and

|| f (t) −
K
∑

k=1
uk(t) ||22 is a quadratic penalty term. Equation (2) can be solved by the alternat-

ing multiplier optimization method to acquire the saddle point of the augmented Lagrange
equation, and uk and ωk is denoted as follows:

un+1
k = argminuk ({u

n+1
i }, {un+1

i≥k }, {ω
n
i }, {λn}) (3)

ωn+1
k = argminωk ({u

n+1
i }, {ωn+1

i<k }, {ω
n
i≥k}, {λ

n}) (4)
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λn+1 = λn + τ( f (t−
K

∑
k=1

un+1
k )) (5)

The convergence condition is:

K

∑
k=1
‖ un+1

k − un
k ‖

2
2 / ‖ un

k ‖
2
2< ε (6)

where, n is the iteration time, τ is the noise tolerance, ε is the given discriminant condition,
when the signal contains noise, τ can filter noise. After calculation, uk and ωk are obtained
as follows:

un+1
k (ω) =

f (ω)−∑i 6=k ui(ω) + λ(ω)
2

1 + 2α(ω−ωk)
(7)

ωn+1
k =

∫ ∞
0 ω

∣∣∣un+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣un+1
k (ω)

∣∣∣2dω
(8)

where, f (ω), λ(ω), ui(ω), un+1
k (ω) is the Fourier transform of f (t), λ(t), ui(t), un+1

k (t),
respectively.

The specific steps of VMD decomposition algorithm are listed as:

1. Initialize {u1
k}, {ω

1
k}, λ1, n← 0 ;

2. n = n + 1, performing the whole cycle;
3. k = k + 1, until k = K, for all ω ≥ 0, λn + 1, uk, and ωk are updated by Equations (3)–(5);
4. Steps 2 and 3 of the cycle, when the Equation (6) is satisfied, the cycle ends.

4.2. Gray Wolf Optimization Algorithm

Gray wolf optimization algorithm (GWO) is a new metaheuristic method [38] proposed
by Mirjalilietal in 2014. The algorithm is widely used in the optimization of algorithm
parameters because of its simple structure, few adjusted parameters, and fast convergence
speed. GWO classifies the initial population into α, β, δ, and ω gray wolves of different
grades, and assigns the tasks of encirclement, hunting, and attack to gray wolves of different
grades. Among them, α, β, δ are the best wolves, leading other wolves ω to find a better
location for predation, and realizing the global optimization process. Figure 3 shows that α,
β, δ estimate the range of prey, and then the locations of other wolves nearby are constantly
updated. Finally, the wolf attacks and obtains the prey determine the optimal results. When
the α value is approximately 0, the next update position of the wolf will be closer to the
prey, namely, the optimal solution.
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In this study, the K and α in VMD is optimized by GWO algorithm. The optimal
solution vector is the optimal parameters K and α. Section 4.3 will introduce the specific
optimization process of parameters (K, α) in detail.

4.3. GWO Optimized VMD Decomposition Method

In this section, GWO algorithm is proposed to optimize the VMD decomposition
parameters (K, α), so that it can adaptively decompose the time series data. We name it the
VMD based on GWO optimization method (GWO-VMD). The ratio of mean and variance
of each subsequence permutation entropy (PE) after VMD decomposition is used as the
fitness function of GWO-VMD algorithm. PE was proposed by Bandt et al. [39] in 2002,
and it has been widely used in data analysis algorithms to evaluate temporal information
embedded in time series. PE can reflect the law of time series data based on Shannon
entropy of ordered pattern distribution in time series. The smaller the permutation entropy,
the stronger regularity of the time series data.

If the original time series data is decomposed into IMFk (k= 1, 2, . . . , K) by VMD, the
calculation steps of the fitness function based on PE are as follows:

1. Phase space reconstruction

The univariate time series is expressed as {xt, t = 1, 2, . . . , n}, and the phase space is
reconstructed to acquire:

Xj = [xj, xj+τ̂ , . . . , xj+(m̂−1)τ̂ ] (9)

Among them, m̂ is the embedding dimension, τ̂ is the delay time, m̂ and τ̂ are positive
integers, Xj represents the reconstruction vector j = 1, 2 . . . , n − (m̂− 1)τ̂.

2. The reconstructed vector ascending order arrangement

The elements of the reconstructed vector Xj are arranged in ascending order to obtain:

xj+(j1−1)τ̂ ≤ xj+(j2−1)τ̂ ≤ . . . ≤ xj+(jm̂−1)τ̂ (10)

3. Reconstructing the vector Xj into a sequence of symbols

Mapping the reconstructed vector to a symbol sequence based on the permutation
symbol of Equation (10).

S(g) = (j1, j2, . . . , jm̂), g = 1, 2, . . . , m! (11)

4. Calculate the permutation entropy

Each symbolic sequence probability is {P(g), g = 1, 2, . . . , m!}. The PE of the IMFk is:

Hp(IMFk) = −
m!

∑
i=1

Pi(IMFk) ln(Pi(IMFk)), k = 1, 2, . . . , K (12)

5. Selection and calculation of fitness function

After different (K, α) decomposition, the PE of each IMF may fluctuate. The ratio of
the mean and variance of the permutation entropy is used as the fitness, and the fitness
function goal is to obtain the minimum fitness value, as shown in the following equation:

f itmv =
mean(Hp(IMFk))

var(Hp(IMFk))
(k = 1, 2, . . . , K) (13)

The flow chart of time series decomposition method based on GWO-VMD is shown in
Figure 4. The specific steps are as follows:

1. Input the original time series signal xt, initialize the gray wolf population as N, and
the maximum iterations is Tmax. Set the value range of VMD parameter pair (K, α);
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2. The original time series xt is decomposed by VMD using initialized K and α, and the
fitness value fitmv of all subsequences is calculated according to Equation (13), and
retained as the current minimum fitness value;

3. fitmvt of the current iteration is compared with the optimal fitness value fitmvbest of the
previous iteration. If fitmvt < fitmvbest, then the current optimal fitness fitmvbest = fitmvt;

4. Update the position of Wolf α, β and δ;
5. Cycle iteration step 3 and step 4, until Tmax is reached, then the minimum fitness value

of GWO and the optimal parameters (K, α) are obtained, and the VMD parameter
optimization process is completed.
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4.4. Long Short-Term Memory Network

The long short-term memory network (LSTM) is raised to solve the long-term data
dependence problem existing in the recurrent neural network (RNN). The LSTM increases
the forgetting gate, the input gate, the output gate, and the unit state. By training the weight
parameters and the offset parameters of the model, the “gradient disappearance” and other
problems existing in the RNN network can be avoided when the model parameters are
unchanged. The Forgetting Gate may determine the extent of information retained at
the previous moment. Through the three gates structure, the network connects the time
relations before and after the time series data, so that the model can complete the selection
of the previous data characteristics and complete the prediction of the next time step and
longer time data. Figure 5 shows the detail of LSTM network.
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1. Forget gate

The forgetting gate can calculate the probability of the last moment being forgotten
using the sigmoid function. The obtained value is multiplied by the state of the hidden
layer at the previous moment to determine the value retained at the previous moment. The
calculation equation of forget gate is listed as follows:

ft = σ(W f · xt + W f · ht−1 + b f ) (14)

σ(x) =
1

1 + e−x (15)

2. Input gate

The input gate multiplied the it updated by the sigmoid function and the information
C̃t updated by the tanh activation function to update the state of the unit. The calculation
equation of the input door is denoted as follows:

it = σ(Wi · xt + Wi · ht−1 + bi) (16)

C̃t = tanh(Wc · xt + Wc · ht−1 + bc) (17)

Wi, Wc are the weight coefficient; bi, bc are bias coefficients; ft is the output of the
forgetting gate, which controls the degree of the cell state Ct−1 in the upper layer is forgotten,
and it·C̃t represents the new information retained in this layer. The current layer cell state
Ct update equation is:

Ct = ft · Ct−1 + it·C̃t (18)

3. Output gate

The output gate is used to control the number of filtered cell states in this layer. The
value of ot is obtained by using the sigmoid activation function. The tanh activation function
is used to process the cell state Ct and multiply with ot to obtain the output ht of this layer.
The equation for calculating the output gate is denoted as:

ot = σ(Wo · xt + Wo · ht−1 + bo) (19)

ht = ot · tanh(Ct) (20)

ot is the output; ht represents the final output; wo denotes the weight coefficient; bo
represents the bias coefficient.
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4.5. Proposed GWO-VMD-LSTM Torque Prediction Model

The assembly torque sequence of the automobile rear axle presents the characteristics
of randomness, volatility, and discontinuity. The GWO-VMD decomposition algorithm
proposed in Section 3.2 can decompose the original assembly torque sequence data into
a series of continuous and stable modal IMFs. Therefore, in this section, a time series
prediction algorithm combining with GWO-VMD and LSTM is raised to solve the assembly
torque prediction problem of the rear axle. As shown in Figure 6, the workflow of the
proposed prediction algorithm is constructed.
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Torque prediction modeling process is listed as follows:

1. GWO-VMD modal decomposition. The GWO-VMD method is used to perform
the modal decomposition of the original sequence of assembly torque to obtain k
subsequences (IMF1, . . . , IMFK) as well as the residual term res;

2. The kth sequence {xk1, xk2, . . . , xkn} is selected, where xkt is the sequence value at the
moment t of the k sequence, t = 1, 2, . . . , n;

3. To reconstruct the input–output sample pair for the kth sequence, set the sequence {xkt}
obtained from step 2 to the initial embedding dimension m. Perform phase space re-
construction to establish the mapping f: Rm→R, x̂kt = f (xk(t − (m − 1)), . . . , xk(t − 1), xkt).
The specific input–output sample pair is:

Xk =

 xk1 . . . xkm
...

. . .
...

xk(n−m) . . . xk(n−1)

, Yk =

xk(m+1)
...

xkn

 (21)

Xk is the input matrix of the kth sequence sample and Yk is the output matrix of the
kth sequence sample;

4. The LSTM prediction model is established for each subsequence and item, and the
sample pairs obtained in step 3 are trained as training sets and test sets to obtain the
prediction model;

5. Prediction. The trained subsequence IMFs and res prediction models are used to predict;
6. Summation of prediction results. The predicted value of the original sequence is obtained

by summing the prediction results of each subsequence and the residual term.

5. Experimental Results and Comparative Analysis
5.1. Data Preparation and Development Environment

This experiment studies the assembly process of a certain type of rear axle, and selects
six sample data for rear axle brake caliper bolt assembly, named as Dataset-1~Dataset-6.
Each sample is divided 8:2 into training set and test set. The GWO proposed in Section 4.3
is used to optimize the decomposition order K and α in the VMD. The iteration of GWO is
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set to 100, the initial population size is 25, and the variable dimension is set to 2. Table 1
provides the detailed classification numbers of the six datasets and the VMD decomposition
parameters K and α after GWO optimization. The development environment configuration
in this work is: Python 3.8 (Guido van Rossum, Amsterdam, The Netherlands), tensor-
flow1.8 (Google, Mountain View, CA, USA), 2 GB Intel HD graphics GPU (Microsoft,
Redmond, WA, USA), and Intel i7-7560U CPU(Microsoft, Redmond, WA, USA).

Table 1. Datasets and VMD decomposition parameters.

Index Total
Number

Train
Number Test Number

VMD Parameter

K α

Dataset-1 200 1600 400 11 1861
Dataset-2 2200 1760 440 4 2776
Dataset-3 2100 1680 420 8 2725
Dataset-4 2000 1600 400 11 2956
Dataset-5 2110 1688 422 4 1209
Dataset-6 2120 1696 424 9 2700

5.2. Evaluation Index

We often use the evaluation index of mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE) and deterministic to characterize
the performance of algorithm models. The evaluation indexes are listed as follows:

MAE =
1
n

n

∑
t=1

∣∣∣∣∣(xt − x̂t)

∣∣∣∣∣ (22)

RMSE =

√
1
n

n

∑
t=1

(xt − x̂t)
2 (23)

MAPE =
100%

n

n

∑
t=1
| x̂t − xt

xt
| (24)

R2 = 1− ∑n
t=1 (x̂t − xt)

2

∑n
t=1 (xt − xt)

2 (25)

In the above formula, xt and x̂t are the true value and forecast value at time t, respectively,
n is the length of samples. MAE, RMSE, and MAPE mainly reflect the forecast error. The
larger the error value, the worse the forecast accuracy. R2 indicates the proximity between
predicted and observed values, and the closer R2 to 1, the better forecast performance.

5.3. Assembly Torque Prediction

The GWO-VMD-LSTM model utilized the first 10 sets of assembly torque data ar-
ranged in time series to predict the 11th set of assembly torque data. The original torque
data sequence was firstly decomposed into K data subsequences by the GWO-VMD algo-
rithm, and then the prediction model of each subsequence was established on the basis of
LSTM neural network. The parameters of each LSTM were set as follows: the epoch is 300,
the number of hidden layer neurons is 6, and the batch size is 1. In addition, the activation
function used by the input and output gates is “tanh”, and the “Adam” optimizer uses
RMSE as the training loss function. Finally, each data subsequence was predicted by using
the trained model, and then the prediction results of the original torque data sequence can
be obtained by summing the forecast results of each subsequence. As shown in Figure 7, the
predicted and actual values of each IMF were calculated after Dataset-3 was decomposed
by VMD. According to Figure 7a–h, the LSTM model can accurately predict IMFs of each
data subsequence with stable fluctuations, but the residual sequence with high frequency
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(as shown in Figure 7i) has a poor prediction effect, which also shows that non-stationary
data is difficult to predict specialty.
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With the purpose to verify the predictive performance of the GWO-VMD-LSTM model
proposed in this paper, the model was tested by using six datasets. Figure 8 shows the
forecast effect of the proposed model with different datasets. From the prediction errors of
the six datasets based on the model, which are depicted in Table 2, Dataset-1 and Dataset-2
have abnormal mutation data, so the MAE is larger than the other four groups. Dataset-3,
Dataset-4, Dataset-5, and Dataset-6 have no abnormality and are relatively stable, so the
prediction results are better. Thus, the decomposition prediction model based on GWO-
VMD-LSTM proposed in this paper has good generalization ability under different datasets.
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Table 2. GWO-VMD-LSTM prediction error of six datasets.

Datasets MAPE (%) RMSE MAE R2

Dataset-1 9.87 8.765 6.917 0.806
Dataset-2 9.37 8.628 5.927 0.824
Dataset-3 0.58 2.070 1.590 0.947
Dataset-4 0.58 2.042 1.630 0.958
Dataset-5 0.66 2.237 1.785 0.951
Dataset-6 0.64 2.238 1.781 0.943

5.4. Comparative Analysis of Prediction Models

To further verify the property of the proposed GWO-VMD-LSTM model, the models
of SVM, RNN, LSTM, GWO-VMD-SVM, and GWO-VMD-RNN are used to compare the
prediction effect. As shown in Figures 9 and 10, the prediction effect of the “decomposition-
integration” model based on GWO-VMD is better than that of the “direct prediction”
model, which indicates that the “decomposition-integration” method can predict extremely
complex, highly non-stationary time series data.
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According to the error evaluation indicators of different models, which are shown in
Table 3 and Figure 11, the accuracy of the “direct prediction” method is extremely poor,
and its MAE and RMSE are relatively large. The determination coefficient R2 of SVM
and RNN is close to 0, indicating that the “direct prediction” method cannot meet the
demand of assembly torque sequence prediction. Compared to the “direct prediction”
model, the MAPE and RMSE of the “decomposition-integration” model are significantly
reduced. Compared to the models based on GWO-VMD-SVM, GWO-VMD-RNN, SVM,
RNN, and LSTM, the RMSE of the GWO-VMD-LSTM model is reduced by 61.5%, 57%,
82.9%, 83%, and 81.1%, respectively. Similarly, compared to the models based on GWO-
VMD-SVM, GWO-VMD-RNN, SVM, RNN, and LSTM, the MAE of the GWO-VMD-LSTM
model is reduced by 61.5%, 57.6%, 83%, 83.2%, and 81.1%, respectively. According to
the experimental results, the GWO-VMD-LSTM model has the best performance and the
highest accuracy among the comparison algorithms, so the model can meet the demand of
the torque prediction.

Table 3. Performance prediction for each model of selected dataset.

Model MAPE (%) RMSE MAE R2

SVM 3.01 10.393 8.256 0.09
RNN 3.92 10.423 8.353 0.085
LSTM 2.69 9.389 7.419 0.257

GWO-VMD-
SVM 1.33 4.597 3.647 0.822

GWO-VMD-
RNN 1.20 4.155 3.303 0.855

GWO-VMD-
LSTM 0.51 1.770 1.400 0.974
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6. Online Control of Assembly Torque Based on Digital Twin
6.1. Digital Twin System Development

The digital twin system for assembly line can improve the intelligent level of assembly
line, realize the visualization of assembly line state and assembly process, and alarm the
abnormal assembly torque. Catia was used for geometric modeling of assembly line, and
the virtual model scene was constructed and rendered on unity platform. Finally, C# and
IoTDB timing database were used to realize real-time synchronization between virtual
space and physical space by using virtual–real synchronous interface. The synchronous
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response time of the system was less than 1 s. According to the GWO-VMD-LSTM assembly
torque prediction algorithm model constructed in Section 4, the rear axle assembly torque
prediction is realized. Through the feedback control module of digital twin, the online control
of rear axle assembly torque is realized. In Figure 12, the visualization window can present
the state and assembly process of the current physical production line in real time from the
global and station mode. The data supervising display window can supervise the torque
value, predicted torque value, torsion angle, and other parameters collected in real time.
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6.2. On-Line Control of Assembly Torque

Based on the torque prediction model proposed in Section 4.5, the assembly torque
can be accurately predicted, and the online control of torque can be realized through the
decision module, which is great important to the assembly quality control of the rear axle.
If the torque value is not within the preset threshold range, the drive motor parameters
(motor speed and output torque) need to be adjusted to design range. This is a highly
dynamic process, which requires an effective method to realize real-time interactive fusion
of assembly process information. Digital twin is a virtual environment, which truly reflects
the working state of the physical assembly line by sensor updating and historical data.
Using digital twin technology, the real-time prediction of assembly torque can be realized,
and the synchronous adjustment of motor output torque can be realized by decision module.
As shown in Figure 13, we propose a rear axle assembly torque online control method
found on digital twin. The validity and accuracy of the constructed torque prediction model
has been verified in Sections 5.1–5.3. Therefore, it can be coupled to the digital twin system
and predict assembly torque in real time. The real-time dynamic data collected include
assembly torque, torsional angle, manipulator pose, tightening gun pose, etc. These data
are used to model and predict torque in virtual. At the same time, the decision-making



Sensors 2022, 22, 7282 18 of 20

module updates the equipment parameters according to the predicted torque, and feeds
back to the motor of assembly line for controlling the output torque of the tightening gun.
The complete online control method steps are listed:

1. Firstly, the initial assembly determined parameters.
2. The assembly torque is measured in real-time, and the torque prediction model is

used to forecast the next moment assembly torque.
3. If the predicted torque is within the set threshold range, it means that the current

assembly parameters satisfy the assembly requirements and continue to assemble with
the designed output torque; if the forecast value is abnormal, it is necessary to adjust
the torque value and the position of the tightening gun, and generate instructions to
the drive motor until the sensor returns the normal torque value.

4. The whole process is repeated until the assembly is completed.
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Figure 13. Online torque control based on digital twin assembly.

7. Conclusions

In this paper, a rear axle assembly torque online control method combined with digital
twin was developed to improve the quality and efficiency of rear axle assembly. The main
conclusions are as follows:

1. We proposed an assembly torque prediction model based on GWO-VMD-LSTM
algorithm, and the prediction accuracy of the model reaches 99.49%.

2. SVM, RNN, LSTM, GWO-VMD-SVM, GWO-VMD-RNN, and GWO-VMD-LSTM are
compared, and the corresponding R2 indexes are 0.09, 0.085, 0.257, 0.822, 0.855, and 0.974,
respectively, which demonstrated that the GWO-VMD-LSTM algorithm is the best.

3. The digital twin system of rear axle assembly line was constructed, and the system’s
response time reaches 1 s, according to experimental test, which can realize the online
control of assembly torque.

The developed digital twin system can realize real-time supervising of assembly line
state and the visualization of assembly process. Based on the work above, optimizing the
algorithm parameters proposed in this paper and comparing with the frontier algorithms
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will further improve the forecast property of the proposed algorithm in this paper. This
work will be systematically studied in future work.
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