
Citation: Eze, K.; Ahmed, A.A.;

Akujuobi, C. SecIoTComm: An

Actor-Based Model and Framework

for Secure IoT Communication.

Sensors 2022, 22, 7313. https://

doi.org/10.3390/s22197313

Academic Editor: Antonio Corradi

Received: 29 August 2022

Accepted: 19 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SecIoTComm: An Actor-Based Model and Framework
for Secure IoT Communication
Kelechi Eze 1 , Ahmed Abdelmoamen Ahmed 2,* and Cajetan Akujuobi 1

1 Center of Excellence for Communication Systems Technology Research (CECSTR) and SECURE Cybersecurity
Center of Excellence, Roy G. Perry College of Engineering, Prairie View A&M University,
Prairie View, TX 77446, USA

2 Department of Computer Science, Roy G. Perry College of Engineering,
Prairie View A&M University, Prairie View, TX 77446, USA

* Correspondence: amahmed@pvamu.edu

Abstract: Internet of Things (IoT) ecosystems are becoming increasingly ubiquitous and heteroge-
neous, adding extra layers of complexity to secure communication and resource allocation. IoT
computing resources are often located at the network edge and distributed across many heteroge-
neous sensors, actuators, and controller devices. This makes it challenging to provide the proper
security mechanisms to IoT ecosystems in terms of manageability and maintainability. In an IoT
ecosystem, computational resources are naturally distributed and shareable among their constituency,
which creates an opportunity to distribute heavy tasks to them. However, resource allocation in IoT
requires secure and complex communication and coordination mechanisms, which existing ones
do not adequately support. In this paper, we present Secure Actor-based Model for IoT Communi-
cation (SecIoTComm), a model for representing secure IoT communication. SecIoTComm aims to
represent secure IoT communication properties and design and implement novel mechanisms to
improve their programmability and performance. SecIoTComm separates the communication and
computation concerns, achieving design modularity in building IoT ecosystems. First, this paper
presents the syntax and operational semantics of SecIoTComm. Then, we present an IoT framework
implementing the key concepts of the model. Finally, we evaluate the developed framework using
various performance and scalability metrics.

Keywords: security; actors; Internet of Things; distributed computation; communication

1. Introduction

The Internet of Things (IoT) creates opportunities for the provision of data-driven
services in many shapes and forms [1–3]. For instance, consider a remote patient monitoring
IoT system serving physicians who need to monitor their patients’ health conditions.
Another example in the agricultural sector is a livestock-monitoring IoT system that utilizes
in situ sensors mounted on a livestock farm to collect data regarding cattle’s location,
well-being, and health. This information would help farmers identify diseased animals so
that they can be separated from the herd, thereby preventing the spread of diseases [4].

The IoT ecosystem is an engineered system that integrates computational algorithms
with physical sensing components and processes. The computational algorithms coordinate
and communicate with sensors that monitor cyber and physical indicators, along with
actuators that modify the cyber and physical environment [5]. Such intelligent systems use
sensors to connect all distributed intelligence in the environment to gain a more in-depth
knowledge of the environment, enabling more accurate actions and tasks. Such an IoT
ecosystem can scale to billions of end devices (i.e., sensors and actuators) connected to
gateways, which act as the aggregation points for a group of sensors and actuators to
coordinate the connectivity of these devices to each other and an external network [6].

Sensors 2022, 22, 7313. https://doi.org/10.3390/s22197313 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197313
https://doi.org/10.3390/s22197313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2189-0570
https://orcid.org/0000-0001-9736-5353
https://doi.org/10.3390/s22197313
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197313?type=check_update&version=1

Sensors 2022, 22, 7313 2 of 23

The Infrastructure behind these IoT systems comprises the sensing infrastructure
(i.e., sensors and actuators) and cloud infrastructure (i.e., computing and storage servers)
integrated with user infrastructure (i.e., computers, mobile phones, etc.) to form a heteroge-
neous IoT ecosystem. The IoT gateway needs to authenticate all IoT devices participating
in the sensing process by executing various cryptographic computations on the edge of
the network. However, IoT devices usually have limited resources, which complicates
secure communication.

In addition to simple synchronous or asynchronous communication, IoT systems often
involve different types of group communications, with both multiple recipients as well as
multiple senders [7]. For example, consider several in situ sensors autonomously sending
their feeds to many servers to be used in aggregate form as the basis for an IoT system.
What is required for supporting this are high-level communication primitives, which do
not mix functional concerns of services with complex communication concerns.

In this paper, we are interested in separating secure communication concerns from IoT
computations. This is important for two reasons: (i) IoT computation can apply different
security mechanisms to communication at the creation time, and (ii) communication can
evolve over time following its own separate logic. We propose SecIoTComm, Secure
Actor-based Model for IoT Communication, a model and framework for representing and
implementing secure IoT communication, respectively.

SecIoTComm extends the Actor model of concurrency [8]. Actor computations are
made up of primitive agents called actors, each of which encapsulates an object with the
thread of control executing it. Actors have globally unique names. An actor can create new
actors and can communicate with other actors using asynchronous messages. The model’s
properties of encapsulation, fair scheduling, location transparency, and locality of reference
mean that languages implementing actors abstract over execution details such as processes’
physical location, scheduling, name resolution, and buffering of communication.

The contributions of this paper are fourfold. First, we present the syntax and oper-
ational semantics of SecIoTComm. The syntax defines the SecIoTComm configuration,
and the semantic represents the meaning of secure IoT operations, including communica-
tion, computations, and security operations. Second, we show how complex communica-
tions can be built by composing simpler ones and give examples to demonstrate the concept
of communication composition. SecIoTComm can be used to understand and represent the
secure communication and coordination requirements of a wider class of sensor-based sys-
tems. We also present the syntax and operational semantics of these composition rules with
examples. Third, we present an actor-based framework implementing the SecIoTComm
model using Scala/Akka programming language [9]. Finally, we evaluated the developed
framework using various experimental experiments.

The rest of the paper is organized as follows. We review related work in Section 2;
Sections 3 and 4 present the definition and operational semantics of SecIoTComm, re-
spectively. Section 5 describes a set of composition rules through which more complex
communications are constructed from simpler ones. Section 6 presents the framework
implementation of SecIoTComm. Section 7 presents our experimental results showing
processing overhead and scalability of the framework. Section 8 concludes this paper.

2. Related Work

Although there are some technologies focused on IoT systems [2,6,10,11], there is
relatively limited foundational work. This is in part because of the lack of precise under-
standing, specification, and analysis of such systems, and consequently, there is limited
platform support for programming them.

The programming required for offering a new sensor-based system can be significant
if started from scratch. However, there is an opportunity created by the similarity in the
patterns of communication required for such IoT systems, where contextual data offered by
a number of contributors become the basis for the system. This pattern of communication
was originally defined in [12] as multi-origin communication. Multi-origin coordination

Sensors 2022, 22, 7313 3 of 23

mechanisms can be provided on a platform over which such class of services could be
implemented relatively easily.

Ahmed et al. interpreted and implemented these mechanisms for the domain of
crowd-sourced services [13,14] by implementing CSSWare, a middleware which provides a
set of domain-specific mechanisms to support initiating and managing services. Having
CSSWare as a platform, all that a service designer needs to do to launch a new service is
to identify a constituency of potential contributors and to provide a few lines of service-
specific code for specifying the nature of contributions and for aggregating them when
they arrive.

In [15], Agha presented a coordination model for large-scale distributed actor systems.
The developed model allows actors to adapt the underlying communication mechanisms to
support such systems. The author presented a scoped semantics for the proposed coordina-
tion model, named synchronization model, based on various declarative synchronization
constraints. Similarly, in [16], Frølund presented another coordination approach, allowing
the coordination of distributed application components in the form of abstract and reusable
coordination constraints. Christian J. et al. [17] presented ActorSpace, a new programming
paradigm to provide a communication model in the form of actor context for pattern
matching on certain actor attributes to enable communication to certain enabled groups
defined by the patterns.

Interactors [18], which is the most relevant work to our model, is a model for repre-
senting complex communication in distributed systems. Interactors aims to separate the
communication concerns from functional concerns of such systems, whereas communica-
tion is represented as self-driven and can dynamically change as per communication needs.
The authors presented the syntax and operational semantics of multicast, which is a richer
form of communication pattern, as a feasible solution for implementing complex types of
communications in actor-based systems. Prokopec et al. [19] proposed Reactive, a model to
simplify the composition of communication protocols using first-class channels and event
streams. Reactive aims to overcome the obstacles in composing classic actors.

HL et al. [20] presented an actor-based implementation of the actor model in the IoT
domain, emphasizing its event-driven and reactive features. Another work [21] evaluated
the suitability of the actor model for IoT by comparing its performance on blockchain in
accordance with best practice implementation based on key IoT performance requirements.

In summary, most of the existing works in the area of secure IoT
communication [2,6,20–22] mix between the computation and communication concerns
without addressing the security aspects for limited-resource IoT devices. In comparison,
SecIoTComm separates the secure communication and actor computations aspects by com-
posing simple communication to realize complex communication operations via different
composition rules. To the best of our knowledge, no actor-based framework for secure IoT
communication exists in the literature that supports communication composition. We also
evaluated our framework with several using various performance and scalability metrics.

3. Secure Actor-Based Model for IoT Communication

We model the physical IoT devices as Actor Systems (AS) and software components
hosted on a given AS represented by individual actors. Computations are carried out
on a given AS using a set of actors represented as ports, which can be one of two types:
input or output. Ports interact with other ports by sensing and receiving asynchronous
actor messages. Complex communication can be created by composing simple forms of
communication using defined composition rules. Two IoT devices can establish a secure
communication by exchanging their ports’ names (addresses). Ports are responsible for
applying the required security mechanisms such as authentication and encryption of actor
messages. Security mechanisms are often predefined in a security configuration in the AS
as security primitives. Table 1 summarizes the mathematical symbols used in SecIoTComm.

Sensors 2022, 22, 7313 4 of 23

Table 1. The Mathematical Symbols used in SecIoTComm.

Symbol Definition

α A map between actors’ addresses to their behaviors

A A finite set of computational actors

C A finite set of communication actors

m An actor message

M A set of actor messages

b An actor’s behavior

app(b, m) An application of an actor message m to a behavior b
con f A security configuration

(I : T : O) A computational sequence of inputs, transitions, and outputs
µ Transient messages

k SecIoTComm configuration which represents a secure IoT communication

op A set of output actors for sending messages

ip A set of input actors for receiving messages

χ A set of external actors

FV A free variable

R[r] A reduction context for reducing the expression r
n⋃

i=1
A composition of n communication configurations

Figure 1 illustrates an example scenario for the interaction between IoT devices. A rect-
angle represents an AS’s boundary, representing a single IoT device. Each device has a
set of ports using which it could communicate with other devices in the IoT ecosystem.
The figure also illustrates the components of IoT devices in our model. White circles are
input ports, black circles are output ports, and the lines with arrows represent message
flows. Actor Systems (AS1 . . . AS3) are IoT gateways collecting sensor data from environ-
mental via various heterogeneous sensors. AS4 can be a local data logger on the network
edge, used for aggregating sensor feeds data for local data processing before sending the
aggregate to the cloud. AS5 is a user device that consumes the services provided by the
local server on the network edge.

Figure 1. Secure Communication between IoT devices.

SecIoTComm configuration helps in studying the properties of secure IoT systems in
depth at runtime. We formally define SecIoTComm configuration k, which is a snapshot of

Sensors 2022, 22, 7313 5 of 23

the actor system from an idealized observer, capturing an instantaneous global state of the
system as a 6-tuple as follows:

〈A|C|S|M|α|µ|〉χ (1)

where A is a finite set of computations; C is a finite set of communication; S is a finite set of
security configuration; M is a finite set of messages m in the communication layer; α is a
mapping of actor addresses to their behaviors (actor map); µ represents transient, buffered,
or floating message in the system; and χ are the external actors.

A message m has two parts: message content v and recipient a, represented as a⇐ v.
A, C, and χ are represented in our model as sets of actor addresses, whereas A = Dom(a)
and ρ ⊂ A. The following two constrains must hold:

ρ ⊆ A and A ∩ χ = ∅ (2)

i f a ∈ A, then FV(α(a)) ⊆ A ∪ χ (3)

where FV is a free variable of α(a). The receptionist of k is
n⋃

i=1
ipi where ipi is the ith input

port of k and n is the number of such ports in k.

3.1. Computation Definition

We define the IoT computation, A, as a reduction process with a finite set of labeled
transitions, T, represented as a triple-tuple:

(I : T : O) (4)

where I is a set of actors in their initial computation states modeled as input ports (inports)
or ip, and O is a set of actors in their final computation states modeled as output ports
(outports) or op that are ready to create a secure communication with other actors i ∈ I
hosted in other actor systems.

Communication is initiated from the outports of one AS to the inports of another
one. inports and outports represent the computing actors in the communicating ASs.
For simplicity, we refer to any computing actor in our model as computation; hence, ip ∈ A
∧ op ∈ A.

3.2. Communication Definition

Communication, Cc, is represented by a standalone channel created by a computation
to enable secure communication among IoT devices. We model IoT communications as:

(C : J) (5)

where C is a finite set of communications modeled as actors, and J is a mapping of commu-
nication to the computation of the form (c, ip, op), where c is the actual communication, ip
is the target of the communication, and op is the origin of the communication. Note that
the target is the same as inport, (ip), of the recipient actor system, and op is the outport of
the source actor system.

3.3. Security Definition

Security, S, is defined as a set of security primitives accessible by the interacting
actors in a given IoT ecosystem. It is used to secure its computations and communications.
An instantaneous snapshot of all security mechanisms in the IoT system is called security
configuration, which is represented as:

(G : X) (6)

Sensors 2022, 22, 7313 6 of 23

where G is the set of security primitives and X is the mapping of security primitives to
computation. Each mapping of security primitive to computations is of the form (a, ks),
where a is the computing actor that applies the security primitive ks ∈ G to communications.

4. SecIoTComm Operational Semantics

The SecIoTComm configuration evolves due to state changes of the hosted actors,
which leads to a transition in configurations. The actor state can be one of the following:

• Idle-uninitialized, (a′)a a newly created actor a′ by an actor a but uninitialized.
• Idle-initialized, (a′, b)a a newly created actor a′ by an actor a initialized to a behavior b.
• Busy, (a′, e)a actor a′ is busy evaluating an expression e.

An actor transition can either be one of the two categories below:

• Internal transitions or (r− x) receive/execute transitions: receive transition consume a
message where execute transition may send a message, create a new uninitialized
actor, or initialized an already created actor.

• External transitions or (i− o) input/output transitions: input transition involves arrival
of a message from a source external to the configuration where output configuration
involves passing a message to a destination external to the configuration.

The transition relation on an actor configuration determines the future configuration.
A labeled transition relation 7→ on configuration defines a set of computations of an
actor configuration. Computations are reductions of expressions. Hence, transitions
are a reduction process. The same rules apply to transitions and reductions, as they
are synonymous.

We represent an actor expression as e, which can be a value expression or non-value
expression e = v. A value expression is an expression, v, in its reduced form; hence, a
non-value expression is decomposed into a reduction context R filled with redex (reducible
expression), that is:

(e = R[r]) (7)

where R is the reduction context, and r is the redex We represent a transition rule by λ
7→Z,

where
Z = Dom(α) ∪ {a} ∪ χ (8)

4.1. Actor System Initialization

The Actor System creates a new actor actor and returns the actor name, as described
by this transition rule:

〈A|C|S|M|α, [R[create_a()]]as|µ〉χ 7→ 〈A|C|S|M|α, [R[a
′
]]as, (a′)a|µ〉χ (9)

where create_a() is a redex for actor creation, which creates the top guardian actor of the
actor system.

The Actor System then initializes the behaviors of the freshly created actors with the
name a to b and returns its behavior, as described by the following transition rule:

〈A|C|S|M|α, [R[initialize_a(a, b)]]as, ()a|µ〉χ 7→ 〈A|C|S|M|α, [R[nil]]as, (b)a|µ〉χ (10)

4.2. Receiving a Message through ip ∈ Ac

A computation ,ip, that is triggered when an actor receives a message m of the form
v ⇒ a can perform one of the following actions by applying the received message to its
current behavior:

(i) Perform a multi-step computation;
(ii) Create a communication;
(iii) Store the result of a computation.

Sensors 2022, 22, 7313 7 of 23

Formally, a message receipt by any actor can be described by the following transi-
tion rule:

〈A|C|S|M, m|α, (b)ip|µ〉χ 7→ 〈A|C|S|M|α, [app(b, m]ip|Ma〉χ (11)

Below, we described the transition rules of the two cases of message receipt and
their behavior:

(i) Message receipt by a computation Message can be received on i ∈ I of Ca, as follows:

〈A, (I, (b)i : T : O)|C|S|M|α|µ, m〉χ 7→ 〈A, (I, [app(b, m)]i : T : O)|C|S|M|α|µ〉χ (12)

Message can be received on o ∈ I of Ca, as follows:

〈A, (I : T : O, (b)o)|C|S|M, m|α|µ〉χ 7→ 〈A, (I : T : O, [app(b, m)]o)|C|S|M|α|µ〉χ (13)

(ii) Message receipt by a communication

〈A, (I : T : O)|C, (C, (b)c : J)|S|M|α|M, m〉χ 7→ 〈A, (I : T : O)|C, [app(b, m)]|S|M|α|µ〉χ (14)

4.3. A Computation Creates a Communication
A computation creates a communication as an independent entity with a separate

communication logic to carry out its communication logic, as follows:

〈Ca, (I, [R[new(b)]]i : T : O)|Cc, (C : J)|α|M〉χ 7→ 〈Ca, (I, [R[c]i : T : O)|Cc, (C, (b)c : J)|α|M〉χ (15)

4.4. A Communication Receives a Message
A communication can receive a message from another communication or computation.

In both cases, the message is applied to its current behavior, as follows:

〈Ca, (I : T : O)|Cc, (C, (b)c : J)|α|M, m〉χ 7→ 〈Ca, (I : T : O)|Cc, (C, [app(b, m)]c : J)|α|M〉χ (16)

4.5. A Communication Sends a Message

A communication can send a message to another communication or computation.
The first case models actor routing, while the second case models a response or an acknowl-
edgment. The latter case generates a message that is sent in the communication channel
towards its destination, as described below:

〈A|C, (C, [R[send(m)]]c : J)|S|M|α|µ〉χ 7→ 〈A|C, (C, [R[nil]]c : J)|S|M|α|µ′〉χ (17)

4.6. Secure Communication

Secure communication is initiated between two or more Actor Systems such that
ks ∈ G 6= null, where ks is the security configuration for this communication. The follow-
ing equations represent the process of initiating a secure communication between Actor
Systems:

〈A, (I : T : O)|C|S|M|α, [R[send(m)]]c|µ〉 7→ 〈A, (I : T : O)|C|M′|S|α, [R[nil]]c|µ′〉 (18)

〈A, (I : T : O)|C|S|M|α, (b)c|µ, c← con f 〉 7→ 〈A, (I : T : O)|C|M′|S|α, [app(b, ip)]c|µ′〉 (19)

where m is the message that initiates the security configuration and con f is the created
security configuration.

Secure communication is established between Actor Systems when a computation
actor hosted in the sender Actor System sends a message m to a communication c to retrieve
a security configuration con f . This process is formally represented as:

〈A, (I, [R[send(m)]]ip : T : O)|C|S|M|α|µ〉 7→ 〈A, (I[R[nil]]ip : T : O)|C|M′|S|α|µ′〉 (20)

where m = h← con f .

Sensors 2022, 22, 7313 8 of 23

Once the security configuration is retrieved from the device memory, it is immediately
applied to the existing communication, as follows:

〈A, (I : T : O)|C, (H, (b)h : J)|S|M|α|µ〉 7→ 〈A, (I : T : O)|C, (H, [app(b, m)])|M′|S|α|µ′〉 (21)

5. Composition Semantics and Communication Patterns in SecIoTComm

We define communication compositionally. In other words, simpler communication
can be composed to create more complex ones by applying a set of composition rules.
A communication connects to other communications using input and output ports. Mes-
sages can be received by a communication at its input ports and can be sent out to other
communications from its output ports. An external observer can only see the input ports
and the output ports of the final composed communication.

The composition of two communications k1 and k2 is represented as k1 ∪‖ k2. Two
communications ki = 〈Ai|Ci|Si|Mi|αi|µi〉χi , 0 < i ≤ 2 are composable if Dom(α1) ∩
Dom(α2) = ∅, χ1 ∩ Dom(α2) ⊆ ρ2, and χ2 ∩ Dom(α1) ⊆ ρ1, where ρ1 ⊂ Ca1 and ρ2 ⊂ Ca2 .

The remainder of this section presents the semantics of communication composition.
We abstract away from the representation of communication internal messages because we
are only concerned about the coming together of communications.

5.1. Input Convergence Composition

Input convergence composition can be used to implement a one-to-many commu-
nication pattern in SecIoTComm. We define one-to-many communication as a type of
communication involving a single actor from an actor system AS1 communicating to n
number of actors in another system AS2.

As shown in Figure 2, the input convergence composition takes two parameters as
input: a target set D of computing actors and a behavior b informing the source computing
actor about the number of communication to create. The newly created communication
actors make the different targets of the source computing actor their targets and inherit
the original behavior of the source computing actor. Then, the source computing actor
changes its behavior to the new provided behavior, which forwards its messages to different
communication actors who already know its targets. This can be represented formally
as follows:

∪ n
||i=1

D, b
〈
(Ii : Ti : Oi)|(Ci : Ji)|αi|Mi

〉
χi
⇒〈

((
n⋃

i=1

Ii − S) ∪
m⋃

j=1

(bj, S)ca :
n⋃

i=1

Ti :
n⋃

i=0

Oi)|((
n⋃

i=1

Ci ∪ Cnew) :

n⋃
i=0

Ji ∪ (c, S, D))|
⋃
{i = 0 n} S|

N⋃
i=1

αi|
n⋃

i=1

Mi

〉
N⋃

i=1
χi−

n⋃
i=1

ρi

(22)

where D is the set of recipients (targets) to be composed, b is the new behavior that is
passed as a parameter to the composition, and S is a set of all sources of communication.
Note that D and S are computing actors and each member of D communicates with all
members of S. Cnew is the set of new communications created using the create_a() redex
of actor creation to carry out the communication. {i = 0 n} is the range of i values, and
S is a security configuration. N is the total sum of sources and targets. The actor map of
the composition is obtained by including the actor map of the new communications in the
complete map of the computations in the system, which consists of sources and targets.

Sensors 2022, 22, 7313 9 of 23

Figure 2. Input Convergence Composition.

5.2. Output Convergence Composition

Output convergence composition can be used for many-to-one communication pat-
terns [5]. We define many-to-one communication as communication involving many
senders (actors) hosted in a source actor system AS1 targeting one recipient hosted on
another actor system AS2.

As shown in Figure 3, the output convergence composition takes three parameters: a
set of sources (senders) S, a behavior b, and one destination d. The set of sources informs the
composition of the number of new communications to create, represented by a directional
line with an arrow showing the direction of communication. This can be represented
formally as follows:

∪ n
||i=1

S, d, b
〈
(Ii : Ti : Oi)|(Ci : Ji)|αi|Mi

〉
χi
⇒〈

(
n⋃

i=1

Ii :
n⋃

i=1

Ti :
n⋃

i=1

Oi ∪ (b, d)a′i
|

m⋃
j=1

Cj |
m⋃

j=1

Jj

|
⋃
{i = 0 n} S|

n⋃
i=1

αi ∪
m⋃

j=1

αj ∪ (bai , ai) |
m⋃

j=1

Mj

〉
m⋃

j=1
(χi−ρi)

(23)

where Cj is a set of new communication created by invoking create_a() function. This
results in creating a new target actor ai with behavior b, and d is the destination actor.
The length of the set of mapping of computation communication is equal to the number of
involved communications. The total number of mapping of actor to behavior is obtained
by summing the total number of mapping of original computations, the new computation,
and the new communications. M is the number of message channels.

Figure 3. Output Convergence Composition.

5.3. Complementary Composition

Given two or more SecIoTComm configurations, k1 and k2, many-to-many communi-
cation between k1 and k2 involves multiple computing actors on k1 communicating with
multiple computing actor on k2 via complex communication patterns. This can be formally
represented as:

k1 = 〈A1|C1|S1|M1|α1|µ1〉χ1 (24)

Sensors 2022, 22, 7313 10 of 23

k2 = 〈A2|C2|S2|M2|α2|µ2〉χ2 (25)

k3 = 〈A3|C3|S3|M3|α3|µ3〉χ3 (26)

As shown in Figure 4, the complimentary composition takes one parameter: a group

set G in the form of
m⋃

j=1
(ipj, opj, bj). Below is the formal representation of the complimentary

composition of n communications:

∪ n
||i=1

G, b
〈
(Ii : Ti : Oi)|(Ci : Ji)|Si|αi|Mi

〉
χ
⇒

〈
(

n⋃
i=1

Ii ∪
n⋃

i=1

Ti ∪
n⋃

i=1

Oi ∪ (b, a
′
)op) | (

m⋃
j=1

Cj ∪
q⋃

l=1

Cl)

: (
m⋃

j=1

Jj ∪
q⋃

l=1

Jl) | |Si|(
N⋃

i=1

αi ∪
n⋃

j=1

αj ∪
q⋃

l=1

αl ∪ (b, a
′
))

|M1 ∪M2

〉
(χ1∪χ2)−(ρ1∪ρ2)

(27)

Figure 4. Complementary Composition.

Port-Binding Composition

Port binding is a general-purpose composition that merges the outputs ports of one
actor system (or composition) with the inputs ports of another actor system or composition.
To compose two actor systems configurations k1 and k2, we provide a set of triples for
port-to-port binding whose entries are of the form (opi, ipj, b), where opi is the ith output
port of k1, ipj is the jth input port of k2 to be merged, and b is the provided behavior.

As shown in Figure 5, the port-to-port composition of n communication can be formally
described as:

∪ n
||i=1

op, ip, b
〈
(Ii : Ti : Oi)|(Ci : Ji)|αi|Mi

〉
χi
⇒〈

(
n⋃

i=1

Ii ∪
n⋃

i=1

Ti ∪
n⋃

i=1

Oi) |
m⋃

j=1

Cj :
m⋃

j=1

Jj

|
⋃
{i = 0 n} S|(

N⋃
i=1

αi ∪
n⋃

j=1

αj) |M1 ∪M2

〉
(χ1∪χ2)−(ρ1∪ρ2)

(28)

where Cnew =
⋃m

j=1 Cj is the set of new communications created that connects the output
ports of k1 to the input ports of k2. Jnew =

⋃m
j=1 Jj is the associated new mapping of

communications to computations. The actor map of the port binding composition is
generated by adding the map of the newly created communication to the composite map
of the participating actor system. The set of messages becomes the composite messages
of the two composed configurations k1 and k2. ρ is the receptionists and equivalent to the
inports (ip) of the actor system.

Sensors 2022, 22, 7313 11 of 23

Figure 5. Port-Binding Composition.

6. SecIoTComm Implementation Framework

The design of the implemented framework builds on the domain-specific mechanisms
for SecIoTComm described in the previous sections. Specifically, we built a set of program-
ming constructs implemented in a framework to support the programmability of IoT secure
systems. We prototyped the distributed framework as an actor system. The distributed
run-time system for the proposed framework is organized with parts executing on the IoT
end-devices at the sensing side and remote servers on the platform side.

Figure 6 illustrates the system design of the SecIoTComm implementation framework.
Our prototype used four Raspberry Pi devices, a set of various sensors, and a MacBook
server to represent the remote server. The IoT sensors represent the sensor data sources.
Each Raspberry Pi device and the MacBook server hosts an actor system, which holds the
security configurations.

Each Raspberry Pi 4 device is equipped with a 1.5GHz Quad-core Cortex-A72 (ARM
v8) 64-bit SoC, 8GB LPDDR4-3200 SD-RAM, 5.0 GHz IEEE 802.11ac wireless, Bluetooth
5.0, and BLE Gigabit Ethernet, running Raspbian OS. We also used one MacBook laptop
with an M2 GPU (8-core) processor and 16GB of RAM. The other security components,
such as IoT protocols, communications, and computations, are represented by individual
actors. We used Scala version 2.1.3 with Akka version 2.6.19 running on JVM 1.8. We set
the minimum and the maximum number of active threads in the pool of threads, called
parallelism-min and parallelism-max, to 8 and 64, respectively. The parallelism factor is
set to 8.

Figure 6. SecIoTComm Implementation Framework.

The SecIoTComm framework is implemented using Akka [9], an open-source toolkit
for building actor-based concurrent applications using the Scala programming language.
Akka can be used to create highly concurrent, distributed, and fault-tolerant applications
which can span across multiple processor cores and networks. Akka provides a high-level
abstraction to low-level synchronization mechanisms of multi-threaded applications by
hiding them from programmers, allowing them to focus on application-specific details.

We used several routing, clustering, and networking features embodied in Akka to real-
ize the network architecture of the SecIoTComm framework. SecIoTComm communication

Sensors 2022, 22, 7313 12 of 23

is established through actor messages between JVMs residing on each Actor System hosted
on each Raspberry Pi. Communication among JVMs is encrypted using the developed
security configuration via the mTLS (mutual Transport Layer Security) protocol.

6.1. Key Generation and Secure Communication

We used two Java tools, keytool and pwgen, for the generation of security keys and
passwords used in the security configurations, respectively. Security keys are generated by
specifying the parameters of the keys such as alias, algorithm, keysize, validity, etc. Security
keys are one of two types: private and public. As shown in Figure 7, private keys are unique,
self-signed, and stored in a password-protected keystore in the device’s memory. It is
used for exchanging encrypted messages among ActorSystems via asymmetric encryption.

Figure 7. Private Keys.

Public keys are stored in a password-protected truststore in the device’s memory
and contain many public keys of other devices in the framework’s trusted list. Figure 8
shows the keystore of Actorsystem3 (as3) that contains actorsystem1 (as1) and actorsys-
tem2 (as2) as trustee devices.

Additionally, the framework poses the following security features:

• Immutable messages: Messages are constructed using case classes in Scala, so any
malicious party cannot mutate them.

• Immutable State: We used Actors’ property of immutability state as a layer of security
on actor computation.

Sensors 2022, 22, 7313 13 of 23

Figure 8. Public keys.

6.2. Class Diagram

Figure 9 illustrates the class diagram of the framework running on Raspberry Pi
devices. Actor is a top-level actor class that implements a receive method for changing
the actor’s behavior when receiving a new message. The Behavior class implements the
security functionalities of the framework, including: (i) the retrieve(key) function, used
to retrieve the associated security configuration of a public key; (ii) the encrypt (key,
target) function, used to encrypt the target configuration given a private key; (iii) the
delegate (m, target) function, which sends a delegation task to another actor in the
ActorSystem; and record(content), used to store a security configuration. Computation
class extends the Actor and Behavior classes. It implements the computational functionali-
ties of the framework.

Sensors 2022, 22, 7313 14 of 23

Figure 9. Class Diagram.

6.3. Runtime Event Diagram of the SecIoTComm Framework

Figure 10 illustrates the runtime event diagram for the SecIoTComm framework.
The runtime events diagram illustrates the framework functions, communication properties,
actor computations, scalability, and resource sharing among Actor Systems. The horizontal
dotted lines represent the time of each event (e.g., t1, t2, t3, and t4). Events can be classified
as computation, communication, or actor creation event.

Figure 10. Runtime Event Diagram.

Sensors 2022, 22, 7313 15 of 23

As shown in the figure, the execution time of a computation depends on the length
of its computational sequence. When an ip actor carries out a computation, it becomes in
the busy state during which it cannot process any other messages until the current state
becomes idle. The computation time, ti, ranges from 0 to <∞ for non-value expressions.
An (ip) actor becomes (op) after the execution of a computation.

When an ActorSystem wants to communicate with another ActorSystem, the (op)
actors of the former initiate the communication process by establishing a communication
channel using a predefined security configuration. The communicated actor message, along
with its metadata, is received by the inport of the target ActorSystem. The execution time
of the message is represented by t < ∞.

Communication in SecIoTComm is asynchronous as a computation op creates a finite
number of communication actors to carry out multiple communication concurrently. Com-
putation, on the other hand, is concurrent for different ports. Ports ip1 and ip2 belonging
to the same ActorSystem can carry out computation concurrently with execution time t1
and t2, respectively. Distributed computation is defined by task delegation, where an (ip1)
actor sends a computational task to (ip3) on another ActorSystem to carry out a certain
computation and send back the result.

7. Evaluation

This section presents our experimental evaluation of the SecIoTComm framework for
performance and scalability. We compared the performance of two cipher suites encryption
algorithms running on the top of our framework: TLS_DHE_RSA_WITH_AES_128_GCM
_SHA256 and TLS_ECDHE_RSA_WITH_AES_128_GC_SHA256. Both cipher suites are
recommended by the Internet Standard security (RFC 7525) for IoT systems. Our study
evaluated various key sizes from 512 bits up to 4096 bits. We observed the impact of
changing the key size on memory consumption and CPU computational cycles.

7.1. Performance

Figure 11 shows the CPU and memory utilization of Raspberry Pi 1 in the idle JVM
state when having a fresh security configuration in place. The idle JVM state of a Raspberry
Pi device happens when no active functionalities are running on the device, such as
communication, computation, or security-related activities. As shown in the figure, the total
CPU and memory utilization after initializing the security configurations are negligible
overheads at the idle JVM state.

Figure 11. The CPU and memory utilization of the Raspberry Pi device in the idle JVM state.

Sensors 2022, 22, 7313 16 of 23

Figures 12–19 show the CPU and memory utilization of Raspberry Pi 1 and 2 devices
when using different cipher suites with various key sizes. The spike in CPU initialization
at the first 25 seconds of the experiment resulted from the overheads of initiating the TCP
communication (e.g., three-way handshake process).

Figure 12. The CPU and memory utilization of the Raspberry Pi device using
TLS_DHERSA_WITHAES_128_GCM_SHA256, keysize = 512.

Figure 13. The CPU and memory utilization of the Raspberry Pi device using
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, keysize = 1024.

Figure 12 shows the CPU and memory utilization when using the SHA256 encryption
standard with keysize 512 bits in Galois-Counter mode. We observed improvement in
the peak CPU consumption overhead caused by TLS handshake from 170% to 160%.
The handshake duration and average CPU consumption after handshake completion
remain the same at approximately 23 s and 5%, respectively. The memory overhead for

Sensors 2022, 22, 7313 17 of 23

this configuration is about 40Mb. The memory usage remains comparably the same for
Figures 12–14.

Figure 13 shows the impact of doubling the keysize from 512 to 1024 bits on the
performance. As shown in the figure, the CPU consumption’s peak is pushed from 160%
to 165%, while the handshake duration and average memory utilization remain the same.
The memory overhead for this configuration is 35 Mb.

Figure 14. The CPU and memory utilization of the Raspberry Pi device using
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, keysize = 2048.

Figure 15. The CPU and memory utilization of the Raspberry Pi device using
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, keysize = 4096.

Sensors 2022, 22, 7313 18 of 23

Figure 16. The CPU and memory utilization of the Raspberry Pi device using
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, keysize = 2048.

Figure 17. The CPU and memory utilization of the Raspberry Pi device using
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, keysize = 512.

Figure 14 shows the Raspberry Pi device in the active state of communication using
Transport Layer Protocol (TLS), Diffie–Hellman Ephemeral (DHE), and Rivest Shamir
Adleman algorithm (RSA) for the exchange of cipher suites, authentication, and creating
and exchanging session keys. Advanced Encryption Standard AES is used for encryption
and Secure Hash Algorithm 256 (SHA256) for integrity check. SecIoTComm framework
uses distributed authenticated encryption, where the handshake process is distributed
between IoT devices involved in communication.

As shown in Figure 14, the TLS handshake occurs in the first 23 s of the experiment.
The TLS handshake increases the CPU consumption up to 170%. Such overhead drops to
about 5% on average during the remaining time of the experiment. The overall memory
overhead is 37 Mb. Comparing the average CPU and memory overhead illustrated in
Figure 14 with the idle state displayed in Figure 12, we can conclude that the SecIoTComm
framework is lightweight and suitable for resource-constrained IoT devices.

Sensors 2022, 22, 7313 19 of 23

Figure 18. The CPU and memory utilization of the Raspberry Pi device using
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, keysize = 1024.

Figure 19. The CPU and memory utilization of the Raspberry Pi device using
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, keysize = 4096.

In Figure 15, the keysize is doubled again to 4096 bits, while keeping all other exper-
iment’s parameters the same. The TLS handshake increases the peak CPU utilization to
196% within the first 30 s of the experiment. Upon completing the TLS handshake process,
the average CPU utilization remained similar to Figure 14. The overall memory overhead
was 40 Mb.

In Figure 16, we evaluated the performance using Elliptic Curve Diffie–Hellman
Ephemeral (ECDHE) protocol for key exchange, Rivest Shamir Adleman algorithm (RSA)
for message authentication, Advanced Encryption Standard in Galois-Counter mode for
encryption, and Secure Hash Algorithm 256 (SHA256) hash for integrity check.

We observed that the CPU and memory utilization are similar to the Diffie–Hellman
Ephemeral (DHE) key exchange scheme used in the previous three experiments (Figures 13–15);

Sensors 2022, 22, 7313 20 of 23

however, the ECDHE variant reduces the computation cost. The peak CPU utilization during TLS
handshake was measured to be 164% during the first 25 s of the experiment. After completing the
TLS handshake process, the average CPU utilization was 5%, and the overall memory overhead
was 30 Mb.

In Figure 17, we evaluated the performance using ECDHE, RSA, and SHA256 using
a keysize of 512. The peak CPU utilization during TLS handshake was measured to be
155% during the first 25 s of the experiment. After completing the TLS handshake process,
the average CPU utilization was 5%, and the overall memory overhead was 35 Mb.

In Figure 18, we evaluated the performance using ECDHE, RSA, and SHA256 using a
keysize of 1024 bits. The peak CPU utilization during TLS handshake was measured to be
163% during the first 25 s of the experiment. After completing the TLS handshake process,
the average CPU utilization was 5%, and the overall memory overhead was 45 Mb.

In Figure 19, we evaluated the performance using ECDHE, RSA, and SHA256 using a
keysize of 4024 bits. The peak CPU utilization during the TLS handshake was measured
to be 183% during the first 25 s of the experiment. After completing the TLS handshake
process, the average CPU utilization was 5%, and the overall memory overhead was 50 Mb.

Tables 2 and 3 summarize the results of the performance of the DHE and ECDHE
experiments with different key sizes, respectively.

Table 2. The Performance of the TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 Experiments.

Key Size CPU Peak Avg. CPU Handshake Duration Memory Overhead

512 160% 5% 23 s 45 Mb
1024 165% 5% 23 s 35 Mb
2048 170% 5% 23 s 50 Mb
4096 196% 5% 30 s 40 Mb

Table 3. The Performance of the TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 Experiments.

Key Size CPU Peak Avg. CPU Handshake Duration Memory Overhead

512 155% 5% 23 s 35 Mb
1024 160% 5% 23 s 45 Mb
2048 164% 5% 23 s 30 Mb
4096 183% 5% 25 s 50 Mb

7.2. Scalability

We ran a set of experiments to determine the impact of changing the number of
actors on computational CPU utilization at the gateway. The number of actors determines
the number of sensors a gateway can support, where each actor manages that sensor’s
communication, processing, and storage need.

In the first experiment, we used one actor to perform all computations. Then, we grad-
ually doubled the number of actors in the following experiments. As shown in Figure 20,
as the number of actors used in the computations increases, the average CPU consumption
increases until reaching 5000 actors. As we increase the number of actors in the communi-
cation layer to 5, 10, 50, 100, 500, and 1000 simultaneous actor communications, the average
CPU utilization reaches up to 5%, 6%, 10%, 15%, 21%, and 25%, respectively. This shows
the scalability of a single Raspberry Pi device running the SecIoTComm framework.

At the point of using 5000 actors, we could not observe apparent differences in CPU
utilization. This may be justified by the extra overheads of initiating the actors and commu-
nication delay. These results suggest that having a large number of actors is not necessary to
improve the overall performance of intensive computations. Therefore, programmers must
find an equilibrium between the number of actors and CPU cycles required to perform
the calculations.

Sensors 2022, 22, 7313 21 of 23

Figure 20. The Effect of Changing the Number of Actors on The CPU utilization of the Raspberry
Pi devices.

7.3. Computational Task Delegation

We implemented a fine-grained resource coordination and control mechanism through
our framework’s computational task delegation feature. Computational task delegation
enables IoT devices to discover and utilize the computational resources of other devices
in the network. Computational task delegation is implemented using inports (ip) and
outports (op) actors. Tasks messages are received through ips actors, executed, and sent
out through ops actors. An op actor creates communication with a designated behavior
appropriate for its communication of three types: one-to-one, one-to-many, and many-to-
one communications.

Figure 21 shows the effect of delegating a computationally intensive task from a
Raspberry Pi device to a remote server (i.e., MacBook) on the network. The communicated
task is to compute the fib(x), where x is a large integer value. As shown in the figure,
the total CPU time for computing fib(x) is decreased by a factor of 5 after delegating the
task of computing the Fibonacci of 50 to a more powerful server.

Figure 21. Computational Task Delegation.

Sensors 2022, 22, 7313 22 of 23

8. Conclusions

In the paper, we presented Secure-Actor-based Model for IoT Communication (SecIoT-
Comm), a model and framework for representing secure IoT communication. SecIoTComm
model defines IoT communication compositionally, where we presented a set of composi-
tion rules for constructing complex communication by composing simpler ones. We also
presented the operational semantics for SecIoTComm, which are defined by a transition
relation on SecIoTComm configuration. We also presented the design of a framework
implementing the SecIoTComm model, which can be used to easily create complex secure
IoT communication. Finally, we conducted several sets of experiments to evaluate the
performance and scalability of the framework.

Work is ongoing in multiple directions. First, we would like to study important
properties of secure IoT communication, focusing on equivalence. Second, we are looking at
building programming constructs implemented in a platform to support the task delegation
algorithm without manually setting up the communication infrastructure.

Author Contributions: Conceptualization, A.A.A., K.E. and C.A.; methodology, A.A.A. and C.A.;
software, K.E.; validation, A.A.A. and C.A.; formal analysis, A.A.A.; investigation, A.A.A. and K.E.;
resources, A.A.A.; data curation, K.E.; writing—original draft preparation, A.A.A. and K.E.; writing—
review and editing, A.A.A.; visualization, K.E.; supervision, A.A.A. and C.A.; project administration,
A.A.A.; funding acquisition, A.A.A. and C.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is funded by the Center of Excellence for Communication Systems Technology
Research (CECSTR) and SECURE Cybersecurity Center of Excellence, Prairie View A&M University.
This research work is supported in part by the National Science Foundation (NSF) under grant
2011330. Any opinions, findings, and conclusions expressed in this paper are those of the authors
and do not necessarily reflect the NSF’s views.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and source code are available upon request.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmed, A.A.; Eze, T. An Actor-Based Runtime Environment for Heterogeneous Distributed Computing. In Proceedings of the

International Conference on Parallel & Distributed Processing, PDPTA’19, Las Vegas, NV, USA, 29 July–1 August 2019; pp. 37–43.
2. Hwang, J.; Nkenyereye, L.; Sung, N.; Kim, J.; Song, J. IoT Service Slicing and Task Offloading for Edge Computing. IEEE Internet

Things J. 2021, 8, 11526–11547. [CrossRef]
3. Ahmed, A.A.; Echi, M. Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras. IEEE Access 2021,

9, 63283–63293. [CrossRef]
4. Ahmed, A.A.; Reddy, G.H. A Mobile-Based System for Detecting Plant Leaf Diseases Using Deep Learning. AgriEngineering 2021,

3, 478–493. [CrossRef]
5. Ahmed, A.A. A Model and Middleware for Composable IoT Services. In Proceedings of the International Conference on Internet

Computing & IoT, ICOMP’19, Las Vegas, NV, USA, 29 July–1 August 2019; pp. 108–114.
6. Li, Y.; Zhuang, Y.; Hu, X.; Gao, Z.; Hu, J.; Chen, L.; He, Z.; Pei, L.; Chen, K.; Wang, M.; et al. Toward Location-Enabled IoT

(LE-IoT): IoT Positioning Techniques, Error Sources, and Error Mitigation. IEEE Internet Things J. 2021, 8, 4035–4062. [CrossRef]
7. Abdelmoamen, A.; Jamali, N. A Model for Representing Mobile Distributed Sensing-Based Services. In Proceedings of the IEEE

International Conference on Services Computing, SCC’18, San Francisco, CA, USA, 2–7 July 2018; pp. 282–286.
8. Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems; MIT Press: Cambridge, MA, USA, 1986.
9. Akka. Akka Programming Language. 2022. Available online: https://akka.io/ (accessed on 22 September 2022).
10. Qiu, H.; Zheng, Q.; Zhang, T.; Qiu, M.; Memmi, G.; Lu, J. Toward Secure and Efficient Deep Learning Inference in Dependable

IoT Systems. IEEE Internet Things J. 2021, 8, 3180–3188. [CrossRef]
11. Ahmed, A.A. A privacy-preserving mobile location-based advertising system for small businesses. Eng. Rep. 2021, 3, e12416.

[CrossRef]

http://doi.org/10.1109/JIOT.2021.3052498
http://dx.doi.org/10.1109/ACCESS.2021.3074319
http://dx.doi.org/10.3390/agriengineering3030032
http://dx.doi.org/10.1109/JIOT.2020.3019199
https://akka.io/
http://dx.doi.org/10.1109/JIOT.2020.3004498
http://dx.doi.org/10.1002/eng2.12416

Sensors 2022, 22, 7313 23 of 23

12. Moamen, A.A.; Jamali, N. Coordinating Crowd-Sourced Services. In Proceedings of the 2014 IEEE International Conference on
Mobile Services, Anchorage, AK, USA, 27 June 2014–2 July 2014; pp. 92–99.

13. Moamen, A.A.; Jamali, N. An Actor-Based Middleware for Crowd-Sourced Services. EAI Endorsed Trans. Mob. Commun. Appl.
2017, 3, 1–15. [CrossRef]

14. Moamen, A.A.; Jamali, N. CSSWare: An Actor-Based Middleware for Mobile Crowd-Sourced Services. In Proceedings of the
2015 EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mobiquitous’15),
Coimbra, Portugal, 22–24 July 2015; pp. 287–288.

15. Agha, G. Actors Programming for the Mobile Cloud. In Proceedings of the 2014 IEEE 13th International Symposium on Parallel
and Distributed Computing, Marseille, France, 24–27 June 2014; pp. 3–9. [CrossRef]

16. Frølund, S. Coordinating Distributed Objects: An Actor-Based Approach to Synchronization; MIT Press: Cambridge, MA, USA, 1996.
17. Callsen, C.; Agha, G. Open Heterogeneous Computing in Actorspace. J. Parallel Distrib. Comput. 1994, 21, 289–300. [CrossRef]
18. Geng, H.; Jamali, N. InterActors: A Model for Separating Complex Communication Concerns in Multiagent Computations. In

Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous
Agents and Multiagent Systems, AAMAS’17, Sao Paulo, Brazil , 8–12 May 2017; pp. 1550–1552.

19. Prokopec, A.; Odersky, M. Isolates, Channels, and Event Streams for Composable Distributed Programming. In Proceedings of the
2015 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!),
Pittsburgh, PA, USA, 25–30 October 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 171–182.
[CrossRef]

20. lv, H.; Ge, X.; Zhu, H.; Wang, C.; Yuan, Z.; Zhu, Y. Design and Implementation of Reactive Distributed Internet of Things Platform
based on Actor Model. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 1993–1996. [CrossRef]

21. Eze, K.; Akujuobi, C.M. Design and Evaluation of a Distributed Security Framework for the Internet of Things. J. Signal Inf.
Process. 2022, 13, 1–23. [CrossRef]

22. Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay
Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [CrossRef]

http://dx.doi.org/10.4108/eai.13-9-2017.153070
http://dx.doi.org/10.1109/ISPDC.2014.31
http://dx.doi.org/10.1006/jpdc.1994.1060
http://dx.doi.org/10.1145/2814228.2814245
http://dx.doi.org/10.1109/ITNEC.2019.8729169
http://dx.doi.org/10.4236/jsip.2022.131001
http://dx.doi.org/10.1109/TAES.2022.3155711

	Introduction
	Related Work
	Secure Actor-Based Model for IoT Communication
	Computation Definition
	Communication Definition
	Security Definition

	SecIoTComm Operational Semantics
	Actor System Initialization
	Receiving a Message through ip Ac
	A Computation Creates a Communication
	A Communication Receives a Message
	A Communication Sends a Message
	Secure Communication

	Composition Semantics and Communication Patterns in SecIoTComm
	Input Convergence Composition
	Output Convergence Composition
	Complementary Composition

	SecIoTComm Implementation Framework
	Key Generation and Secure Communication
	Class Diagram
	Runtime Event Diagram of the SecIoTComm Framework

	Evaluation
	Performance
	Scalability
	Computational Task Delegation

	Conclusions
	References

