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Abstract: Multi-state driver monitoring is a key technique in building human-centric intelligent
driving systems. This paper presents an integrated visual-based multi-state driver monitoring
framework that incorporates head rotation, gaze, blinking, and yawning. To solve the challenge of
head pose and gaze estimation, this paper proposes a unified network architecture that tackles these
estimations as soft classification tasks. A feature decoupling module was developed to decouple the
extracted features from different axis domains. Furthermore, a cascade cross-entropy was designed
to restrict large deviations during the training phase, which was combined with the other features to
form a heterogeneous loss function. In addition, gaze consistency was used to optimize its estimation,
which also informed the model architecture design of the gaze estimation task. Finally, the proposed
method was verified on several widely used benchmark datasets. Comprehensive experiments were
conducted to evaluate the proposed method and the experimental results showed that the proposed
method could achieve a state-of-the-art performance compared to other methods.

Keywords: driver state; feature decoupling; cascade cross-entropy; gaze consistency

1. Introduction

Intelligent agents are now part of our lives and their numbers are expected to in-
crease [1–3]. Therefore, the smartness, safety, and efficiency of interactions and collab-
orations between humans and agents should continue to improve [4–9]. In particular,
autonomous driving technology could allow humans to share control with intelligent
vehicles [10–15]. A well-designed co-pilot system requires the vehicle to understand the
behavior and state of the driver [16–21]. Owing to the low costs and wide application of
dash cameras, this paper proposes an integrated multi-state driver monitoring framework
based on appearance, which does not use intrusive sensors. The framework incorporates
several common functions, such as head rotation, gaze, blinking, and yawning, as shown
in Figure 1. For convenience, our design principles include the following:

1. The different modules should be independent of each other so the functions are
convenient to use;

2. The framework should be easy to maintain and update based on the development of
deep learning technology;

3. The framework should provide various configuration models to coordinate computing
power and accuracy;

4. The included functional modules should achieve state-of-the-art performance.

In particular, head pose estimation (HPE) and 3D gaze estimation (GE) are important
and challenging indicators of a driver’s state and attention. This paper focuses on these
two factors and discusses them in depth. The other modules are briefly described.
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Figure 1. Example of our multi-state driver monitoring system.

Generally, there are two types of methods that are used to estimate these two factors:
geometry-based [22] and appearance-based methods [23,24]. Geometry-based methods
rely on prior models and have high requirements for the quality and resolution of the
input images. Advances in deep neural networks (DNNs) have focused considerable
attention on the use of appearance-based models in a data-driven manner. Researchers
have proposed different types of DNN-based structures to achieve improved performance.
Neural architecture search (NAS) technology provides general structures and backbones,
such as the EfficientNet series [25]. In order to follow principles 2 and 3, this study
focused on leveraging the prior knowledge of tasks to maximize the effects of the proposed
backbone model.

In current research, DNN models are well known for classification tasks [26]. Therefore,
this study converted HPE and GE into classification tasks to improve the performance of the
model. There are no correlations between different classes in general classification tasks, but
this would be unreasonable for the HPE and GE tasks that were converted from regression
tasks. To handle this problem, a heterogeneous loss was introduced, which included
the proposed cascade cross-entropy and maintained the continuity of the estimations.
For the architecture of the proposed model, an open pre-trained model was used as the
feature extractor, i.e., EfficientNet. In addition, this study assumed that the different
angles of GE and HPE were independently distributed. A feature decoupling module
(FDM) was developed to decouple the extracted features from different axis domains by
leveraging a channel attention module. The HPE and GE could apply similar strategies,
but the important difference was that the GE could use left-eye images and right-eye
images simultaneously. Usually, the gaze directions of the left and right eyes are consistent;
therefore, this study proposed the principle of gaze consistency. Based on this principle,
the predictions of the left and right eyes could be optimized.

This paper presents the following three main contributions: an integrated appearance-
based multi-state driver monitoring framework, which could be used to build human-
centric intelligent driving systems; a unified network architecture combined with a het-
erogeneous loss function for HPE and GE that could improve the performance of the
model and outperform other state-of-the-art methods; the principle of gaze consistency
significantly optimizing gaze estimation.

The paper is organized as follows. Section 2 comprehensively discusses related work.
Section 3 describes the proposed network architecture, the training loss function, and the
gaze consistency principle. Section 4 analyzes and discusses multiple experimental results.
Then, the conclusions and future work are presented in Section 5.

2. Related Work

This study mainly focused on visual sensor-based driver posture estimation.
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2.1. Visual Sensor-Based Head Pose Estimation

Head pose estimation has been widely studied using various methods and different
modal sensors, including infrared sensors and depth sensors. Most of these studies used
RGB images as the input, as in this study.

From the task perspective, HPE can be addressed as landmark-free or landmark-based
learning using facial landmarks. The landmark-based strategy hypothesizes that the posi-
tion of facial landmarks is related to head pose. Many approaches simultaneously estimate
head pose and conduct other face-related tasks using the same network. Some approaches
even derive head pose directly from facial landmarks [22,27]. While this is theoretically
reasonable, but these methods are not usually robust and cannot achieve the best perfor-
mance. This is because landmark-based methods require the ground truth facial landmarks
and head pose to be very precise, as demonstrated in [27], in which the ground truth was
relabeled to achieve a better performance than using the original label. Several landmark-
free approaches have achieved state-of-the-art performances on open datasets. HOPE-Net
is a representative method in this field [28,29] and is an elegant and robust approach to
detecting head pose using a dual-loss network, which inspired our work. FSA-Net is a
hierarchical classification approach for soft stage-wise regression tasks [30]. FDN Net uses
KL-divergence instead of cross-entropy loss to train models [31]. Ordinal loss has also been
used by some researchers. These methods essentially leverage soft classification tasks to
deal with the HPE task [32] due to the systematic errors that are caused by inaccurate labels
and the random errors that are caused by subject diversity within HPE. Some researchers
have also considered using quaternions [33] and rotation matrices [34] instead of directly
regressing to PYR. However, these methods tend to amplify errors during transformations.
After analyzing these existing methods, we developed a heterogeneous loss to train our
model, which could deal with the continuity problem by transforming it into a classification
problem and constraining the feature spaces.

2.2. Visual Sensor-Based 3D Gaze Estimation

Gaze direction estimation involves two kinds of approaches: geometry-based and
appearance-based methods. The concept of geometry-based methods is the use of feature
positions to calculate gaze through geometric relationships, which requires a high resolution
and high image quality. With advances in deep learning, appearance-based methods have
been increasingly adopted because they are robust to low-quality images.

The classic approach uses a single eye image as the input. To improve performance,
some researchers have also used head pose to enhance the input. However, some experi-
ments have found that the benefits of using head pose are very limited [35] because head
pose estimation is not accurate. To avoid this problem, some researchers have leveraged
facial images instead of head pose [36]. However, facial images are usually more diverse
than eye images, which affects the robustness of person independence. Some researchers
have also explored the asymmetry between the two eyes [37]. However, these studies
focused on asymmetry and neglected the basic feature of the two eyes, i.e., consistency. The
consistency between the two eyes was explored in this study and significantly improved
the performance of our model.

The aforementioned studies focused on person-independent methods, which meant
that the training samples and test samples were from different subjects. Considerable re-
search has focused on personalized methods [38], such as the use of training and test
samples from the same subject to explore personalized bias. A common method is to use a
few labeled samples from test subjects to calibrate the model [39], which can significantly
improve the accuracy of the model. Some researchers have also explored the use of unsu-
pervised and semi-supervised methods to handle this task [40]. This study focused on the
person-independent model; however, calibration was also discussed.
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3. Methodology

This study developed an appearance-based framework for multi-state driver mon-
itoring. The driver’s face was detected by a face detector. Then, the detected bounding
boxes and landmarks were used to allocate different regions for specific tasks. Blinking and
yawning behaviors were measured using the eye aspect ratio (EAR) and the mouth aspect
ratio (MAR), respectively. To solve the challenge of HPE and GE, this study used HNet
and GNet, respectively. The architecture is shown in Figure 2. HNet leveraged a pre-trained
model as the feature extractor and an FDM, which was designed to decouple the features from
different branches. During training, a heterogeneous loss was used. GNet was similar to HNet,
but the left and right eyes shared the same weights for the feature extractor. The estimation of
the left and right eyes was optimized using the proposed principle of gaze consistency.

Figure 2. (a) The architecture of the proposed appearance-based multi-state driver monitoring system;
(b) the structure of HNet, which was used for head pose estimation; (c) the structure of GNet, which
was used for gaze estimation. A demonstration video can be found at https://www.youtube.com/
watch?v=fS4jSiZYGUU, accessed on 22 March 2022.

3.1. Attention-Based Feature Decoupling

The outputs for the head pose and gaze estimations were similar in form, which repre-
sented the angles on different axes. We considered that the head pose estimation model
could obtain the probability P(Y|X), where X =

{
xi ∈ R3×H×W}N and Y =

{
yi ∈ R3}N .

The common approaches directly calculate the joint probability P(Ypyr|X), but when Ypyr
was decoupled, the model could be converted to calculate the different marginal probabili-
ties separately, as follows:

P(Ypyr|X), s.t.Y ∈ R3 →


P(Yp|X), s.t.Yp ∈ R
P(Yy|X), s.t.Yy ∈ R
P(Yr|X), s.t.Yr ∈ R

(1)

which reduced the complexity and the required number of training samples.
To achieve this goal, a feature decoupling module leveraging an attention mechanism

was designed. Convolutional attention modules can basically be divided into two cate-
gories: channel and spatial attention modules. Spatial attention modules allow models
to learn to focus on specific spatial locations by utilizing the inter-spatial relationships
between features. Channel attention modules allow models to pay attention to important
channels by exploiting the inter-channel relationships between features. In this study, an
attention module was used after the feature extractor. Therefore, it allowed our model to
focus on different feature maps for each angle. Spatial-wise attention was not used because
it is equivalent to channel attention after averaging pooling. To force the model to decouple
the feature vector of each angle, there was no skip connection in the attention module. The
channel attention module that we used was computed as follows:

https://www.youtube.com/watch?v=fS4jSiZYGUU
https://www.youtube.com/watch?v=fS4jSiZYGUU


Sensors 2022, 22, 7415 5 of 14

F = σ(MLP(AvgPool(F))) + MLP(MaxPool(F))

= σ(W1(W0(Fc
avg))) + W1(W0(Fc

max))
(2)

where σ represents the sigmoid function and W0 ∈ RC/r×C and W1 ∈ RC×C/r are the
weights of the MLP, which were shared for both input feature maps.

3.2. Heterogeneous Loss with Cascade Cross-Entropy

This study developed a maintainable, upgradeable, and flexible framework based on
a series of pre-trained models. Typically, these models are trained for classification tasks.
To maximize their learning ability, this study converted HPE and GE from regression tasks
into classification tasks. However, there were several challenges to overcome. The first was
that continuous output had to become a discrete output. One approach to achieve this could
be to use a fine-grained class as owing to the inherent noise and errors in data, fine-grained
classes are effective. Aggregation and hierarchy could also be used to improve performance
through similar bagging strategies, which can average multiple outputs. Another approach
could be to calculate a weighted average across multiple output classes, which is divided
into several bins, as follows:

θpred = ω ∗ (
M

∑
i=0

ρi ∗ i− M
2
) +

ω

2
(3)

where M is the number of bins, ω is the width of each bin, and ρi is the corresponding
probability of the ith bin. The model could then obtain a continuous output from the
weighted average, which could solve the continuity problem; however, another challenge
was the correlation problem. The most widely used loss function for classification tasks is
cross-entropy (CE); however, the problem with CE is that it is the same between adjacent
classes and other classes. It is reasonable to use for normal classification tasks, but not
for HPE and GE. To overcome these challenges, a cascade cross-entropy loss function was
developed, which was used to aggregate the heterogeneous loss, as follows:

L = Lcce + λ3Lreg + λ4Lcent

= (λ1Lce + λ2Lceφ) + λ3Lreg + λ4Lcent

= λ1
1
N ∑

i
−

M

∑
c=0

yiclog(ρic) + λ2
1
N ∑

i
−

M/b

∑
c=0

ŷiclog(φ(ρic))

+ λ3
1

2N ∑
i

∥∥∥θgt − θpred

∥∥∥2
+ λ4

1
2N ∑

i

∥∥xi − cyi

∥∥2
2

(4)

where Lcce is the cascade cross-entropy loss (including Lce and Lceφ ), Lce is the standard
cross-entropy loss, Lceφ is the term used to penalize predictions that were far away from
the ground truth via the φ(·) function that maximized the original output, b is the cor-
responding step number, yic denotes the label of the cth class of the ith sample, Lreg is
the mean squared error of the corresponding weighted average (based on Equation (3)),
θgt is the ground truth, Lcent is the center loss (which was used to minimize intra-class
variations while keeping the features of different classes separate), xi is the ith extracted
feature, and cyi denotes the yith class center of the corresponding features (which was
updated as deep features changed). The output was a coarse-grained output compared to
the original fine-grained output. Finally, the hyper-parameter λ1,2,3,4 was used to balance
the different losses.

3.3. Eye Consistency Principle

GE is basically the same as HPE and similar models can be used. However, the
difference is that GE can use two eye images instead of a single side image. Some researchers
have even used facial images to provide more information and improve performance.
Ref. [37] explored the asymmetry between eyes that allows them to complement each other
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under certain unfavorable conditions. However, the authors ignored an important feature
of eyes: consistency. The gaze directions of the left eye and right eye are usually estimated
separately or an MLP layer is used to fuse the features of the two eyes to obtain an overall
gaze direction.

By analyzing datasets and real user experiences, it has been found that the gaze
directions of the left eye and right eye are basically the same under natural conditions.
In some experimental environments, there has been a small difference in the yaw direction
between the two eyes, but they still followed the principle of consistency as a whole. To
leverage this principle, GNet was designed, as shown in Figure 2. The feature extractors of
the eyes were the same and they shared the same weights. Moreover, they independently
estimated gaze direction using the decoupling module and the output module. The key
step was that the estimation of the gaze directions of the left and right eyes was adjusted
according to the principle of consistency, as shown in Figure 3.{

pl = λl ∗ pl + (1− λl) ∗ pr + 0.5 ∗ ε
pr = λr ∗ pr + (1− λr) ∗ pl − 0.5 ∗ ε

(5)

where λ denotes the weight and ε denotes the average gap between the left and right eyes.
The principle of consistency significantly improved the accuracy of the estimation, similar
to the idea of ensemble learning, which leverages multiple independent models to reduce
the likelihood of the selection of a poor model.

Figure 3. The principle of gaze consistency (the gap is usually small).

3.4. Blinking and Yawning Detection Using Aspect Ratios

Existing blinking and yawning detection methods use either landmark-free or landmark-
based approaches. Landmark-free methods usually require specific models to detect blink-
ing or yawning. Ref. [41] proposed a real-time blinking detection method using facial
landmarks and defined the eye aspect ratio (EAR) that determines whether an eye is open
or closed as the following:

EAR =
‖p2 − p6‖+ ‖p3 − p5‖

2‖p1 − p4‖
(6)

where p1, . . . , p6 denote the different landmarks of an eye that can be obtained from a face
detector. State-of-the-art landmark detectors are robust for various illumination conditions,
facial expressions, and non-frontal head rotations. In this study, Dlib [42] was utilized as
the face detector, which is a popular library and is simple to use. Owing to the fact that
a face detector was required for both head pose and gaze estimation, this study adopted
EAR to detect blinking in order to reduce extra calculations, as well as adopting the mouth
aspect ratio (MAR) for yawning detection. The thresholds were obtained from subject-wise
calibration.
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4. Experiments
4.1. Datasets

Currently, the most popular datasets for HPE are 300W-LP [43], AFLW2000 [43],
and BIWI [44], as shown in Figure 4a. 300W-LP provides accurate head poses and addi-
tionally generates synthetic views to expand its library to 122,450 samples. AFLW2000
provides accurate head poses for the first 2000 images of the AFLW dataset. It exhibits large
pose variations for various illumination conditions and expressions. BIWI contains over
15,000 images of 20 people. For each frame, a depth image, the corresponding RGB image,
and annotation are provided.

There are two widely used datasets for GE: MPIIGaze [35] and UT-Multiview [45],
as shown in Figure 4b. MPIIGaze is an appearance-based gaze dataset that includes
15 participants and has a large variability in appearance and illumination conditions. Only
1500 images of the left and right eyes of the subjects were randomly selected for training
and testing. UT-Multiview contains images of a total of 50 people who participated in the
data collection, which cover 160 different gaze directions that were acquired using eight
cameras. In total, it includes 64,000 real eye images and 1,152,000 synthesized eye images.

(a) (b)
Figure 4. (a) Images from the head pose datasets: BIWI (first row), AFLW2000 (second row), and
300W-LP (third row); (b) images from the gaze datasets: MPIIGaze (top) and UT-Multiview (bottom).

4.2. Experimental Protocol

HPE: The widely used protocol for HPE is to train on the synthetic 300W-LP dataset
and test on the two real-world datasets (AFLW2000 and BIWI). The 300W-LP and AFLW2000
datasets provide facial landmarks that can be used to loosely crop the head area, whereas
the BIWI dataset uses a face detector to obtain the head images. The head pose range was
set to [−99,+99], which was the same setting as in [28,30].

GE: We followed the protocols that were used in the original paper and by other re-
searchers. MPIIGaze applies the leave-one-subject-out protocol, whereas the UT-Multiview
dataset uses the 3-fold cross-validation protocol. Only real samples were tested, which was
also the same as in [39].

Baseline: To evaluate the proposed method, two baseline principles were used for HPE:

1. Two fully connected layers were used to estimate the features that were extracted
from the backbone feature extractor and the number of hidden layers was 512;

2. Only Lce and Lreg were used to train the model without feature decoupling. One
baseline principle was used for GE, which was similar to the first baseline principle
for HPE, but both the left and right eyes were used as the input.

Evaluation Metrics: The mean absolute error (MAE) metric was used to quantify the
head pose estimation error:

MAE =
1
N

N

∑
i=1

(| p̂i − pi|) (7)

where N is the number of test datasets and p̂i and pi represent the ground truth and
prediction, respectively.

The angular error is widely used to measure the accuracy of 3D gaze estimation:

Lang = arccos(
g · ĝ
‖g‖‖ĝ‖ ) (8)

where g ∈ R is the predicted gaze vector and ĝ is the ground truth.
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4.3. Experimental Results

To comprehensively verify the proposed method, four models were trained using
different paradigms: w/o ca,w ca, cas ce, and hybrid. The w/o ca paradigm was the same as
Baseline 2 without feature decoupling, whereas w ca included the feature decoupling module,
cas ce used CasCE for training, and hybrid was the proposed method, which included feature
decoupling and a heterogeneous loss function. In this experiment, EfficientNet-b0 was
chosen as the backbone model. The values of the hyper-parameters λ1, λ2, λ3, and λ4 were
0.5, 1.0, 2.0, and 0.01, respectively. The results of the experiment are presented in Figure 5.
It can be seen that the proposed method decreased the mean absolute error and improved
the overall performance. Usually, the angle range was wider on the yaw axis and the effect
of the angle was more obvious on the yaw axis, as shown in Figure 5b. Correspondingly,
the difference was small on the roll axis, which had a small angle range. This was one of
the reasons why the MAE on the roll axis was lower than those on the other axes. Notably,
the CasCE paradigm decreased the error on all three axes. The purpose of the CasCE
paradigm was to restrict larger errors, which was verified, as shown in Figure 5c,d. The
small percentage of errors from the cas ce and hybrid methods were significantly larger than
those of the other two paradigms. To further explore the proposed method, the features
that were extracted by the four paradigms were visualized using the tSNE algorithm, as
shown in Figure 6. To facilitate our observations, samples from the AFLW2000 dataset
were divided into 22 bins, according to their yaw angles. The various colors in the figure
represent the different bins, as shown by the color bar. A large distance between two
colors represents a large difference in yaw angle. It can be seen that the proposed method
increased the discrimination of different bins, especially those that had a large difference in
yaw angle.

(a) (b)

(c) (d)

Figure 5. (a) The mean absolute error of the different paradigms on the AFLW2000 dataset; (b) the
mean absolute error of the different paradigms on the different axes; (c) the percentage of different
errors using the different paradigms; (d) the percentages of correct samples of the different paradigms
under different thresholds.
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(a) (b)

(c) (d)
Figure 6. The tSNE visualization of the extracted features from the different paradigm models. The
samples were divided into several bins with different colors, according to their yaw angles: (a) w/o
ca; (b) w ca; (c) cas ce; (d) hybrid.

To verify the influence of the backbone model, the proposed HNet was compared to
the two baseline methods using different EfficientNet backbone models on the AFLW2000
dataset. The results are shown in Figure 7. It can be seen that the proposed method
significantly reduced angular errors and that the two baseline methods were essentially the
same. The proposed method also suppressed large errors, as verified by the percentage
of angular errors, as shown in Figure 7b. Note that both baseline methods achieved a
better performance than many other methods, which demonstrated that the backbone
model was also important for the methods and that the proposed framework achieved
good maintainability and upgradability. This was also verified for the GE task, as shown in
Figures 8 and 9. The proposed GNet model decreased the mean gaze error and increased
the percentage of lower gaze error compared to the baseline model. These experiments
demonstrated that the proposed method was effective.

(a) (b)
Figure 7. The mean absolute error and percentage of angular errors on the AFLW2000 dataset: (a) the
mean absolute error when different versions of EfficientNet (b0–b4) were used as the feature extractor;
(b) the percentage of angular errors using EfficientNet-b4.
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Figure 8. A comparison between the results from the baseline model and the proposed GNet model, both
with and without the gaze consistency principle, for different subjects from the UT-Multiview dataset.

(a) (b)
Figure 9. The gaze error distribution on the UT-Multiview dataset: (a) the percentage of different
errors; (b) the percentage of correct samples under different thresholds.

For the GE task, this study introduced the gaze consistency principle. To verify
this, comparative experiments were conducted, the results from which are shown in
Figures 8 and 9. The values of λl and λr were 0.5, whereas ε was 0. The principle of
consistency was used in both the baseline and GNet models. The results showed that the
proposed principle significantly decreased gaze errors and the improvement effect even
exceeded the benefits of the proposed model. The reason for this was the GNet model was
similar to simple ensemble learning models that combine two independent models (left
eye and right eye) to reduce the likelihood.

It can be seen that the error variance between different subjects was very large, as shown
in Figure 8. To eliminate this subject-wise bias, some researchers have proposed reference-
based methods, but the most common approach is to calibrate the model using a few samples.
To verify whether the proposed method could be fine-tuned, different numbers of reference
samples were used to calibrate the trained GNet model, as shown in Figure 10. This calibration
significantly reduced the gaze errors, based on a few reference samples.

Figure 10. The angle errors using different numbers of reference images from the UT-Multiview dataset.
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4.4. Comparison to State-of-the-Art Methods

To further evaluate our proposed method, we compared it to the best published
methods in the literature.

4.4.1. Head Pose Estimation

HPE can be addressed using landmark-free or landmark-based learning. The landmark-
free methods mainly focus on the output format design and explore various representations
of rotation. The results from landmark-free methods are shown in the upper part of Table 1.
Owing to the existence of labeling errors and other reasons, accuracy is becoming increas-
ingly difficult to improve. Recently, landmark-based models have shown their effects
and significantly reduced errors, as shown in the middle part of Table 1. However, it is
worth noting that they usually modify the training and test datasets. MNN [27] used a
modified 300W-LP dataset to train the model rather than the original head pose labels. The
img2pose [22] approach manually annotated 68-point ground truth landmarks in a test
dataset instead of the original incorrect 21-point landmarks. This preprocessing helped
the model to take advantage of facial landmarks to improve its performance. We trained
the proposed model using a series of backbone models and the results are shown in the
bottom part of Table 1. On the AFLW2000 dataset, our method had the lowest errors in the
landmark-free group and it could also compete with landmark-based methods. On the
BIWI dataset, our method achieved the lowest errors in both groups. This demonstrated
that our method outperformed other state-of-the-art methods for the HPE task.

Table 1. A comparison of head pose estimation results.

Method AFLW2000 BIWI
Pitch Yaw Roll Mean Pitch Yaw Roll Mean

KEPLER [29] - - - - 17.2 8.08 16.1 13.8
Dlib(68) [30] 13.6 23.1 10.5 15.8 13.8 16.8 6.19 12.2
FAN(12) [29] 7.48 8.53 7.63 7.88 - - - -
3DDFA [43] 8.53 5.40 8.25 7.39 12.3 36.2 8.78 19.1
HPE-40 [46] 6.18 4.87 4.80 5.28 5.18 4.57 3.12 4.29

HopeNet
[28] 6.55 6.47 5.43 6.15 6.60 4.81 3.26 4.89

Shao [29] 6.37 5.07 4.99 5.48 7.25 4.59 6.15 6.00
SSR-Net [30] 7.09 5.14 5.89 6.01 6.31 4.49 3.61 4.65
FSA-Net [30] 6.08 4.50 4.64 5.07 4.96 4.27 2.76 4.00
QuatNet [33] 5.61 3.97 3.92 4.50 5.49 4.01 2.93 4.14

FDN [31] 5.61 3.97 3.88 4.42 4.70 4.52 2.56 3.93
WHENet-V

[29] 5.75 4.44 4.31 4.83 4.10 3.60 2.73 3.48

TriNet [34] 5.76 4.19 4.04 4.66 4.75 3.04 4.11 3.97
Ordinal [32] - - - - 4.36 3.68 3.02 3.69
DGDL [46] 5.35 3.77 4.06 4.39 4.46 3.63 3.08 3.72

MNN [27] † 4.69 3.34 3.48 3.83 4.61 3.98 2.39 3.66
img2pose

[22] ‡ 5.03 3.42 3.27 3.91 3.54 4.56 3.24 3.78

HNet-b0 5.24 4.47 4.05 4.58 4.74 3.56 3.22 3.84
HNet-b1 5.17 4.41 3.68 4.42 4.43 3.20 3.20 3.61
HNet-b2 5.03 4.28 3.71 4.34 4.79 3.12 2.95 3.62
HNet-b3 5.04 3.98 3.55 4.19 3.86 3.30 3.12 3.42
HNet-b4 4.70 4.07 3.20 3.99 4.35 3.46 3.30 3.70

† denotes that the model was not trained using the original dataset; ‡ denotes that the model re-annotated the test
dataset. The bold aims to highlight our proposed methods, as well as the best results.

4.4.2. Gaze Estimation

As mentioned above, there are two kinds of approaches to the GE task: reference-free
(nRef) and reference-based (Ref) approaches. The reference-based methods are similar to
calibrated models, which require several reference samples from a calibration dataset. For
comparison, we calibrated the trained model using different numbers of reference samples.
To improve the performance of models, some researchers have used additional information,
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including facial images or head poses. However, only eye images were used to validate
our methods. In the GE experiment, only EfficientNet-b0 was used as the backbone model.
The results are shown in Table 2. Our method achieved a state-of-the-art performance on
both the MPIIGaze dataset and the UT-Multiview dataset, although the performance on
the latter dataset was better than that on the former. This was because the latter dataset
was larger than the former. The leave-one-subject-out protocol also had more subject bias
than the 3-fold cross-validation protocol. After calibration using a few reference samples,
the performance of the models significantly improved. These results demonstrated that the
proposed method was feasible and efficient.

Table 2. A comparison of gaze estimation results.

Method Input MPIIGaze UT-Multiview
Face Head Left Right Avg Left Right Avg

nRef

iTracker [47] X - 5.6 5.6 5.6 - - -
GazeNet [36] - X 5.5 5.5 5.5 4.4 4.4 4.4
Dilated-Net [47] X - 5.2 5.2 5.2 - - -
CrtCLGM [48] X - - - - 5.7 5.7 5.7
MeNet [47] X - 4.9 4.9 4.9 5.5 5.5 5.5
RT-GENE [47] X - 4.8 4.8 4.8 5.1 5.1 5.1
LNSMM [49] - - 4.8 4.8 4.8 4.8 4.8 4.8
U-Train [40] - - - - - 5.5 5.5 5.5
GEDDne [50] X - 4.5 4.5 4.5 - - -
PureGaze [51] X - 4.5 4.5 4.5 - - -
BAL-Net [52] - - 4.3 4.3 4.3 5.4 5.4 5.4
FAR-Net [37] X - 4.3 4.3 4.3 - - -
I2D-Net [47] X - 4.3 4.3 4.3 - - -
AGENet [47] X - 4.1 4.1 4.1 - - -
CA-Net [51] X X 4.1 4.1 4.1 - - -

GNet-b0 - - 3.83 4.01 3.92 2.97 2.98 2.98

Ref

DEANet [53] - X 4.38 4.38 4.38 3.56 3.56 3.56
Diff-NN [39] - - 4.69 4.62 4.64 4.17 4.08 4.13
Diff-VGG [39] - - 3.88 3.73 3.80 3.88 3.68 3.78

GNet-b0(5) - - 3.13 3.28 3.21 2.74 2.75 2.75
GNet-b0(10) - - 3.19 3.17 3.18 2.60 2.59 2.60
GNet-b0(20) - - 2.98 3.04 3.01 2.33 2.33 2.33

The bold aims to highlight our proposed methods, as well as the best results.

5. Conclusions

To monitor the facial states of drivers, this paper proposed an appearance-based
framework that included head pose estimation, gaze estimation, and blinking and yawning
detection. This study mainly focused on the former two challenging tasks. To preserve the
maintainability and upgradability of the framework, we adopted a pre-trained backbone
model as the feature extractor. After analyzing the tasks, a feature decoupling module was
first developed to obtain the features of the different axes. Then, a cascade cross-entropy
was designed to restrict large errors. Finally, a heterogeneous loss function was built to
optimize the training process. Experiments were conducted and the results demonstrated
that the proposed approach could improve feature representation discrimination, as well
as model accuracy. Moreover, this study used the gaze consistency principle to improve
gaze estimation performance. To compare its performance to that of other methods, the
proposed approach was evaluated on two popular benchmark datasets for each task. The
comparison results demonstrated that the proposed approach could achieve a state-of-the-
art performance while maintaining the highest accuracy.
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