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Abstract: Stability during walking is considered a crucial aspect of assessing gait ability. The current
study aimed to assess walking stability by applying principal component analysis (PCA) to decom-
pose three-dimensional (3D) whole-body kinematic data of 104 healthy young adults (21.9 ± 3.5 years,
54 females) derived from a depth-sensing camera into a set of movement components/synergies
called “principal movements” (PMs), forming together to achieve the task goal. The effect of sex as
the focus area was tested on three PCA-based variables computed for each PM: the relative explained
variance (rVAR) as a measure of the composition of movement structures; the largest Lyapunov
exponent (LyE) as a measure of variability; and the number of zero-crossings (N) as a measure of the
tightness of neuromuscular control. The results show that the sex effects appear in the specific PMs.
Specifically, in PM1, resembling the swing-phase movement, females have greater LyE (p = 0.013) and
N (p = 0.017) values than males. Moreover, in PM3, representing the mid-stance-phase movement,
females have smaller rVAR (p = 0.020) but greater N (p = 0.008) values than males. These empiri-
cal findings suggest that the inherent sex differences in walking stability should be considered in
assessing and training locomotion.

Keywords: gait; variability; neuromuscular control; sex difference; movement structure; movement
synergy; treadmill walking; depth camera; Kinect; principal component analysis (PCA)

1. Introduction

Walking is one of our daily functional motor tasks. It is accepted that the ability
to walk effectively and securely on level or uneven terrains is essential for maintaining
independence and reflects physical performance for preventing falls [1]. In this sense,
walking stability, which is typically defined as the ability of a system (e.g., the volitional
movement system) to maintain its original state in the face of internal (e.g., neuromuscular)
and external (e.g., environmental) disturbances, has been considered one of the essential
aspects when evaluating gait ability [2,3]. Since stability parameters offer information
about the noise inherent in motor task performance and explicitly quantify the performance
of dynamic error correction, assessing the variability has also been used as one indirect
measure of a person’s walking stability [2,3]. The non-linear methods, e.g., local dynamic
stability quantified by the determination of the largest Lyapunov exponent (LyE), have
widely been applied to analyze stability during locomotion in terms of assessing the ability
of the neuromuscular system to attenuate for small internal or external perturbations in
order to maintain functional locomotion, with a greater LyE indicating more variability or
lesser stability [3–5].

Regarding the numerous redundant degrees of freedom in the motor apparatus [6], it
is believed that the central nervous system (CNS) finds a near-optimal solution to govern
the given human movements via task-relevant synergistic muscle activations [7]. Hence,
when observing the motor behaviors, a combination of different task-dependent movement
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synergies (i.e., movement patterns) working together to achieve the given motor task
goal is revealed [8,9], of which these movement synergies can be adapted to internal
and external demands [10]. The applications of dimensionality reduction techniques to
three-dimensional (3D) kinematic data have recently been applied to gain information on
movement synergies by reducing the number of features required to complete the task by
creating fewer new variables and retaining the most information about how individuals
move from the original feature set [8,9,11]. For instance, principal component analysis
(PCA) is applied to the individual multi-segment movements typically recorded from a full-
body marker set and tracked by the infrared cameras of the motion tracking system into a set
of one-dimensional movement components/synergies called “principal movements” (PMk),
where k is the order of movement components [8,9]. Individual PMs can be visualized
as different movement synergies, resembling the swing phase, stance phase, and other
relevant movements, cooperatively forming together to complete the walking tasks [12,13].
PCA-based posture space also provides data on each PM’s position and acceleration [9],
reflecting the neuromuscular control of each PMk in terms of system forces [8,10] and
myoelectric activities [14]. Furthermore, in order to assess the local dynamic stability
during gait, LyE has been applied to individual PMs’ positions, reflecting the inherent
ability of the neuromuscular system to control infinitesimal perturbations of individual
movement components [13,15].

When considering the sex-specific walking characteristics, it is thought that males and
females walk differently and have distinct kinematic gait characteristics, of which the anthropo-
metric differences between the sexes are accepted as one potential cause of the sex differences
in walking characteristics [16,17]. Specifically, males have longer stride lengths and faster gait
speeds at a self-selected walking speed due to their larger stature than females [16]. Moreover,
investigating the walking differences between the sexes is of interest for various clinical ap-
plications. For example, sex differences in kinematic gait characteristics exist in individuals
with several types of pathologies, e.g., osteoarthritis [18,19], iliotibial band syndrome [20], and
Down’s syndrome [21]. Hence, analyzing the stability of the main movement synergies decom-
posed from the whole-body walking movements may beneficially provide an understanding
of the inherent neuromuscular control involved in individual gait patterns, since the neuro-
muscular system controls posture through muscles that generate relative movements between
multiple segments of the body [22].

Practically, although the 3D motion analysis systems based on the reflective marker
recording are capable of measuring whole-body movements and producing highly accurate
and precise results as a gold standard, the high cost, lengthy preparation time, and need for
specialized staff to operate these systems are barriers to their widespread adoption, such as
in routine clinical care [23]. Alternatively, taking measurements outside the laboratory, such
as with a low-cost, depth-sensing camera (e.g., Microsoft Kinect, Microsoft, USA), provides
a portable and cost-effective markerless 3D motion capture device that enables depth
evaluation to be integrated with typical 2D photographs [24]. In addition, the Microsoft
Kinect has been suggested as a potential alternative tool with relatively high reliability and
validity for clinical gait analysis [24–28].

In summary, the main purpose of the current study was to investigate walking stability
in terms of the neuromuscular control of the main movement synergies forming together to
achieve the treadmill walking task in healthy young adults, in which a sex difference was a
focus area. PCA was used to characterize movement components/synergies (i.e., principal
movements, PMs) from the 3D whole-body movements derived from a depth-sensing
camera. PCA-based variables were then determined to differentiate the sex differences in
walking stability. As previously reported [16,17], males and females have distinct kinematic
gait characteristics. Therefore, it was hypothesized that the differences between the sexes
in walking stability would manifest in the specific PMs related to the specific gait patterns.
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2. Materials and Methods
2.1. Secondary Data Analysis

The kinematic datasets of the whole-body treadmill walking movements retrieved
from 104 healthy young participants (50 males and 54 females) for the current investigation
were obtained from a peer-reviewed open-access dataset [29]. Table 1 represents the
characteristics of the participants.

Table 1. Characteristics of participants (* p < 0.001).

Male (n = 50) Female (n = 54) p-Value

Age (years) 22.4 ± 3.4 21.3 ± 3.5 0.124
Weight (kg) 71.6 ± 9.2 61.6 ± 10.0 <0.001 *
Height (cm) 177.6 ± 6.3 165.3 ± 6.1 <0.001 *

Body mass index
(kg/m2) 22.7 ± 2.6 22.5 ± 3.2 0.091

The measurement procedures were fully described in Guffanti et al. [29]. In brief,
whole-body movement was recorded using a single Microsoft Kinect V2 depth sensor
(Microsoft Corporation, Redmond, WA, USA) placed in frontal view for 1.8 m in front of a
1.2 m-long treadmill. The speed of the motorized treadmill gradually increased from 0 m/s
to 1.2 m/s, and all the recordings started once the 1.2 m/s speed was attained. Then, the
recording stopped after 30 s of continuous walking, and slowdown started. A systematic
review reported that walking at 1.2 m/s is commonly considered a slow-to-moderate speed
for healthy young adults [30].

The Kinect V2 for Windows Software Development Kit (SDK 2.0, Microsoft Corpora-
tion, Redmond, WA, USA) provides, with a sampling rate of 30 Hz, the three-dimensional
(3D) positions of 25 body parts, including head, neck, spine shoulder, spine mid, spine base,
right and left shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle, and foot.
However, although the Kinect V2 camera has a target sampling rate of 30 Hz, the frequency
was not constant and could not be stabilized. The actual sampling rate recorded in this
investigation was 34.4 ± 4.3 Hz, consistent with a prior study [30,31]. Thus, the sampling
frequency of each dataset was resampled to 30 Hz before further analysis.

2.2. Movement Synergy Extraction

All data processing was performed in MATLAB version 2021b (MathWorks Inc.,
Natick, MA, USA). Movement synergies were quantified using a kinematic principal
component analysis (PCA) [32]. The matrix of a whole-body walking movement of each
participant contained 25 markers (x, y, z) corresponding to 75 spatial coordinates (i.e., a
75-dimensional posture vector-matrix). An example of whole-body walking movement
received from one male participant can be viewed in an animated stick figure video
(Supplementary Video S1).

Then, three steps of kinematic data preprocessing were conducted, of which the
mathematic-detailed procedures have been fully described in previous studies [33,34]. First,
the matrices of all participants were individually centered by subtracting the mean posture
vector to eliminate differences in mean marker positioning in space from influencing the
PCA outcomes [8,35]. Second, the centered posture vectors were normalized using the mean
Euclidean distance to address anthropometric differences [8,30]. Third, the normalized
posture vectors were weighted by considering sex-specific mass distributions of each body
segment to eliminate the inherent differences in body size between males and females [36],
allowing for assessing the sex differences in PCA-based variables [15,32,37]. Finally, the
weighted posture vectors of all participants were concatenated to form a 93,600 × 75-input
matrix (30 [sampling rate (Hz)] × 30 [testing duration (s)] × 104 [number of participants] x
75 [marker coordinates]) for the PCA.

PCA was computed by performing a singular value decomposition on the covariance
matrix of the input matrix through a public “PManalyzer” software [9], yielding a set of PCk
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vectors, eigenvalues, and scores. Each PC vector defined a specific pattern of correlated
marker movements called “principal movements” (PMs) [8], from which animated stick
figures created from each PCk vector can be produced as a visual representation of each
PM, resembling different movement synergies forming together to achieve the task goal.
The eigenvalues quantify the contribution of the associated PMk to the overall variance,
i.e., how much (in percent) variance there is in individual PMs. In addition, the scores are
obtained by projecting the normalized posture vectors onto the PCk vectors, representing
the actual postural movements expressed in the coordinates defined by the PCk vector
basis. Thus, the resultant PCk scores can be interpreted as “principal positions”, or PPk(t),
where (t) denotes that these variables are functions of time t [38]. In analogy with Newton’s
mechanics, the “principal accelerations” (PAk(t)) can be obtained by differentiating PPk(t)
twice. PAk(t) are reported to be associated with the lower-limb electromyographic (EMG)
data in postural control tasks [14], supporting their effectiveness in assessing neuromuscular
control of individual PMs not only observed in balance tasks [10,32,33,35,39,40], but also in
other types of human movement tasks (e.g., walking [12,41] and running [15]). The word
“principal” in the titles of the kinematic variables indicates that these variables were obtained
through PCA [9].

In order to avoid noise amplification in the differentiation processes, a Fourier anal-
ysis was conducted on the raw PPk(t) [34], revealing that the highest power resided in
frequencies around 2–4 Hz, but visible power was still observed in the frequency range
between 5 and 8 Hz. Therefore, the time series were filtered with a third-order zero-phase
8 Hz low-pass Butterworth filter before performing the differentiation step. In addition,
leave-one-out cross-validation was used to determine the vulnerability of individual PMk
and the PCA-based dependent variables that change the input data matrix in order to
address validity considerations [9]. The first five PCs proved robust, explained 91.9% of
the total relative explained variance, and were selected to test the hypotheses.

2.3. Independent Variable Computation

In order to determine the sex differences in the walking variability, three PCA-based
variables were computed for each participant and each PM. First, the subject-specific relative
explained variance of PPk(t) or PPk_rVAR was calculated to determine how much (in percent)
the contribution of each PM to the total variance in postural positions was [8,35]. In this
sense, the rVARk quantifies how important each PMk is for the overall coordinative move-
ment structures of the treadmill walking movements. If there are differences in PPk_rVAR
between males and females, they indicate differences in the coordinative structure of the
overall movements.

Second, in order to quantify walking variability, a non-linear method, the subject-
specific largest Lyapunov exponent (LyE) of PPk(t) or PPk_LyE [13], was computed to assess
the local dynamic stability, i.e., the ability of the neuromuscular system to attenuate small
perturbations to maintain functional locomotion seen as the divergent trajectories in state
space, i.e., the temporal variability of gait [5,13,15]. LyE was calculated by applying Wolf’s
algorithm [42], of which the time delay (τ = 9) [43] and embedding dimension (m = 4) [43]
were determined using the average mutual information (AMI) [44] and the false nearest
neighbor algorithms [45], respectively. A greater LyE value indicates an inability of the
neuromuscular system to diminish the perturbations, resulting in a higher divergence of
the state space trajectories that reflects the lower individual’s walking stability [5,13].

Third, the subject-specific number of zero-crossings of PAk(t) or PAk_N was computed
as a measure of how often the whole-body acceleration (i.e., the neuromuscular control
system) changed the direction of its intervention (i.e., the tightness of the neuromuscular
control in each PM), with higher PAk_N representing tighter control of the given PMk than
lower PAk_N [10,12,35]. In other words, PAk(t) values cross zero whenever the direction of
the acceleration changes, i.e., when the neuromuscular system counteracts the movement
accelerations; hence, the PAk_N serves as a measure of how tightly the neuromuscular
system controls the motion of individual movement components [9].
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2.4. Statistical Analysis

All statistical analyses were conducted using the IBM SPSS Statistics software version
26.0 (SPSS Inc., Chicago, IL, USA), with the alpha level set at a = 0.05. Kolmogorov–Smirnov
tests suggested independent-sample t-tests for testing sex differences, of which Cohen’s d
was computed as the effect size [46]. However, the variable PPk_rVAR was not normally
distributed. Hence, the corresponding nonparametric test, the Mann–Whitney U test, was
conducted in these cases, and Rosenthal’s r was used as the effect size [47].

3. Results

Table 2 represents the descriptive movement characteristics of the first five move-
ment components (PM1−5), of which the visualizations of PM1−5 are depicted in Figure 1.
The first movement component (PM1) resembled the swing-phase movement of the gait
cycle. The second and third movement components (PM2−3) are associated with the single-
limb support phase, whereas the fourth and fifth movement components (PM4−5) are
mainly related to the weight acceptance of the stance phase of the gait cycle. Movement
components are more precise and can be easily characterized when viewed in an animated
stick figure video (Supplementary Video S2).

Table 2. The relative explained variance of PPk (PPk_rVAR) and descriptive movements of the first
five principal movements (PM1−5) analyzed from treadmill walking.

PMk PPk_rVAR (%) Descriptive Movements

1 53.3 ± 9.5 The swing phase: anti-phase arm and leg
movements in the sagittal plane

2 19.7 ± 9.0
The single-limb support phase closely related to
the terminal stance phase: anti-phase hip flexion

and extension movements

3 9.9 ± 2.6

The single-limb support phase closely related to
the mid-stance phase: anti-phase knee flexion
and extension movements combined with a

lateral shift of the upper body onto the stance leg

4 6.7 ± 3.1 Weight acceptance of the stance phase: lateral
weight shift with small knee flexion posture

5 2.3 ± 1.1

Weight acceptance of the stance phase: knee
flexion/extension movements and vertical

whole-body movements combined with the
sliding of the treadmill
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Figure 1. Visualized representation of the first five principal movements (PM1–5; left column)
determined from treadmill walking at 1.2 m/s. Example data of principal position (PPk) and principal
acceleration (PAk) (middle column) over time and the space-time representation for calculated
Lyapunov exponent (LyE) of individual PPk (right column) were derived from one male participant,
k denoted the order of principal components. Note: the dashed line indicates the right limb.
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As represented in Table 3, the main findings show that the sex differences in walking
stability assessed through three PCA-based variables (PPk_rVAR, PPk_LyE, and PAk_N)
are observed in the specific PMs. Specifically, in PM1, resembling the swing-phase move-
ment component, females have more variability (PP1_LyE; (p = 0.013; (small effect size)
d = 0.484)) and more tightness of neuromuscular control (PA1_N; (p = 0.017; (small effect
size) d = 0.483)) of this movement component than males. In addition, in PM3, repre-
senting the mid-stance-phase movement component, females have a smaller contribution
(PP3_rVAR (p = 0.020; (small effect size) r = −0.465)), but a greater tightness of neuromuscu-
lar control (PA3_N (p = 0.008; (medium effect size) d = 0.548)) of this movement component
than males.

Table 3. Comparisons of the relative explained variance of PPk (PPk_rVAR), the Lyapunov exponent
of PPk (PPk_LyE), and the number of zero-crossing of PAk (PAk_N) of the first five principal move-
ments (PM1−5) between males and females (mean ± SD; * p < 0.05; p-values smaller than 0.05 are
printed in bold).

PPk_rVAR Male Female p-Value Effect Size Observed
Power

1 55.0 ± 9.4 51.8 ± 9.4 0.064 −0.371 0.753
2 18.8 ± 7.9 20.6 ± 9.8 0.359 −0.183 0.582
3 10.4 ± 2.6 9.3 ± 2.3 0.020 * −0.465 0.827
4 6.4 ± 3.2 7.0 ± 2.9 0.079 −0.351 0.736
5 2.1 ± 0.5 2.5 ± 1.4 0.080 −0.350 0.735

PPk_LyE Male Female p-Value Effect size Observed
power

1 9.1 ± 1.7 10.0 ± 2.0 0.013 * 0.484 0.847
2 9.8 ± 2.1 9.6 ± 2.7 0.348 0.082 0.518
3 10.8 ± 2.2 11.5 ± 1.8 0.086 0.367 0.757
4 13.9 ± 2.2 14.0 ± 2.3 0.393 0.133 0.547
5 17.5 ± 1.8 18.1 ± 1.5 0.089 0.362 0.753

PAk_N Male Female p-Value Effect size Observed
power

1 124.4 ± 34.9 140.0 ± 30.9 0.017 * 0.483 0.846
2 155.4 ± 22.7 156.6 ± 26.4 0.810 0.079 0.517
3 167.6 ± 32.0 183.1 ± 25.9 0.008 * 0.548 0.884
4 193.7 ± 24.9 202.9 ± 27.1 0.075 0.345 0.737
5 182.3 ± 22.5 187.6 ± 24.8 0.260 0.212 0.611

4. Discussion

The current study investigated the effects of sex on walking stability in healthy young
adults by analyzing the movement synergies, i.e., principal movements (PMs) of whole-
body treadmill walking movements, which were decomposed using principal component
analysis (PCA). The sex differences as the focus area were tested on three PCA-based
variables—PP_rVAR, PP_LyE, and PA_N—to quantify the composition of movement struc-
tures, variability, and tightness of the neuromuscular control of each PM. In agreement with
the hypotheses, the main findings show that the differences in walking stability between
males and females appear in the specific PMs, mainly representing the swing phase (PM1)
and the mid-stance phase (PM3) of the gait cycle [48].

As reported in traditional gait analysis [16], healthy young females have shorter stride
lengths and slower gait speeds at a self-selected walking speed than healthy young males,
possibly due to their shorter height. In addition, females exhibited more pelvic movement
obliquity, arms swinging, torso rigidity, and attenuated accelerations from the pelvis to the
head than males [17]. Contrary to conventional analysis, assessing the gait patterns from
a whole-body segment movement revealed the main movement strategies linked to the
stance and swing phases formed together to move the body forward [12,13]. The higher
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variability in the swing phase and tighter neuromuscular control of both the stance and
swing phases observed in females compared to males agreed with the impacts of sex
difference on gait [16,17]. These findings may benefit injury prevention and rehabilitation
in locomotion, as sex differences have been identified as a possible injury risk factor, with
females being the most affected [49].

In particular, when considering the swing phase (PM1), females have greater temporal
variability (PP1_LyE) and tighter control (PA1_N) than males. Typically, the goals of the
swing phase of the gait cycle are to clear the foot off the ground, conduct a forward swing
of the limb, and prepare the stance for the next step [48]. Moreover, LyE estimates the
rate of divergence of close trajectories in state space by measuring the rate at which the
waveform shape of a time series varies from step cycle to step cycle [4,13]. Therefore, a
possible interpretation of the greater temporal variability seen in females might be that
females exhibited less dynamic or local stability in the swing phase movement strategy
(PM1) than males. Moreover, when focusing on the features of the mid-stance phase
(PM3), the mid-stance is the first sub-phase of single-limb support in which the lower
leg rotates forward over the supporting foot, creating the rocker motion of the cycle to
maintain the forward progression of gait [48]. In addition, the pre-swing is a transitional
period between the stance and swing in which the foot pushes off the ground and lifts
off [48]. Since PM accelerations correlate with lower-limb electromyographic activity [14],
the tighter neuromuscular control (PA3_N) observed in females may be interpreted as a
sign of how neuromuscular control differs between sexes. In other words, females may
need tighter neuromuscular control to maintain weight-bearing stability and move from
the stance phase to the swing phase, since the single-limb support of the stance phase
involves progressive body movement over the foot’s weight-bearing stability [48].

In terms of practical application, the experimental setup of the Microsoft Kinect
provides essential insights into changes in gait performance [30], which can be transferred
to a real-world scenario because there is no need for time-consuming marker placement,
and the system can be operated in a community or different environments. However, one
main limitation is that the Kinect V2 kinematic data are not sampled consistently at 30 Hz
throughout all studies, requiring resampling the signal at a constant sampling frequency
before data processing [30]. For future research, a combination study of muscle activity
and self-specific manners related to walking stability is of interest, since the strength of
correlation level between myoelectric activities and principal accelerations (PAk) differs
between muscles, indicating that specific muscles play an important specific role in specific
movement components [14]. Moreover, it may be of interest to focus on the effects of
walking speed and external perturbation on walking stability.

5. Conclusions

The current study decomposed the movement components/synergies (i.e., principal
movements, PMs) of the whole-body treadmill walking movements derived from a depth-
sensing camera (Kinect V2). The effects of sex as the focus area were observed in the
specific main movement strategies, resembling the swing and mid-stance phases of the gait
cycle. Specifically, in the swing-phase movement component (PM1), females have greater
variability and more tightness of neuromuscular control than males. In addition, females
also have a greater contribution to the mid-stance-phase movement component (PM3),
with more tightness of neuromuscular control of this movement synergy than males. The
findings suggest that the inherent sex differences in walking stability should be considered
one aspect while assessing or training the locomotion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22197542/s1, Supplementary Video S1: Example of the original
whole-body treadmill walking movements derived from one male participant, and Supplementary
Video S2: Visualization of the first five principal movements (PM1–5).
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