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Abstract: In a non-orthogonal multiple access (NOMA) environment, an Internet of Things (IoT)
device achieves a high data rate by increasing its transmission power. However, excessively high
transmission power can cause an energy outage of an IoT device and have a detrimental effect
on the signal-to-interference-plus-noise ratio of neighbor IoT devices. In this paper, we propose a
neighbor-aware NOMA scheme (NA-NOMA) where each IoT device determines whether to transmit
data to the base station and the transmission power at each time epoch in a distributed manner
with the consideration of its energy level and other devices’ transmission powers. To maximize the
aggregated data rate of IoT devices while keeping an acceptable average energy outage probability,
a constrained stochastic game model is formulated, and the solution of the model is obtained using a
best response dynamics-based algorithm. Evaluation results show that NA-NOMA can increase the
average data rate up to 22% compared with a probability-based scheme while providing a sufficiently
low energy outage probability (e.g., 0.05).

Keywords: game theory; constrained stochastic game; energy; energy harvesting; Internet of
Things (IoT)

1. Introduction

Internet of Things (IoT) devices have a limited battery capacity [1], which is one of the
characteristic drawbacks of IoT systems. To overcome this drawback, many researchers
have focused on the use of energy harvesting [2–4]. With energy harvesting, IoT devices can
charge their battery by themselves, and therefore the operators of IoT systems do not need
to replace and charge the IoT devices’ batteries, which provides low operating expenditure.

Meanwhile, many researchers have given much attention to non-orthogonal multiple
access (NOMA) because it can significantly improve the spectral efficiency [5–7]. Ad-
ditionally, the 5G standard defined by the third generation partnership project (3GPP)
supports two types of NOMA: (1) power-domain-based NOMA and (2) code-domain-
based NOMA. In the first type (i.e., power-domain-based NOMA), different powers are
assigned to different IoT devices by considering their channel conditions for simultaneous
transmissions to the base station (BS). On the other hand, BS can retrieve the desired signals
using the received power difference and some signal processing techniques (e.g., successive
interference cancellation). In the code-domain-based NOMA, different IoT devices use
distinct codes, and therefore they are multiplexed over the same frequency. In general, the
power-domain-based NOMA can be simply implemented without any significant changes
of existing networks compared with the code-domain-based NOMA [7]. Specifically, for
the power-domain-based NOMA, at the receiver side (i.e., BS), the only simple multiuser
detection algorithm such as successive interference cancellation is needed. On the other
hand, the transmitter (i.e., IoT devices) does not need any modification. Therefore, we
consider the power-domain-based NOMA in this paper.
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In the power-domain-based NOMA, each IoT device can increase its data rate by
increasing its transmission power. However, excessively high transmission power can
cause an energy outage of an IoT device and have a detrimental effect on the signal-to-
interference-plus-noise ratio (SINR) of neighbor IoT devices, which indicates that each IoT
device should choose the appropriate transmission power to maximize the aggregated data
rate of IoT devices while preventing its energy outage. Even though a centralized approach
can help decide transmission powers of IoT devices, a huge signaling overhead can occur
and a centralized entity can be overloaded.

In this paper, we propose a neighbor-aware NOMA scheme (NA-NOMA) where each
IoT device determines whether to transmit data to BS and the transmission power at each
time epoch in a distributed manner by considering its energy level and other devices’ (i.e.,
neighbors’) transmission powers. To maximize the aggregated data rate of IoT devices
while keeping an acceptable average energy outage probability, a constrained stochastic
game model is formulated, and the solution of the model is obtained by means of a best
response dynamics-based algorithm. Evaluation results show that NA-NOMA can increase
the average data rate up to 22% compared to a probability-based scheme while providing
a sufficiently low energy outage probability (e.g., 0.05). In addition, it is found that IoT
devices using NA-NOMA adaptively change the operations (e.g., transmission powers)
according to their environments (e.g., harvesting probability).

The contributions of this paper are as follows: (1) we optimize the policy on the
transmission of IoT devices to maximize the aggregated data rate of IoT devices while
keeping an acceptable average energy outage probability under the energy harvesting
NOMA environment; (2) the optimal transmission policy can be achieved with small
overhead (i.e., few iterations), and therefore the proposed scheme can easily achieve the
optimal performance in practical systems; (3) we evaluate the proposed scheme under
diverse environments, which can give useful guidelines to design energy harvesting and
NOMA-based IoT systems.

For the remainder of this paper, we summarize related works in Section 2 and elaborate
on NA-NOMA in Section 3. In Section 4, we formulate the constrained stochastic game
model. In Section 5, we present evaluation results. Finally, the conclusion is given in
Section 6.

2. Related Work

The objective of this paper is to maximize the aggregated data rate of IoT devices
while keeping an acceptable average energy outage probability. There are many works
with similar objectives (i.e., to increase the data rate and/or the energy efficiency) in the
literature [8–23].

To maximize the data rate and energy efficiency, Huang et al. [8] devised an optimal
power allocation algorithm using deep learning in multiple-input multiple-output (MIMO)-
NOMA environments. Khan et al. [9] formulated an optimization problem to improve the
aggregated data rate and reduce the energy consumption under some constraints such
as QoS requirement and maximum transmission power. Cejudo et al. [10] developed an
adaptive power allocation scheme that adaptively selects the combination of a suitable
power allocation factor and modulation and coding scheme under the constraint of bit error
rate. Liu and Petrova [11] formulated an optimization problem on the power allocation
for the maximum aggregated data rate and designed a low complexity algorithm for
achieving a near-optimal solution to the problem. Zhang et al. [12] proposed a two-
step scheduling and power allocation scheme to optimize a tradeoff between consumed
energy and achievable data rate. Fang et al. [13] formulated an optimization problem to
optimize the overall energy efficiency under heterogeneous networks. In addition, they
proposed a suboptimal algorithm based on mathematical techniques (i.e., relaxation and
dual-decomposition). Zhang et al. [14] defined a resource optimization problem for NOMA
with the consideration of heterogeneous networks, and designed a heuristic algorithm
having low complexity by converting the problem into an equivalent subtractive one.
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Pei et al. [15] formulated a joint optimization problem on the power and time allocation for
the maximized energy efficiency of device-to-device communications using NOMA. With
similar decision variables, Cao and Zhao [16] formulated an optimization problem and
divided the problem into two subproblems to develop a heuristics algorithm. Han et al. [17]
investigated a channel and power allocation to optimize the energy efficiency of IoT devices
by considering the characteristics of short-packet communication. Xu et al. [18] formulated
a resource allocation problem in NOMA-based backscatter networks to maximize the energy
efficiency of IoT devices while satisfying the QoS requirement. Zeng et al. [19] conducted
an analytical study on the performance of NOMA, especially on the achievable data rate.
Shen et al. [20] formulated a weighted aggregated data rate maximization problem and
converted the formulated problem into a convex problem using mathematical techniques.
Sreya et al. [21] proposed an adaptive rate NOMA where mobile users adaptively change
their modulation and coding scheme (MCS) according to the channel conditions whereas
IoT devices exploit the fixed MCS to improve the rate of successful transmissions of the IoT
devices. Duan et al. [22] designed a resource allocation algorithm based on the K-means
clustering method and matching theory to maximize the aggregated data rate. Na et al. [23]
formulated a joint optimization problem on the trajectory of an unmanned aerial vehicle
and the resource allocation to improve the average aggregated data rate. In addition, they
developed a suboptimal iterative algorithm to solve the formulated problem.

However, there is no previous work to optimize the policy on the transmission of IoT
devices under the energy harvesting and NOMA environment in a distributed manner.

3. Neighbor-Aware Non-Orthogonal Multiple Access Scheme

As shown in our system model (see Figure 1), all IoT devices have energy harvesting
capabilities. That is, they harvest the energy from external sources (e.g., sun and wind)
and store the energy in their battery with the capacity Emax. In addition, IoT devices
periodically generate data (e.g., senses temperature and monitors target) and determine
whether to transmit these data to BS by consuming the energy stored in their battery.
Because IoT devices exploit NOMA, each IoT device can increase its data rate by increasing
its transmission power. However, excessively high transmission power can cause energy
depletion and decrease the SINR of neighbor IoT devices. To sum up, it is important for
each IoT device to decide whether to transmit data to BS and the transmission power
to maximize the aggregated data rate of IoT devices while keeping a low energy outage
probability. In addition, this decision should be made by considering the energy level and
other devices’ (i.e., neighbors’) transmission powers. For this, a constrained stochastic
game is formulated in the next section. Note that two types of decision (i.e., the decision
on whether to transmit data to BS and the decision on the transmission power) can be
handled by one dimension of action space, i.e., the transmission power, because the action
representing zero transmission power can be interpreted as the situation where the IoT
device does not transmit data to BS.
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Figure 1. System model.

4. Constrained Stochastic Game

To maximize the aggregated data rate while keeping a low energy outage probability,
we formulate a constrained stochastic game model [24,25]. It is assumed that IoT devices
are the players, and therefore, in our formulation, player i and IoT device i have the same
meaning. Table 1 summarizes the notations used in the model.

4.1. State Space

The local state space of IoT device i, Si, can be defined as

Si={0, 1, 2, ..., Emax} (1)

where Emax denotes the maximum energy level (i.e., battery capacity) of IoT device i.
The global state space, S, can be represented as

S = ∏
i

Si (2)

where ∏ is the Cartesian product.
Meanwhile, let S−i describe the state space of all IoT devices except IoT device i.
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Table 1. Summary of notations.

Notation Description

Si Local state space of IoT device i

S−i State space of all IoT devices except IoT device i

S Global state space

Emax Maximum energy level of IoT device i

Ai Local action space of IoT device i

A Global action space

Amax Maximum transmission power of IoT device i

PH
i

Probability that IoT device i harvests one-unit
of energy

γi Expected SINR of IoT device i

Ai Expected power of IoT device i

|hi|2 Channel gain of IoT device i

σ2 Noise power

ζC Average aggregated data rate of IoT devices

ξE Average energy outage probability

4.2. Action Space

Because IoT device i should decide whether to transmit data and its transmission
power, the local action space of IoT device i, Ai, can be represented as

Ai = {0, 1, ..., Amax} (3)

where Amax denotes the maximum transmission power of IoT device i. Ai ( 6= 0) represents
the transmission power of IoT device i. In addition, Ai = 0 describes the situation where
IoT device i does not conduct a transmission.

The global action space, A, can be described as

A = ∏
i

Ai (4)

Similar to S−i, the action space of all IoT devices except IoT device i is denoted as A−i.

4.3. Transition Probability

P[S′i |Si, Ai] denotes the probability of transiting a specific state Si to another state S′i
when IoT device i conducts the action Ai.

Even though IoT device i has an energy harvesting capability, it cannot always harvest
energy because of the dynamicity of the energy source (e.g., wind and solar). That is,
only when the energy source provides sufficient energy can IoT device i harvest energy.
In this context, the harvesting process of IoT device i can be assumed as a Bernoulli random
process that takes binary values (i.e., 0 and 1). That is, IoT device i can harvest a unit
of energy with the probability PH

i [26]. Naturally, it cannot harvest any energy with the
probability 1− PH

i . Thus, when IoT device i does not conduct a data transmission (i.e.,
Ai = 0) and has room in its battery to store the harvested energy (i.e., Si 6= Emax), its energy
Si can increase by a unit with probability PH

i . On the other hand, IoT device i does not have
any room in its battery (i.e., Si = Emax), its energy level does not change. To summarize,
P[S′i |Si 6= Emax, Ai = 0] and P[S′i |Si = Emax, Ai = 0] can be represented as
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P[S′i |Si 6= Emax, Ai = 0] =


PH

i if S′i = Si + 1
1− PH

i if S′i = Si
0, otherwise

(5)

and

P[S′i |Si = Emax, Ai = 0] =
{

1, if S′i = Si
0, otherwise.

(6)

When IoT device i transmits the data with power Ai during one time epoch (i.e., a unit
time), it is assumed that it consumes Ai units of energy. When there is no sufficient energy
in the battery of IoT device i (i.e., Si < Ai), it does not transmit the data, which indicates
that the energy of IoT device i does not decrease and can increase by a unit with probability
PH

i . Thus, P[S′i |Si ≥ Ai, Ai 6= 0] and P[S′i |Si < Ai, Ai 6= 0] can be represented as

P[S′i |Si ≥ Ai, Ai 6= 0] =


PH

i if S′i = Si + 1− Ai
1− PH

i if S′i = Si − Ai
0, otherwise

(7)

and

P[S′i |Si < Ai, Ai 6= 0] =


PH

i if S′i = Si + 1
1− PH

i if S′i = Si
0, otherwise.

(8)

4.4. Reward Function

The aggregated data rate of IoT devices is used as the reward function r(Si, Ai).
Therefore, r(Si, Ai) can be defined as

r(Si, Ai) = ∑
i

log2(1 + γi) (9)

where γi is the expected SINR of IoT device i.
γi can be calculated by

γi =
|hi|2 Ai

∑
i′
|hi′ |2 Ai′ + σ2

(10)

where Ai′ is the expected power of IoT device i′. In addition, |hi|2 and |hi′ |2 are the channel
gain of IoT device i and i′, respectively. σ2 is the noise power.

4.5. Constraint Function

For keeping a low energy outage probability, we define the constraint function c(Si, Ai).
The situation where there is no energy in the battery of IoT device i represents the energy
outage. Therefore, the constraint function c(Si, Ai) can be defined as

c(Si, Ai) =

{
1, if Si = 0
0, otherwise.

(11)

4.6. Optimization Formulation

When π denotes a stationary policy of all players (i.e., IoT devices), a long-term
average aggregated data rate ζR can be defined as

ζR(π) = lim
T→∞

1
T

T

∑
t=1

Eπ

[
r
(
St, At)] (12)



Sensors 2022, 22, 448 7 of 12

where St and At are the global state and the action at time t, respectively.
Meanwhile, IoT device i tries to maintain the long-term energy outage probability ξE

below a certain level, which can be described by

ξE(π) = lim
T→∞

1
T

T

∑
t=1

Eπ

[
c
(
St, At)] ≤ θE (13)

where θE is the target energy outage probability.
Let π∗i and π∗−i denote the optimal policies (i.e., Nash equilibrium) (note that, if a

stochastic game is formulated with a finite number of players, states, and actions, there is
always Nash equilibrium of the game [27]) of IoT device i and all devices except IoT device
i, respectively. Then, the integrated optimal policy (i.e., constrained Nash equilibrium)
can be described by π∗ =

(
π∗i , π∗−i

)
. Note that, for any other stationary policy πi of IoT

device i, ζR
((

π∗i , π∗−i
))
≥ ζR

((
πi, π∗−i

))
while satisfying the constraint. Meanwhile, when

the policies of all IoT devices except IoT device i (i.e., π−i) are given, the optimal policy
π∗i of IoT device i (i.e., best response policy) should satisfy the inequality ζR

((
π∗i , π−i

))
≥

ζR
((

πi, π−i
))

.
When φi,π−i (Si, Ai) denotes the stationary probability that IoT device i chooses the

action Ai in local state Si with the given stationary policies of other IoT devices π−i, we can
formulate the equivalent LP model and its solution φ∗i,π−i

(Si, Ai) can be interpreted as the
optimal policy of the formulated game [28]. The LP model can be formulated as

max
φ(S,A)

∑
S

∑
A

φi,π−i (Si, Ai)r(Si, Ai) (14)

s.t. ∑
S

∑
A

φi,π−i (Si, Ai)c(Si, Ai) ≤ θB (15)

∑
A

φi,π−i

(
S′i , Ai

)
= ∑

S
∑
A

φi,π−i (Si, Ai)P[S′i |Si, Ai] (16)

∑
S

∑
A

φi,π−i

(
Si
′, Ai

)
= 1 (17)

φi,π−i

(
Si
′, Ai

)
≥ 0 (18)

For maximizing the aggregated average data rate of IoT devices, we define the objective
function in (14). The average energy outage probability can be maintained below the target
energy outage probability θE by the constraint in (15). The Chapman–Kolmogorov equation
is represented in the constraint in (16). The basic probability properties can be satisfied
with the constraints in (17) and (18).

The optimal policy of IoT device i is given by

π∗i (Si, Ai) =
φ∗i,π−i

(Si, Ai)

∑
A′i∈Ai

φ∗i,π−i

(
Si, A′i

) . (19)

To achieve the optimal policies (i.e., best response policies) of IoT devices, we develop
a best response dynamics-based algorithm as in Algorithm 1. First, the policy for all IoT
devices is initialized (line 1 in Algorithm 1). After that, IoT devices share the channel gain
with each other (line 2 in Algorithm 1). (We assume that the channel gain is stable until
the algorithm is done. This assumption is reasonable because few iterations are needed
to converge the optimal policies (see Section 5.1).) Meanwhile, each IoT device transmits
the expected transmission power Ai to other IoT devices to interact with each other (line 5
in Algorithm 1). The expected transmission power of IoT device i can be obtained from
Ai = ∑

Si

∑
Ai

Aiφi,π−i (Si, Ai). After receiving the expected transmission power from other IoT
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devices, each IoT device calculates the aggregated data rate of IoT devices and solves the
LP problem to obtain the optimal policy π∗i (lines 6–7 in Algorithm 1). The algorithm is
finished when the policies of all IoT devices converge.

Algorithm 1: Best response dynamics-based algorithm.

1: Initialize the policy πi for ∀i

2: Share the channel gain among IoT devices

3: repeat

4: for All IoT devices i do

5: Transmit the expected transmission power Pi to other IoT devices

6: Calculate the aggregated data rate of IoT devices

7: Solve the LP problem to obtain the optimal policy π∗i

8: end for

9: until Convergence of the policies for all IoT devices

Because the complexity of solving the LP problem is not high (e.g., O((|Si||Ai|)3) [29]
for the Vaidya’s algorithm which is one of the representative LP solvers) and the stationary
policies can be achieved with few iterations (see Section 5.1), the proposed algorithm can
be realized without a huge overhead.

5. Evaluation Results

For the performance evaluation, we introduce the following comparison schemes:
(1) MAX where IoT devices always transmit data with the maximum power; (2) MIN where
IoT devices always conduct the transmission with the minimum power; (3) RAND where
IoT devices randomly select their actions; (4) PROB where IoT devices select their actions
according to the predefined probability. (In PROB, A = 0, A = 0, A = 0, A = 0, and A = 0
are selected by 0.1, 0.3, 0.25, 0.25, and 0.1. Even though we have conducted extensive
simulations with various probabilities, we cannot obtain different results. Therefore, in
this paper, only results with the mentioned probabilities are included.) The performance
metrics are the aggregated data rate of IoT devices ζR and the energy outage probability ξE.

We have conducted the simulation with the following default parameters. The total
number of IoT devices is 5. The maximum energy level of IoT devices, Emax, is 9. In addition,
the maximum transmission power Amax is 4. The energy harvesting probability PH of IoT
devices is set to [0.3 0.7], where [a b] denotes a random value between a and b. In addition,
we consider that each device has i.i.d. Rayleigh fading channel and its mean is set to
[0 2] [30]. σ2 is set to 0.5 [30]. The target energy outage probability θE is set to 0.05.

5.1. Convergence to Nash Equilibrium

Figure 2 describes a process that the policies of IoT devices converge to the integrated
optimal policy (i.e., Nash equilibrium). As illustrated in Figure 2, the proposed algorithm
(i.e., Algorithm 1) can find the integrated optimal policy within a few iterations (i.e., 1)
(note that the initial policy of each IoT device is randomly set). Specifically, the initial policy
on the transmission of IoT devices is randomly set (see 0 iterations in Figure 2). Then, based
on the proposed algorithm, each IoT device finds the optimal policy (i.e., Nash equilibrium)
only after one iteration. After finding the optimal policy, each IoT device does not need to
change its policy, and therefore the policies of the IoT devices do not change after the first
iteration. This result implies that our algorithm can be realized in the energy harvesting
NOMA environment without high signaling overhead.
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Figure 2. Process that the policies of IoT devices converge to the integrated optimal policy (i.e., Nash
equilibrium).

Meanwhile, from Figure 2, it can be found that each IoT device chooses its action by
considering the other devices’ actions at the best response. Specifically, after the conver-
gence, because IoT device 1 chooses the maximum transmission power (i.e., A = 4) with
low probability, other IoT devices choose the maximum transmission power with a higher
probability to improve the expected SINR.

5.2. Effect of PH

Figure 3 shows the change of the average aggregated data rate ζR and the energy
outage probability ξE according to the energy harvesting probability PH . From Figure 3,
we can observe that NA-NOMA can achieve the highest average aggregated data rate ζR
while keeping the acceptable energy outage probability (i.e., 0.05). This is because IoT
devices in NA-NOMA determine whether to transmit data to BS and their transmission
powers by considering the energy level and other devices’ actions (i.e., transmission pow-
ers). For example, a specific IoT device can transmit its data with high transmission power
to increase the average aggregated data rate, when its energy level is high and other IoT
devices transmit data with low transmission power (or do not transmit data). Moreover,
if an IoT device has a low energy level, it does not transmit data to avoid an energy outage.

Meanwhile, from Figure 3a, it can be observed that ζR of NA-NOMA increases as
PH increases. This is explained in the following. High PH indicates that IoT devices can
transmit data without any concern about the energy outage. In this situation, IoT devices in
NA-NOMA aggressively exploit high transmission power. Meanwhile, because the other
schemes do not adjust their transmission policies by considering the energy harvesting
probability, their average aggregated data rate is constant regardless of PH (see Figure 3a),
and their energy outage probabilities decrease as PH increases (see Figure 3b).

Meanwhile, as shown in Figure 3a, the average aggregated data rates of the comparison
schemes are similar to each other. This is because all IoT devices in each comparison scheme
operate with the same policy, which can degrade the expected SINR. For example, even if a
specific IoT device transmits its data with the maximum transmission power, the other IoT
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devices probably transmit their data with the maximum transmission power, which causes
low expected SINR.
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Figure 3. Effect of PH . (a) Average aggregated data rate. (b) Energy outage probability.

5.3. Effect of θE

Figure 4 shows the effect of the target energy outage probability θE on the average
aggregated data rate ζR and the energy outage probability ξE. As observed in Figure 4a, ζR
of NA-NOMA increases as θE increases. This is because higher θE means that IoT devices
can try to transmit data with higher transmission power without less concern about the
energy outage. However, because the other comparison schemes operate based on the
fixed policy without consideration of the target energy outage probability θE, their average
aggregated data rate and the energy outage probability do not change regardless of θE (see
Figure 4a,b).
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Figure 4. Effect of θE. (a) Average aggregated data rate. (b) Energy outage probability.

6. Conclusions

This paper proposes NA-NOMA where each IoT device considers its energy level and
other devices’ transmission powers to decide its transmission policy. For example, each IoT
device can transmit data with high transmission power when its energy level is sufficient
and/or other devices do not transmit any data. In addition, if the energy level of an IoT
device is not sufficient and/or there are lots of other devices transmitting data, that IoT de-
vice does not transmit any data. To maximize the aggregated data rate of IoT devices while
keeping the acceptable average energy outage probability, a constrained stochastic game
model is formulated. To achieve the optimal (i.e., best response) policies of IoT devices,
the best response dynamics-based algorithm with the polynomial complexity is introduced.
Evaluation results demonstrate that the proposed algorithm can find the optimal stationary
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policies within a few iterations. In addition, it can be shown that NA-NOMA can increase
the average data rate up to 22% compared with a probability-based scheme while providing
a sufficiently low energy outage probability (e.g., 0.05). Moreover, it can be observed that
NA-NOMA optimizes its transmission policy by considering its operating environment
(e.g., energy harvesting probability and target energy outage probability). As one of future
works, we will investigate the spatiotemporal correlation of energy harvesting probabilities
of IoT devices to further reduce the energy outage probability. In addition, we will develop
the prototype of the proposed scheme for IoT-based environmental monitoring systems.

Author Contributions: Conceptualization, Y.K. and H.K.; methodology, Y.K. and B.K.; software,
Y.K., M.P. and S.-Y.K.; validation, Y.K. and H.K.; formal analysis, Y.K. and B.K.; investigation, H.K.;
resources, H.K.; data curation, Y.K. and B.K.; writing—original draft preparation, Y.K.; writing—
review and editing, H.K. and S.-Y.K.; visualization, Y.K. and S.-Y.K.; supervision, H.K.; project
administration, H.K.; funding acquisition, H.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Research Foundation (NRF) of Korea Grant
funded by the Korean Government (MSIP) (No. 2019R1C1C1004352).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brik, B.; Esseghir, M.; Merghem-Boulahia, L.; Snoussi, H. ThingsGame: When Sending Data Rate Depends on the Data Usefulness

in IoT Networks. In Proceedings of the International Wireless Communications & Mobile Computing Conference (IWCMC),
Limassol, Cyprus, 25–29 June 2018.

2. Saleem, U.; Jangsher, S.; Qureshi, H.K.; Hassan, S.A. Joint Subcarrier and Power Allocation in Energy Harvesting-Aided D2D
Communication Sign in or Purchase. IEEE Trans. Ind. Inform. (TII) 2018, 14, 2608–2617. [CrossRef]

3. Huang, L.; Bi, S.; Qian, L.P.; Xia, Z. Adaptive Scheduling in Energy Harvesting Sensor Networks for Green Cities. IEEE Trans. Ind.
Inform. (TII) 2018, 14, 1575–1584. [CrossRef]

4. Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE
Commun. Surv. Tutor. (CST) 2015, 17, 757–789. [CrossRef]

5. Selim, B.; Alam, M.S.; Evangelista, J.V.C.; Kaddoum, G.; Agba, B.L. NOMA-Based IoT Networks: Impulsive Noise Effects and
Mitigation. IEEE Commun. Mag. 2020, 58, 69–75. [CrossRef]

6. Liu, X.; Ding, H.; Hu, S. Uplink Resource Allocation for NOMA-based Hybrid Spectrum Access in 6G-enabled Cognitive Internet
of Things. IEEE Internet Things J. (IoT-J) 2020, 58, 69–75. [CrossRef]

7. Aldababsa, M.; Toka, M.; Gokceli, S.; Kurt, G.K.; Kucur, O. A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond.
Wirel. Commun. Mob. Comput. (WCMC) 2018, 2018, 1–25. [CrossRef]

8. Huang, H.; Yang, Y.; Ding, Z.; Wang, H.; Sari, H.; Adachi, F. Deep Learning-Based Sum Data Rate and Energy Efficiency
Optimization for MIMO-NOMA Systems. IEEE Trans. Wirel. Commun. (TWC) 2020, 19, 5373–5388. [CrossRef]

9. Khan, W.U.; Jameel, F.; Ristaniemi, T.; Khan, S.; Sidhu, G.A.S.; Liu, J. Joint Spectral and Energy Efficiency Optimization for
Downlink NOMA Networks. IEEE Trans. Cogn. Commun. Netw. (TCCN) 2020, 6, 645–656. [CrossRef]

10. Cejudo, E.; Zhu, H.; Alluhaibi, O. On the Power Allocation and Constellation Selection in Downlink NOMA. In Proceedings of the
2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017.

11. Liu, F.; Petrova, M. Dynamic Power Allocation for Downlink Multi-Carrier NOMA Systems. IEEE Commun. Lett. 2018, 22,
1930–1933. [CrossRef]

12. Zhang, H.; Fang, F.; Cheng, J.; Long, K.; Wang, W.; Leung, V.C.M. Energy-Efficient Resource Allocation in NOMA Heterogeneous
Networks. IEEE Wirel. Commun. 2018, 25, 48–53. [CrossRef]

13. Fang, F.; Cheng, J.; Ding, Z. Joint Energy Efficient Subchannel and Power Optimization for a Downlink NOMA Heterogeneous
Network. IEEE Trans. Veh. Technol. (TVT) 2019, 68, 1351–1364. [CrossRef]

14. Zhang, H.; Feng, M.; Long, K.; Karagiannidis, G.K.; Leung, V.C.M.; Poor, H.V. Energy Efficient Resource Management in SWIPT
Enabled Heterogeneous Networks With NOMA. IEEE Trans. Wirel. Commun. (TWC) 2020, 19, 835–845. [CrossRef]

15. Pei, L.; Yang, Z.; Pan, C.; Huang, W.; Chen, M.; Elkashlan, M.; Nallanathan, A. Energy-Efficient D2D Communications Underlaying
NOMA-Based Networks with Energy Harvesting. IEEE Commun. Lett. 2018, 22, 914–917. [CrossRef]

16. Cao, C.; Zhao, J. Energy Efficient Resource Allocation for Time Switching Wireless Powered NOMA Networks. In Proceedings of
the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020.

http://doi.org/10.1109/TII.2018.2794467
http://dx.doi.org/10.1109/TII.2017.2780116
http://dx.doi.org/10.1109/COMST.2014.2368999
http://dx.doi.org/10.1109/MCOM.001.1900713
http://dx.doi.org/10.1109/JIOT.2020.3007017
http://dx.doi.org/10.1155/2018/9713450
http://dx.doi.org/10.1109/TWC.2020.2992786
http://dx.doi.org/10.1109/TCCN.2019.2945802
http://dx.doi.org/10.1109/LCOMM.2018.2852655
http://dx.doi.org/10.1109/MWC.2018.1700074
http://dx.doi.org/10.1109/TVT.2018.2881314
http://dx.doi.org/10.1109/TWC.2019.2948874
http://dx.doi.org/10.1109/LCOMM.2018.2811782


Sensors 2022, 22, 448 12 of 12

17. Han, S.; Xu, X.; Liu, Z.; Xiao, P.; Moessner, K.; Tao, X.; Zhang, P. Energy-Efficient Short Packet Communications for Uplink
NOMA-Based Massive MTC Networks. IEEE Trans. Veh. Technol. (TVT) 2019, 68, 12066–12078. [CrossRef]

18. Xu, Y.; Qin, Z.; Gui, G.; Gacanin, H.; Sari, H.; Adachi, F. Energy Efficiency Maximization in NOMA Enabled Backscatter
Communications With QoS Guarantee. IEEE Wirel. Commun. Lett. 2021, 10, 353–357. [CrossRef]

19. Zeng, J.; Lv, T.; Ni, W.; Liu, R.P.; Beaulieu, N.C.; Guo, Y.J. Ensuring Max?Min Fairness of UL SIMO-NOMA: A Rate Splitting
Approach. IEEE Trans. Veh. Technol. 2019, 68, 11080–11093. [CrossRef]

20. Shen, R.; Wang, X.; Xu, Y. Weighted Sum-Rate Maximized Power Allocation in Downlink MIMO-NOMA Systems. In Proceedings
of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019.

21. Sreya, G.; Saigadha, S.; Mankar, P.D.; Das, G.; Dhillon, H.S. Adaptive Rate NOMA for Cellular IoT Networks. IEEE Wirel. Commun.
Lett. (WCL) 2021. [CrossRef]

22. Duan, R.; Wang, J.; Jiang, C.; Yao, H.; Ren, Y.; Qian, Y. Resource Allocation for Multi-UAV Aided IoT NOMA Uplink Transmission
Systems. IEEE Internet Things J. (IoT-J) 2019, 6, 7025–7037. [CrossRef]

23. Na, Z.; Liu, Y.; Shi, J.; Liu, C.; Gao, Z. UAV-Supported Clustered NOMA for 6G-Enabled Internet of Things: Trajectory Planning
and Resource Allocation. IEEE Internet Things J. (IoT-J) 2021, 8, 15041–15048. [CrossRef]

24. Altman, E.; Avrachenkov, K.; Bonneau, N.; Debbah, M.; El-Azouzi, R.; Menasche, D.S. Constrained Cost-Coupled Stochastic
Games with Independent State Processes. Oper. Res. Lett. 2008, 36, 160–164. [CrossRef]

25. Chen, B. Stochastic Game Strategies and Their Applications; CRC Press: Boca Raton, FL, USA, 2020.
26. Zheng, J.; Cai, Y.; Shen, X.; Zheng, Z.; Yang, W. Green Energy Optimization in Energy Harvesting Wireless Sensor Networks. IEEE

Commun. Mag. 2015, 53, 150–157. [CrossRef]
27. Wikipedia, Stochastic Game. Available online: https://en.wikipedia.org/wiki/Stochastic_game (accessed on 1 January 2022).
28. Ko, H.; Pack, S. Distributed Device-to-Device Offloading System: Design and Performance Optimization. IEEE Trans. Mob. Comput.

(TMC) 2020, 20, 2949–2960. [CrossRef]
29. Wikipedia, Linear Programming. Available online: https://en.wikipedia.org/wiki/Linear_programming (accessed on 1 January

2022).
30. Alghorani, Y.; Chekkouri, A.S.; Chekired, D.A.; Pierre, S. Improved S-AF and S-DF Relaying Schemes Using Machine Learning

Based Power Allocation Over Cascaded Rayleigh Fading Channels. IEEE Trans. Intell. Transp. Syst. (T-ITS) 2020, 22, 7508–7520.
[CrossRef]

http://dx.doi.org/10.1109/TVT.2019.2948761
http://dx.doi.org/10.1109/LWC.2020.3031042
http://dx.doi.org/10.1109/TVT.2019.2943511
http://dx.doi.org/10.1109/LWC.2021.3132932
http://dx.doi.org/10.1109/JIOT.2019.2913473
http://dx.doi.org/10.1109/JIOT.2020.3004432
http://dx.doi.org/10.1016/j.orl.2007.05.010
http://dx.doi.org/10.1109/MCOM.2015.7321985
https://en.wikipedia.org/wiki/Stochastic_game
http://dx.doi.org/10.1109/TMC.2020.2994138
https://en.wikipedia.org/wiki/Linear_programming
http://dx.doi.org/10.1109/TITS.2020.3003820

	Introduction
	Related Work
	Neighbor-Aware Non-Orthogonal Multiple Access Scheme
	Constrained Stochastic Game
	State Space
	Action Space
	Transition Probability
	Reward Function
	Constraint Function
	Optimization Formulation

	Evaluation Results
	Convergence to Nash Equilibrium
	Effect of PH
	Effect of E

	Conclusions
	References

