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Abstract: Species distribution models (SDMs) that use climate variables to make binary predictions
are effective tools for niche prediction in current and future climate scenarios. In this study, a
Hutchinson hypervolume is defined with temperature, humidity, air pressure, precipitation, and
cloud cover climate vectors collected from the National Oceanic and Atmospheric Administration
(NOAA) that were matched to mosquito presence and absence points extracted from NASA’s citizen
science platform called GLOBE Observer and the National Ecological Observatory Network. An 86%
accurate Random Forest model that operates on binary classification was created to predict mosquito
threat. Given a location and date input, the model produces a threat level based on the number of
decision trees that vote for a presence label. The feature importance chart and regression show a
positive, linear correlation between humidity and mosquito threat and between temperature and
mosquito threat below a threshold of 28 ◦C. In accordance with the statistical analysis and ecological
wisdom, high threat clusters in warm, humid regions and low threat clusters in cold, dry regions were
found. With the model running on the cloud and within ArcGIS Dashboard, accurate and granular
real-time threat level predictions can be made at any latitude and longitude. A device leveraging
Global Positioning System (GPS) smartphone technology and the Internet of Things (IoT) to collect
and analyze data on the edge was developed. The data from the edge device along with its respective
date and location collected are automatically inputted into the aforementioned Random Forest model
to provide users with a real-time threat level prediction. This inexpensive hardware can be used
in developing countries that are threatened by vector-borne diseases or in remote areas without
cloud connectivity. Such devices can be linked with citizen science mosquito data platforms to build
training datasets for machine learning based SDMs.

Keywords: mosquito prediction; edge sensing frameworks; citizen science

1. Introduction

Mosquitoes are one of the world’s most dangerous organisms, spreading deadly
diseases like malaria, Dengue, and Zika. They have spread to nearly every continent
and are further increasing their range due to the extreme weather conditions caused by
climate change [1]. The ability to identify mosquito hotspots (areas of high probability of
mosquito presence) can be especially valuable in preventing the spread of mosquitoes and
the diseases they carry [2].

Due to the information revolution, we are now capable of custom manufacturing
circuit boards (PCBs), i.e., more specialized boards akin to Raspberry Pi and Arduino that
are well suited for certain endeavors over others. Compared to their satellite counterparts,
such edge devices are significantly less expensive both to build and deploy. This makes
them ideal for use in areas in which there is minimal existing infrastructure. Rather than
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deploying a network of satellites, we simply deploy a network of edge devices, collecting
massive troves of data on their localized climates using external sensors. With such large
amounts of data, we are capable of making real time predictions of greater accuracy.

The notion that mosquitoes pose a significant threat to humans across the world is the
primary basis from which the underlying question of this study arises: How can climate
and citizen science mosquito data be used to develop a machine learning algorithm that
can predict mosquito hotspots? This question aims to shed light on a new perspective
towards understanding and predicting potential mosquito hotspots by analyzing climate
variables (such as temperature, climate cover, precipitation, humidity, and water vapor)
as key determinants of species’ habitats. This technique combines older work done with
species distribution models with Random Forest methods to increase accuracy. If an
accurate mosquito threat prediction model is created and deployed on the edge at a low
cost using completely autonomous technology, underdeveloped areas can be more easily
prepared for mosquito-borne disease outbreaks. Our device would be able to connect
with other devices (when possible), to form a highly linked system with a small energy
footprint and high predictive capability. More importantly, this end-to-end process is
built around consideration for the user and provides a reliable way for any individual to
understand the mosquito threat near them, as well as the sensor data used to determine
that threat. Not only are users capable of accessing that sensor data, but they are also
able to modify and manually verify it as necessary. Figure 1 provides the overview of the
proposed methodology.

Figure 1. Overview of the proposed method in MOSQUITO EDGE framework.

2. Literature Review
2.1. Species Distribution Models

Species distribution models (SDMs) use climate variables and species observations to
project the niche of an organism [3]. In the onset of the centralization of ecological data,
species data are often used as a binary “presence” and “absence” variable for efficiency and
ease of analysis [4]. This has popularized the use of AI-powered binary classification models
in niche prediction. Popular models include CART, logistic regression, neural networks,
Naive Bayes, and Maxent [5]. However, an approach with the label as a categorical
variable does present challenges, namely class imbalance [6]. Without a large amount
of high quality absence data collected in the field, pseudo-absence points generated in
the ecological background often outnumber the observed species presence points [7]. In
classification models, this imbalance can skew predictions in favor of the most populous
label [8]. In this study, the problem of class imbalance was avoided in two key ways.
Firstly, quality absence data were allocated in an amount equal to the amount of presence
data. Secondly, an edge computing device whose role is to identify and collect species
data can balance observed presences with an equal number of pseudo-absences or even
true absence observations taken at regular intervals. With the preliminary issue of class
imbalance resolved, the second conundrum becomes choosing the ideal model. The two
primary contenders are Maxent and Random Forests as deep learning is an area that has
not been proven to be successful in niche projects [9]. Maxent is a maximum-entropy based
model that is advantageous in that it only needs presence data and can adjust to continuous
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labels [10]. It generates pseudo-absences in a customized environmental background,
allowing for efficient and often accurate projections free of class imbalance [11]. Random
Forests, on the other hand, is sensitive to class imbalance [12] given its ensemble methods,
but due to the aforementioned resolution of the class imbalance issue, this drawback need
not be considered. Past literature has indicated that Random Forests is the most accurate in
niche modeling because this ensemble approach enhances prediction power [13]. Given
Random Forest’s compatibility with edge computing in the form of TensorFlow Lite, and in
consideration of Maxent’s inability to be easily harnessed on external hardware, a Random
Forests species distribution model was used.

To make use of these species distribution models, newer computing paradigms can
be used for data collection and the running of the models. This way, niche prediction can
be performed with low latency and high scalability through extending cloud computing
abilities to allow computation to occur beyond the central network [14]. These computing
paradigms in addition are stored through a diverse set of devices allowing us to use an
Internet of Things (IoT) device capable of running SDMs. Citizen science has played a
significant role in climate data collection and remote sensing by increasing the amount of
locations and sources in which data are collected [15]. The crowdsensing of this collection
has been made possible through the IoT service of mobile crowdsensing (MCS), which
uses cloud centered architectures [16]. As this produces copious amounts of network
traffic, mobile edge computing (MEC) has been suggested as a replacement that solves
this problem by functioning on the network edge [16]. A form of crowdsensing combining
elements of MEC and MCS is most beneficial for larger scale crowdsensing, such as global
users inputting data regarding climate variables.

2.2. Edge Computing and Its Significance

As a result of a general increase in artificial intelligence services in use today, edge
computing has been identified as a promising solution that shifts AI model training and
prediction to the network edge [17]. Edge intelligence increases the operational efficiency
of predictive decision-making and achieves low-latency data processing through shifting
the computing capability to the network edge [17]. If a Hutchinson approach is to be
used, a large database of climate variable values is required. Using edge intelligence over
traditional data collection from a cloud data center can consume less bandwidth and make
niche prediction perform at a higher level. In addition, energy consumed by the IoT devices
is reduced by compressing sensed data and sending it to the edge [18].

2.3. AI for Climate Prediction

The use of climate variables and data in artificial intelligence can be extremely ben-
eficial for a multitude of applications. From machine learning models that can perform
disease prediction to habitat detection, several deep learning techniques have been utilized
to advance the understanding of certain climate phenomena. For example, when detecting
drought stress, computer vision has been found to be a useful machine learning tool [19].
Time-lapse image sequences of crops are combined with a transfer learning classification
technique in order to perform image detection and classification [19]. When determining
the climate variables to be used in a machine learning model, many factors must be taken
into account. Historical data often show periods of disruption in the form of sudden
extreme weather or natural disasters that could invalidate the relationship between these
variables [20]. Therefore, certain care must be taken to accurately sample historical data.
In order to account for drastic climate changes, there have been certain popular climate
modeling tools for time series data. The auto-regressive integrated moving average model
in particular has been extremely beneficial for analyzing time series data, with a common
application being a forecasting model that utilizes several climate variables [21]. Along
with this, researchers have used several other machine learning techniques such as Ran-
dom Forest Regression, Support Vector Machines, and Hidden Markov models in order to
predict the climate variables themselves [21]. This could be used in our study to identify
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the most important features for detection of mosquito presence. The Random Forest algo-
rithm in particular has been used in several climate-based applications. This supervised
learning makes use of a large amount of decision trees to perform both classification and
regression [22]. In addition to predicting certain environments and performing forecast
analysis, the use of climate variables in artificial intelligence can also be vital in predicting
trends of diseases based on how they are transmitted. For example, research conducted
in Malaysia utilized a k-means clustering algorithm in order to determine relationships
between temperature and humidity and the spread of dengue [23].

To make niche predictions using data from several different geographical locations,
data collection from a network of IoT devices must be optimized. IoT data collection
methods can be reviewed based on the trade-offs between data accuracy and frequency
of measurement requests [24]. Beyond the traditional concurrent data collection, trees are
used in an updated single-hop network structure that efficiently determines how many
time-slots are required for concurrent data collection [25]. This novel network framework
works under the assumption that several IoT devices are “neighboring” one another and
thus can be used to scale up research involving several geographic locations.

2.4. Internet of Things for Citizen Science

Utilizing Internet of Things (IoT) and edge computing presents a promising avenue to
collect data effectively. Moreover, in utilizing edge computing over the cloud, information
collected from citizen scientists can be processed and transferred far more efficiently.
Furthermore, research done on utilizing citizen science data with an edge device to map
information proved that such networks “have the potential to transform the roles of
citizens” [26]. By utilizing citizen science data in tandem with edge computing, there
are new avenues that can be opened for the mapping and tracking of data real time. For
example, crowdsourcing data can be effectively transferred over time with the use of edge
computing with faster relay speeds [27]. On a similar note, the developments within IoT
are being used to help shape citizens to be more digitally apt, resulting in a smarter city
overall. IoT has “proven to better sustain the sensing and connectivity, becoming thus an
efficient tool to address a broader range of qualitative public services. Moreover, the innate
versatility that citizen scientists provide can allow “for the field assessment of any events
which makes citizens a more reliable source of information” [28]. Beyond urban cities and
smart citizen implementation, IoT and citizen science data can be implemented in rural
areas, where mosquitoes are most prevalent. Edge computing is a cost effective and user-
friendly solution that can allow individuals experiencing the digital divide to interact with
complex datasets [29]. Although citizen science and IoT has its benefits, it is important to
consider “data protocol procedures” regarding privacy and analyze “user inputs to ensure
data quality” [30]. In short, fully harnessing the potential of citizen scientists is a vital step
towards the successful implementation of broader edge computing and IoT solutions.

2.5. Deep Learning Models in Species Classification

Remote sensing IoT technology will help predict mosquito outbreaks and prevent
some of the million cases of mosquito-borne disease every year. An existing computer
vision-enabled IoT device films mosquitoes and uses convolutional neural networks to
identify Aedes and Culex mosquitoes [31]. While it exhibits high accuracy, it is limited to
classifying mosquitoes between two species and does not account for overlapping object
detection [31]. This feature can be improved upon in future work to include better edge
computing and classification and more features can be developed to better predict areas of
high mosquito density.

3. Methodology
3.1. Data Extraction

To construct the training dataset for an empirical species distribution model, both
mosquito and climate data are needed. GLOBE Observer (an app under the oversight
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of the National Aeronautics and Space Administration) provides useful mosquito larvae
abundance data obtained from mosquito traps built by citizen scientists. Location, date, and
larvae abundance were extracted into a Pandas DataFrame through the GLOBE Observer
API for Python [32]. Other variables concerning the mosquito trap itself were not consid-
ered in this study. Since our model is rooted on binary classification, the larvae abundance
variable was converted into a binary, categorical variable. Sites with larvae abundances
exceeding 25 larvae were classified as “infested” and assigned the location a label of “1”.
Locations with larvae abundances below 25 were assigned “0”. About 2000 mosquito obser-
vations (latitude, longitude, date, and larvae abundance per observation) were exported.

To reinforce citizen science data with robust scientific data, mosquito observations
sampled from carbon dioxide traps were appended to the GLOBE Observer data [33]. Tech-
nicians from the National Science Foundation’s National Ecological Observatory Network
(NEON) collect data from these traps, providing us with reliable and abundant data. Once
again, latitude, longitude, and date were recorded. NEON’s mosquito data were already
binary (presence or absence), so no threshold was needed to record these mosquito observa-
tions. With the mosquito data stored, climate data at the locations and dates with mosquito
observations were acquired.

The climate attributes used to develop the model were air temperature, humidity,
cloud cover, pressure, and precipitation. Initially, an attempt was made to extract raw
climate data from the SentinelHub API [34], which provides near real-time data from
various satellites, e.g., Sentinels, Landsats. However, the low-level nature of the API
made extracting information from raw pixel data time-consuming and error prone. Thus,
another weather API—Storm Glass [35]—which provided both real time and historical data
for a given point and time from various meteorological services (National Oceanic and
Atmospheric Administration, Deutscher Wetterdienst, Météo-France, etc.) was identified.
The API for the associated climate attributes at every point and time that was extracted
earlier from the GLOBE and NEON datasets was queried. Storm Glass contained missing
data for some required attributes at certain points and times—such points from our training
set were removed. After deleting records with data gaps, the training set was composed
of 15,838 mosquito observations from NEON and GLOBE Observer observations with
associated climate data.

3.2. Machine Learning Approach

A decision tree is a technique used in supervised machine learning in which a label
is generated based on decisions made at branches extending from nodes. Random Forest
builds on this basic technique using the “Wisdom of the Crowd”, the idea that an aggregated
prediction tends to be more accurate than an individual prediction. The use of several
rather than individual predictors is called Ensemble Learning with an ensemble of decision
trees being a Random Forest [36].

The process begins with a training dataset—the data that will be used to build the
model. Then, in a process called bagging or bootstrap aggregation, the training dataset is
randomly sampled with replacement and distributed to different predictors. In a Random
Forest model, these predictors are decision trees. Each decision tree will be trained on their
respective subset of the training data. Once trained, labels will be associated with certain
combinations of decisions. Therefore, when new data arrives at the decision trees (usually
from a user input), the model has already learned what label is associated with what
combination of decisions, and a predicted label can be outputted for the new data based
on what decisions are made for that data. Since Random Forest is based on a “majority
vote” system, whatever value the majority of decision trees outputs is the value that is
outputted by the model. In this study, binary classification will be used since the model
will attempt to classify the data into two groups: presence and absence. For example, if
absence is defined by 0 and presence by 1, and 11 out of 20 decision trees output a 0, the
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model output would be 0. A mathematical representation of this process of class prediction
can be seen in Equation (1):

fii =
∑ j : node j splits on f eature i nj

∑ k ∈ all nodes nik
(1)

The model learns the splits (threshold values for features that break a node into
two branches) that yield a homogeneous (in terms of the label) subset of the training data.
The dominant label at the end node will be the output when these combinations of decisions
are made again following a user input. A model must also be able to split the data and
determine the “quality” of that split. In binary classification, the optimum split would
exactly divide one class from the other. To determine the quality of a split, Gini impurity is
typically used in Random Forest.

Gini impurity can be defined more simply as the probability of incorrectly classifying
an element. Gini values range from 0 to 0.5 and are calculated as shown in Equation (2).
For example, a Gini impurity value of 0.5 says that the probability of incorrectly classifying
an element would be 50%—the model would simply be “guessing” between 0 and 1. To
avoid “guessing” and to maximize the assurance that the model’s prediction is correct, a
decision tree in a Random Forest will continue to split the data until Gini impurity is as
close as possible to 0. These procedures allow feature (e.g., climate variable) importance to
be calculated:

G = 1−
c

∑
i=1

p(i)2

C = Number of classes,

p(i) = Probability of selecting class i,

G = Gini impurity

(2)

By determining how much each feature reduced Gini impurity on average, the
most influential feature can be found [37]. Feature importance is calculated as shown
in Equation (3) to determine which climate variable had the most influence on a mosquito
presence or absence prediction:

F(x) =
1
J

J

∑
j=1

cj f ull +
K

∑
k=1

(
1
J

J

∑
j=1

contribution j(x, k)

)
(3)

This is based on Hutchinson’s niche concept which states that environmental factors
determine the space in which a species can live perpetually [38].

Matrix A in Equation (4) represents a set of linearly independent row vectors (an axis)
that spans a space in which the ecological niche is defined. Another matrix will define the
space where the species cannot survive. The Random Forest model attempts to determine
the thresholds that divide the spaces defined by the matrix and the “absence matrix.” Based
on these thresholds, the model will be able to predict whether a mosquito will be present or
absent given certain climate inputs. However, for a more convenient user experience, the
user does not have to provide the climate variable values. Instead, the user enters latitude
and longitude coordinates. Corresponding Storm Glass data are then fed into the model
and a prediction generated.

A row vector was assigned a 0 if it represented an absence point and 1 if it represented
a presence point. The row vectors are also organized by latitude and longitude, but since
location was not a variable in the model, it is excluded from the matrix above. The Random
Forest algorithm itself was written in Python using the scikit-learn library. One thousand
decision trees were generated with 90% of data to be used for training and 10% for testing.
The model was trained to output a 0 or a 1 (two classes). All other parameters were
set to their default value (the default parameter is Gini impurity rather than entropy for
this library):
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A =


a1 b1 c1 d1 e1
a2 b2 c2 d2 e2
...

...
...

...
...

an bn cn dn en

−→Y1 = {a1, b1, c1, d1, e1} defines one mosquito observation

−→
C1 = {a1, a2, a3 · · · an} defines temperature
−→
C2 = {b1, b2, b3 · · · bn} defines humidity
−→
C3 = {c1, c2, c3 · · · cn} defines air pressure
−→
C4 = {d1, d2, d3 · · · dn} defines precipitation
−→
C5 = {e1, e2, e3 · · · en} defines cloud cover

(4)

3.3. Edge Computing

An IoT device capable of collecting localized sensor data and outputting a threat
level entirely on the edge was configured as a potential solution for areas with little cloud
connectivity. GPS data from a smartphone were used to extract latitude and longitude data,
which was then sent to the microcomputer via Bluetooth/USB C. To analyze and compute
on the edge in a cost-effective manner, a relatively high-performance Raspberry Pi 4 Model
B was chosen.

To collect sensor data, the prebuilt Grove Smart Agriculture Kit from the agriculture
industry was leveraged as using existing tools allows for greater flexibility and integration
with preexisting frameworks. The kit provided access to several external Grove sensors
that were assembled onto the Raspberry Pi 4 Model B as seen in Figure 2. These sensors
collect air temperature, humidity, soil moisture, soil temperature, UV light, IR light, and
visible light data.

This climate data as well as the exact date and GPS coordinates of its collection are
recorded by the device. The data are then used as input to run a TensorFlow Lite model (a
low footprint format) on the device, removing the need for a PC entirely and truly moving
our device to the edge. This localization of data collection and analysis allows for increased
speed and removes the need for Wi-Fi access.

Figure 2. Mosquito edge framework configured with sensors and PC.

4. Results

The Hutchinson matrix that defines the ecological niche of a mosquito was imple-
mented as the training data for the model. This is shown in Table 1.
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Table 1. First 5 rows of training data.

Temp (°C) Rel. Humidity (%) Pressure (hPa) Precipitation (kg/m3) Cloud Cover (%) Presence

0 15.67 87.87 1023.32 0.48 96.67 1

1 15.67 87.87 1023.32 0.48 96.67 1

2 15.67 87.87 1023.32 0.48 96.67 1

3 16.19 83.03 1024.08 0.24 97.33 1

4 16.19 83.03 1024.08 0.24 97.33 1

Then, the training dataset was loaded onto the Raspberry Pi 4 as a CSV file. Sensors
that were used include a temperature and humidity sensor, and GPS coordinates were sent
from a smartphone via USB C. When the model was run on the edge in Los Gatos, CA,
with the inputs being the data collected from the climate sensors attached to the device,
a threat level of 42.5% was successfully outputted with an accuracy was 86% as shown
in Table 2. This is very accurate considering the vast number of variables that cannot be
accounted for in an ecological niche model. The confusion matrix supports this accuracy
rating—there is a high number of true positives (772) and true negatives (588) while there
is a relatively small number of false positives (108) and false negatives (116).

Table 2. Random Forest model performance.

Precision Recall F1-Score Support

0 0.87 0.88 0.87 888

1 0.84 0.84 0.84 784

acccuracy 0.86 1584

macro avg 0.86 0.86 0.86 1584

weighted avg 0.86 0.86 0.86 1584

The relative feature importance was calculated for all five climate variables and can
be seen in Table 3. The data suggest that temperature has the strongest association with
threat level followed by humidity, pressure, cloud cover, and precipitation in order of
weakening association.

Table 3. Random Forest model feature importance.

Feature Score

Temperature 0.33783

Humidity 0.21056

Pressure 0.18738

Precipitation 0.12785

Cloud Cover 0.13718

Another objective of the Random Forest model was to produce a “threat level” or
the probability of a mosquito presence point. This number can be attained by calculating
the number of decision trees out of the 1000 in the forest that voted for a presence (“1”)
based on the user location input and its corresponding climate variables. This model can
be run for any year after 2017 (limited by a lack of historical data in the Storm Glass API,
which will soon be remedied) up until the present and at any location on Earth. After
running the model hundreds of times, aggregate threat outputs were correlated with the
climate variables.
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In Figure 3, temperature vs. threat level (probability of a presence point) is plotted for
the 2021 data. The relationship between these two variables is nonlinear. As temperature
increases, threat level increases as well. However, past a threshold value of about 28 degrees
Celsius, the threat rapidly decreases. This is most likely due to mosquitoes’ aversion to very
hot, dry climates such as the Sahara region in favor of fairly hot, humid regions. Once again,
the similarities between the relationships seen in our model and ecological phenomena is a
testament to the model’s high accuracy.

Figure 3. Temperature and Threat analysis using Random Forest.

Figure 4, humidity vs. threat level is plotted for the 2021 data. There is a moderate,
linear association between humidity and threat. This is consistent with Table 3 which
suggests a moderate association and the ecological literature which suggest that mosquitoes
prefer humid climates.

Figure 4. Humidity and Threat analysis using Random Forest.

Figure 5, pressure vs. threat level is plotted for the 2021 data. There is a weak, linear
association between pressure and threat. However, this finding may be perhaps insignificant
since there is no ecological support for why mosquitoes would prefer regions with high
air pressure.

Figure 5. Pressure and Threat analysis using Random Forest.
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There is no association between precipitation and threat as seen in Figure 6. This aligns
with Table 3, which suggests a weak correlation. This is also further support to the belief
that mosquitoes are attracted to standing water rather than precipitation itself. Future
studies should examine the relationship between precipitation and threat days after the
precipitation has already occurred.

Figure 6. Precipitation and Threat analysis using Random Forest.

Cloud cover is somewhat correlated to temperature and precipitation, but there seems
to be no relationship between cloud cover and threat level according to Figure 7.

Figure 7. Cloud Cover and Threat analysis using Random Forest.

5. Discussion

A neural network, linear regression, and logistic regression were run on the aforemen-
tioned data. The neural network model has an accuracy score of 74% while the logistic
regression performs at 67%. A comparable accuracy score cannot be calculated for a con-
tinuous target variable, but the linear regression has a coefficient of determination of 0.16,
suggesting that the linear model is not accurate nor is it suitable for classification. All three
algorithms performed at a lower accuracy than Random Forest. This reinforces past litera-
ture, which has suggested that niche prediction is best modeled by an ensemble approach.

Temperature clearly has the most influence on the model output—a result that is
consistent with ecological wisdom that suggests mosquito presence and absence is strongly
correlated with high and low temperatures respectively. Precipitation has a relatively low
impact on the model, which is consistent with the ecological literature that suggests that
mosquitoes are attracted to standing water rather than precipitation itself. Mosquitoes
prefer humid environments—this is consistent with the relative importance results. We are
able to perform this analysis in real time through the running of the edge device model and
collecting of local data from the device.

As with any research, our model might have been affected by errors. For one, citizen
science data are not as accurate as data collected by trained scientists. As our mosquito
dataset did not contain information about specific mosquito species, it is possibly biased
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towards the more common mosquito species (e.g., Aedes, Culex, and Anopheles), poten-
tially leading to excessive generalization and low accuracy for predictions in areas with less
common mosquitoes with different environmental niches.Furthermore, resource intensive
AI implementations on the edge on low power IoT devices can lead to high latency and
low accuracy.

While our model may use an ensemble approach similar to that of other mosquito
tracking software, our model differs through its use in variables and scale. Specifically,
other software focuses singularly on a specific genus (and often species) of a mosquito that
is concentrated in a particular area of the world—our software by contrast focuses on all
mosquitoes in all parts of the world. Additionally, our software uses precipitation, cloud
cover, atmospheric pressure, temperature, and humidity to predict mosquito hotspots,
while other software largely uses land cover data coupled with temperature and precipita-
tion. This in part is what leads to a lower accuracy of 86%, whereas other software has a
significantly higher accuracy.

Other research papers have acknowledged different variables that can affect cer-
tain mosquito populations such as Culiseta annulata, Anopheles claviger and Ochlerotatus
punctor [14]. Species of mosquitoes are affected by different combinations and variables’
importance to mosquito populations have changed, suggesting that not all mosquito’s
species are affected equally by changes in certain climate variables. Ultimately, researchers
were able to achieve a 99% accuracy model using the random forest framework to predict
the spatial distribution of Anopheles Claviger.

6. Conclusions

A combination of temperature, humidity, atmospheric pressure, precipitation, and
cloud cover data were used to create a model with 86% accuracy. There was a direct
correlation between moderate, linear association between humidity and threat, but a weak,
linear association between pressure and threat.

Our findings reinforce the current theories that mosquitoes are heavily influenced by
their environment, and although there are approximately 3500 species of mosquitoes, all
desire a certain range of climate conditions. Our study has taken thousands of data points
from NEON, Storm Glass API, and the GLOBE Observer, and coupled with our accuracy,
our model makes statistically significant findings.

The accuracy of the model can be increased by adding more environmental features,
such as normalized vegetation difference index and human population density. Our
model could also become more accurate by tailoring it to specific mosquito species rather
than treating all mosquitoes as a single species with the same environmental preferences.
This would allow scientists to predict the threat level for a particular species with more
confidence, especially for less common species. We are also working on integrating our
model with the Find Your Invasive framework.

For the future, there are plans to pair the edge device with a mosquito trap and
directly capture mosquito data with computer vision techniques. This would be an au-
tonomous system that can be setup in remote areas without manual oversight, increasing
efficiency dramatically.
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