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Abstract: This paper examines the impact of ocean surface swell waves on near-coastal L-band
high-resolution synthetic aperture radar (SAR) data collected using the National Aeronautics and
Space Administration’s (NASA) Soil Moisture Active/Passive (SMAP) radar at 40◦ incidence angle.
The two-scale model and a more efficient off-nadir approximation of the second-order small-slope-
approximation are used for co- and cross-polarized backscatter normalized radar cross-section (NRCS)
predictions of the ocean surface, respectively. Backscatter NRCS predictions are modeled using a
combined wind and swell model where wind-driven surface roughness is characterized using the
Durden–Vesecky directional spectrum, while swell effects are represented through their contribution
to the long wave slope variance (mean-square slopes, or MSS). The swell-only MSS is numerically
computed based on a model defined using the JONSWAP spectrum with parameters calculated using
the National Data Buoy Center and Wave Watch III data. The backscatter NRCS model is further
refined to include fetch-limited and low-wind corrections. The results show an improved agreement
between modeled and observed HH-polarized backscatter NRCS when swell effects are included and
indicate a relatively larger swell impact on L-band compared to higher radar frequencies. Preliminary
investigations into the potential swell retrieval capabilities in the form of excess MSS are encouraging,
however further refinements are required to make broadly applicable conclusions.

Keywords: SMAP; backscatter radar cross section; RCS; swell waves; oceans; rough surface scattering;
two scale model; electromagnetic modeling

1. Introduction

The generation and dissipation of ocean surface waves at the air–sea boundary layer
involves many complex and often non-linear processes at various spatial and tempo-
ral timescales [1,2]. These processes induce varying degrees of backscatter normalized
radar cross section (NRCS) modulations, which manifest as ocean surface features in scat-
terometer measurements or synthetic aperture radar (SAR) imagery. Wind-driven waves
(“wind-waves”) act as the primary contributor to NRCS modulations, especially at moder-
ate incidence angle geometries (30◦ ≤ θi ≤ 60◦) where Bragg scattering is dominant [3].
The scattering process is typically assumed to be related to local forcing winds with longer
wind waves providing “tilt” effects. Therefore, physics-based backscatter NRCS forward
modeling studies typically rely on wind-driven ocean wave spectra to characterize rough
surface effects. However, several past studies have shown that the presence of swell waves
can impact radar measurements.

Swell effects have long been considered to be important in many ocean models [4].
The distribution of swell waves over global oceans predicted by numerical models such
as Wave Watch 3 (WW3; [5]) and European Center for Medium-range Weather Forecasts
(ECMWF; [6]) has been investigated in the literature [7,8]. They rely on moment parameters
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such as significant wave height (SWH) to characterize global swell probabilities, peak
swell frequency distributions, and swell indices. Spaceborne observations and in situ
measurements have also been used for modeling swell propagation characteristics with an
emphasis on determining the locations of swell sources [9–11]. The impact of swell waves
on ERS-1/2 C-band SAR backscatter NRCS measurements has been investigated through
SWH comparisons in [12]. SAR-based SWH retrievals using a neural networks algorithm
are compared with National Data Buoy Center (NDBC) buoy measurements to conclude
that swell indeed has an impact on C-band scatterometers. Reference [13] further examines
the impact of swell on both C- and Ku-band near normal incidence backscatter for multiple
polarizations, and finds swell contributions to be relatively more important at low wind
speeds. Although these studies provide insight into the impact of swell waves, continued
analyses into the effects of swell on radar oceanography are well motivated to characterize
its effects.

High-resolution spaceborne SAR imagery, enabled by significant advancements in ocean
scatterometry, has emerged as an invaluable tool in ocean surface observations [3,14–18]. Sys-
tems operating at L-, C-, or X-band frequencies with swath widths ranging from 100–500 km
and spatial resolutions of 10–100 m (for example, the ERS-1/2, Envisat, Radarsat 1/2, and
PALSAR missions) have shown the capabilities of SAR systems in sensing oceanic phenom-
ena [19]. While SAR imagery is largely unaffected by rain and cloud conditions, more so at
L-band frequencies, the long repeat periods, often ranging from weeks to months, have
challenged the use of SAR measurements in many practical applications.

On 31 January 2015, the National Aeronautics and Space Administration (NASA)
launched the Soil Moisture Active/Passive (SMAP) L-band mission to make significantly im-
proved soil moisture and freeze/thaw observations of global land surfaces (see Figure 1) [20].
In addition to soil moisture products, the SMAP radar also provided 1 km high resolution
SAR radar data (“L1-C” data) over near-coastal regions at a global revisit rate of 2–3 days
during its operational period. This paper investigates the impact of swell waves on SMAP
L1-C backscatter radar data through physics-based forward modeling of SMAP radar
observations. We use a combined wind and swell ocean model (instead of a wind-only
model) and represent the impact of swell as an excess contribution to the surface slope
variance that increases “tilting” effects in the two-scale theory of sea surface backscattering.
Characterizing the impact of swell waves on SMAP radar data can be directly applied to
introduce potential corrections to SMAP-based model functions, which may lead to refined
wind retrievals. Furthermore, insights gained from such a study further the understand-
ing of the impact of swell waves on L-band backscatter NRCS, and can be leveraged to
observe/model other ocean features that are visible in high-resolution L-band SAR imagery.
A limited-scope preliminary version of the work presented in this paper can be found in [21].

The remainder of this paper is organized as follows: Section 2 reviews models for sea
surface backscattering, including the two-scale theory and the second-order small slope
approximation. The key components of each model are discussed with an emphasis on
distinguishing between wind and swell effects. A combined wind and swell ocean model
is then presented with the impact of swell represented as an additional long wave tilt effect.
Section 3 outlines various data sources used within the modeling study, their utility, and
associated challenges and limitations. It also provides a broader overview of the SMAP
instrument, mission, capabilities, and available data. Additional details on SMAP data
processing and model predictions are then discussed in Section 4. Section 5 discusses
the swell-only 2D directional ocean spectra that are used for calculating swell-only slope
contributions. Results and additional model refinements are discussed in Section 6, while
Section 7 provides concluding remarks.
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Figure 1. An artist’s rendering of SMAP observations from orbit. Image credit: NASA Jet Propulsion
Laboratory (JPL) https://smap.jpl.nasa.gov/resources/59/smap-taking-data-from-orbit, Date Ac-
cessed: 15 May 2021.

2. Backscatter NRCS Model
2.1. Two-Scale (Composite) Model (TSM)

The two-scale model, also known as the composite surface theory, is a well-studied tech-
nique used for modeling microwave backscatter from multi-scale rough surfaces [14,22–24].
According to the TSM, radar backscatter NRCS at moderate incidence angles such as
SMAP’s θi = 40◦ is dominated by Bragg waves. Bragg scattering, which is mathematically
described by the small-perturbation method (SPM), is a resonant reflection of sea surface
waves with wavenumber Kb = 2k0 sin θi, where k0 = 2π/λ in rad/m and λ in meters are
electromagnetic wavenumber and wavelength, respectively [3,25]. For SMAP, the Bragg
wavelength is approximately Λb = 18.5 cm (i.e., Kb = 33.93 rad/m) which remains firmly
within the “gravity” wave portion of the sea spectrum as opposed to shorter capillary
waves. The presence of ocean waves with much longer wavelengths within the SMAP 1 km
resolution cell causes “tilting” of Bragg waves as shown in Figure 2. The TSM accommo-
dates both small and large waves (i.e., roughness scales) by defining a cutoff wavenumber
kc such that the overall predicted backscatter due to cumulative scattering from tilted Bragg
waves is [14]:

σ0
sea(θi)î ĵ =

∫ ∞

−∞
d(tan ψ)

∫ ∞

−∞
d(tan δ)σ0′

î ĵ (θ
′
i)F(tan ψ, tan δ)W(2k0α, 2k0γ sin δ), (1)

where ψ and δ are in-plane and out-of-plane tilt angles in radians, respectively, γ = cos(θi +
ψ), α = sin(θi + ψ), and î and ĵ represent receive and transmit polarizations, respectively.
The backscattered NRCS from a tilted surface is computed using NRCS coefficients σ0′(· · · )
evaluated at the local incidence angle of the tilted surface θ′i = cos−1(γ cos δ) and projected
onto the “global” radar polarization basis from the “local” basis of the tilted surface. The
2D sea surface spectrum W(· · · ) within the integral is evaluated at the Bragg wavenumber
that corresponds to the local incidence angle. The cumulative sea surface backscatter NRCS
σ0

sea is then computed by integrating over the long wave slope probability density function
(PDF) F(· · · ). It is modeled as a zero-mean Gaussian PDF (i.e., Cox and Munk correction
term in [26] set to 1):

F(s′u, s′c) =
1

2πsusc
e−0.5

[
(s′u/su)2+(s′c/sc)2

]
, (2)

https://smap.jpl.nasa.gov/resources/59/smap-taking-data-from-orbit
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where s′u = tan ψ and s′c = tan δ. The up- and cross-wind mean-square slopes (MSS) s2
u and

s2
c are determined from:

{s2
u, s2

c} =
∫ 2π

0

∫ kc

0
k2{cos2 φ, sin2 φ}S(k, φ)kdkdφ. (3)

Note that the PDF is evaluated at up- and cross-wind slope values that correspond to
the in- and out-of-plane tilts following a coordinate rotation. Additionally, S(k, φ) is the
polar coordinate representation of W(kx, ky) in Equation (1) that may be augmented by the
presence of swell. Cutoff wavenumber values in the range kc = [k0/3, k0/2] have been
recommended in the literature—we use kc = k0/2 [24,27,28] in what follows. Note that
TSM model predictions weakly depend on this parameter.

Figure 2. Notional ocean spectrum and resulting ocean waves. The (left) panel compares wind-
only (blue) and swell-only (red) wave spectra. The wind-only spectrum is divided along the cutoff
wavenumber kc to distinguish large- and small-scale roughness contributions. The Bragg and capillary
wavenumbers are also shown for reference. The (right) panel shows notional wind waves (top) and
wind and swell waves (bottom), while arrows indicate incident and backscattered EM waves.

Although the preceding discussion only considers Bragg scattering, non-Bragg scatter-
ing associated with wave breaking effects also contribute to the ocean surface roughness.
The VV polarization is typically dominated by Bragg scattering while HH and HV/VH
may contain relatively greater non-Bragg contributions. These effects have been observed
and modeled under various frequencies, wind speeds, and incidence angles in the liter-
ature [29–31]. While the impact of breaking waves has been shown to be important in
C-band and higher frequencies, the magnitude of L-band breaking wave contribution has
been found to be minimal [31]. Therefore, the model considered in this work does not
include any impact due to breaking waves.

2.2. Small Slope Approximation for Cross-Polarization

TSM predictions have been shown to be reliable in most situations for co-polarized
backscatter at moderate incidence angles. However, TSM predictions of cross-polarized
backscatter are challenged by the model’s use of the first order SPM (SPM1) for the local
surface backscatter in Equation (1) as they are only predicted to be a result of out-of-
plane tilt effects (i.e., δ 6= 0) [14,25]. In general, cross-polarized scattering from rough
surfaces can involve higher-order scattering effects. Although the second-order small slope
approximation (SSA2) model captures higher-order scattering and surface tilt effects, its
utility for large-scale simulation studies is constrained by the computational complexity [32].
Therefore, a more efficient off-nadir SSA2 cross-polarized high frequency approximation
proposed in [33] is examined here:

σ0
hv ≈ 4π|G|2 cot2 θiQ4

HW(QH)s
2
x, (4)
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where G and QH are described in [33]. The cross-plane MSS is

s2
x =

∫ 2π

0

∫ k0

0
k2 sin2 φS(k, φ)kdkdφ, (5)

in which the cutoff wavenumber is defined as the electromagnetic wavenumber, and the
coordinates in the integration are aligned with the radar look direction. More generally,
Equation (4) approximates cross-polarized backscattering as an easily evaluated product
of the surface curvature spectrum evaluated at the Bragg wavenumber (Q4

HW(QH)), the
cross-plane slope variance, and functions of permittivity (G) and incidence angle.

2.3. 2D Wind-Driven Sea Surface Spectrum

Wind-driven sea surface spectra Sw(k, φ) describe the wind-generated wave energy dis-
tribution over two-dimensional frequency and angular space. Many theoretical, empirical,
and semi-empirical spectrum models have been proposed over the years to parameterize
this wave energy distribution to varying degrees of accuracy [34–38]. A general comparison
of such models is beyond the scope of this study (the reader is referred to [39] and sources
therein for additional information), however, it is noted that predicted NRCS dependence
on wind speed is sensitive to the spectrum choice [40].

The left panel in Figure 3 compares the fully-developed Durden–Vesecky (DV-[36]),
Elfouhaily (EH-[37]), and JONSWAP ([35]) curvature spectra at the SMAP Bragg wave-
length (indicated using the vertical dashed magenta line) for u10 = 10 m/s. While the
JONSWAP and EH spectra show similar magnitudes, they differ considerably from the DV
spectrum. Furthermore, the spectra in the vicinity of the Bragg wavenumber differ based
on their description of the capillary peak and other factors.

Figure 3. Comparison of wind-driven curvature spectra. (Left panel) compares Durden–Vesecky
(DV), Elfouhaily (EH), and JONSWAP spectra at u10 = 10 m/s. (Right panel) compares Durden–
Vesecky and Elfouhaily curvature spectra over different wind speeds. SMAP Bragg wavenumber
kb = 33.93 rad/m is also shown using a magenta dashed line in both figures.

The right panel in Figure 3 compares the DV (solid curves) and EH (dashed curves)
spectra as a function of wind speed (blue, green, red, and black colors). A key obser-
vation made here is that while the DV spectrum evaluated at the Bragg wavenumber
monotonically increases with wind speed, the same does not hold for the EH spectrum.
These differences are related to how the spectrum is defined in [37], where the separation
of two wave spectra regimes in the short wave domain corresponds approximately to a
wind speed of u10 = 6.75 m/s. This effect is also present in other spectrum models (such
as the revised Kudryavstev spectrum in [38]) and leads to NRCS predictions with a local
minima at the long/short wave partition wind speed similar to the L-band predictions
shown in Figure 15a of [39]. In contrast, geophysical model functions (GMF) based on
L-band observations at moderate incidence angles support a monotonic increase in NRCS
versus wind speed (see SMAP L1B at θi = 40◦ in [41], Aquarius beam-2 at θi = 38◦ in [42],
PALS at θi = 45◦ in [43], and PALSAR at θi = 40◦ in [44]).
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Due to this behavior, the Durden–Vesecky sea surface spectrum model is applied in
this work. The spectrum has the form:

Sw(k, φ) =
1
k

Sw(k)Ψw(k, φ) (6)

= k−4Ψw(k, φ)


b0e−β

(
km/k

)2

k < 2

a0

(
bku2
∗

g∗

)a log10(k/2)

k ≥ 2,
(7)

where Sw(k) and Ψw(k, φ) are the 1D spectrum in m3 and 2D spreading function, respec-
tively. The wind speed in m/s at 19.5 m above mean sea level (MSL) is defined as u19.5,
while the friction velocity in m/s is denoted using u∗. Variables a = 0.225, b = 1.25, and
β = 0.74 are empirically derived parameters; km = g/u2

19.5 rad/m , g∗ = g+ γk2 m/s2,
γ = 7.25× 10−5 m3/s2, and g = 9.81 m/s2. Constant a0 is set to 0.008 as proposed in [45],
which is double that of the original reference [46]. Similarly, b0 = a0 is also amended with

b0 = a0eβ
(

km/2
)2

(8)

to ensure continuity at the k = 2 rad/m boundary [45]. The spreading function Ψw(k, φ) is
modeled as unity plus a wavenumber and wind speed dependent amplitude of cos 2φ. Note
that Sw(k) diminishes rapidly for k < kp where kp is the wavenumber of the 1D spectrum
peak. As a result, lower wavenumber bounds in Equations (3) and (5) are typically changed
from 0 to g/3u2

19.5 ≈ 0.5kp. Components of Elfouhaily and JONSWAP spectra will also be
used in subsequent sections for model refinements and swell spectrum modeling.

2.4. Combined Wind and Swell Model

Unlike wind-driven seas where local wave conditions are determined by local forc-
ing winds, local swell conditions are influenced by propagation of many remote wind-
generated waves into the observational area. The propagation effects are akin to a low-pass
filtering process where damping of higher frequencies occurs as the wave propagates
further away from its origin retaining waves with smaller temporal frequencies (larger
periods) [5]. Therefore, wind and swell waves within SMAP 1 km resolution cells are
assumed to be independent, uncorrelated Gaussian processes such that

S(k, φ) = Sw(k, φ) + Ss(k, φ) (9)

with second-order moments (MSS)

s2
u = s2

u,w + s2
u,s (10)

s2
c = s2

c,w + s2
c,s (11)

s2 = s2
u + s2

c = s2
w + s2

s . (12)

where the subscripts w and s represent wind and swell spectra/MSS, respectively, and the
swell spectrum is written in the up-cross-wind coordinate system. In Equations (9)–(12), the
impact of swell on overall backscatter NRCS is modeled as an excess slope contribution that
leads to additional tilting in the TSM as shown in Figure 2. Note that the MSS definitions in
Equations (3) and (5) remain applicable to swell spectra. In general, multiple swell systems
with different peak wave periods and mean wave directions could be present within a 1 km
resolution cell such that

Ss(k, φ) = ∑
n

Ss,n(k, φ) (13)

where each unique swell system identified using index n can, as in Equation (6), be repre-
sented as a product of a spreading function and a 1D wavenumber spectrum. The proposed
representation of swell effects as an excess slope assumes the availability of swell-only
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or total (including wind and swell) MSS information which, for example, could be made
available from numerical wave models such as WaveWatch III or the ECMWF. As the MSS
is not typically reported in wave model outputs, an alternate method could compute the
MSS using Equations (3) and (5) if a complete 2D swell spectrum (or information that can
be used to approximate the 2D spectrum) is available.

3. Data Sources
3.1. SMAP Mission and L1-C SAR High-Resolution Radar Data

The SMAP satellite hosts both a radar that operates at a tunable frequency near
1.26 GHz and a microwave radiometer that operates at 1.41 GHz. Both instruments share
a 6 m mesh reflector antenna that rotates at 14.6 revolutions per minute (RPM) about its
nadir axis (see Figure 1) to produce a conically-scanned beam with a surface incidence
angle of θi = 40◦ and a swath width of 1000 km, which enables global coverage in 2–3 days.
The radar is capable of making both co- and cross-polarized measurements (HH, VV, and
HV), which are further discriminated based on the instrument look direction (forward, fore;
backward, aft) and orbit direction (ascending, A; descending, D). Detailed descriptions of
the SMAP mission, radar data processing, and data formats can be found in [20,47,48].

The SMAP radar produces two backscatter NRCS data products: (1) a continuous “low-
resolution” (approximately 30 km) L1-B product, and (2) a “high-resolution” (approximately
1 km) L1-C product over land surfaces and near-coastal regions. Figure 4 shows example
HH fore L1-C coverage highlighting individual passes over one day, and a composite near-
coastal coverage mask for all available data. Unfortunately, the SMAP radar experienced a
failure and ceased operation on 7 July 2015. Nevertheless, the data gathered prior to this
event provides a unique opportunity to investigate the impact of swell waves on L-band
high-resolution ocean backscatter NRCS measurements.

Figure 4. SMAP L1-C global coverage (HH-polarization at fore look direction) highlighted in blue.
(Left): Daily global coverage on 30 May 2015 (emphasizes individual SMAP passes). (Right): Com-
posite near-coastal coverage mask for all available data.

This study utilizes all available SMAP L1-C radar data as summarized in Table 1. The
dataset spans from 13 April to 7 July 2015 and consists of 2326 data files. The analysis
examines SMAP forward look direction backscatter data in all polarizations, as the forward
look case has greater global near-coastal coverage compared to the aft look case. In addition
to near-coastal data, L1-C collections over an extended portion of the Atlantic ocean were
planned, but only two complete passes over this region were possible (orbits 02300 and
02301) prior to the radar failure.
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Table 1. SMAP L1-C high-resolution data summary (year: 2015; revision: R13080_001). Downloaded
from Alaska Satellite Facility [49].

Month Start Orbit End Orbit # of Data Files Size (GB)

04 01056_A 01308_A 504 650.8
05 01308_D 01761_D 837 1251.2
06 01762_A 02200_A 785 1198.6
07 02200_D 02301_D 200 308.8

3.2. NOAA WW3 Data

Modeling SMAP radar backscatter measurements requires both wind and wave infor-
mation. A previous analysis considering only wind effects reported a GMF representing
an empirical wind speed–NRCS relationship that was used to retrieve ocean surface wind
speeds successfully [41]. However, this GMF does not separate wind and wave effects, and
is therefore only used as a reference in this paper. SMAP-based wind retrievals are also
available through sources such as Remote Sensing Systems (https://www.remss.com/,
accessed on 15 November 2021), but the use of such information in this modeling study
creates an undesired circular dependency between outcomes and sources. Wind vector
information was instead obtained from the National Oceanic and Atmospheric Administra-
tion’s (NOAA) operational Global Forecast System (GFS). Wave information was obtained
from NOAA’s WW3 operational wave model predictions. It uses a robust spectral partition-
ing technique referred to as the Wave Spectrum Energy Partitioning (WaveSEP) method [50]
to separate wind and individual swell systems and report their contributions using moment
parameters as outlined in Table 2 (see [5] for definitions). Moment parameters for the full
2D spectrum are listed under partition 0 (n = 0), while contributions are separated into
individual wind/swell (n = 1) and swell-only (n > 1) systems using subsequent partitions.
For mixed wind/swell partitions (n = 0, 1), the wind-fraction W f is used to identify the
portion of the partition under the influence of wind; by definition, W f ≡ 0 for swell-only
partitions. As the combined wind and swell model relies on swell-only MSS values, the
information provided in partitions numbered greater than or equal to one are utilized for
swell modeling in this paper.

Table 2. An example of partitioned spectrum data. Total wavefield, wind-sea and swell-sea informa-
tion are provided by partitions 0, 1, and 2–4, respectively. For each partition, H1/3: total significant
wave height in meters; Tp: peak period in seconds; Λp: wavelength at peak period; φm: mean wave
direction at peak period in degrees; σφ: spectral width in degrees; and W f : wind-sea fraction.

Partition # Pn H1/3 (m) Tp (s) Λp (m) φm (deg) σφ (deg) Wf (-)

0 2.91 11.28 198.59 325.99 33.22 0.13
1 2.80 11.55 208.36 326.48 24.49 0.15
2 0.62 9.21 132.51 1.83 6.94 0
3 0.37 13.72 293.87 191.07 10.12 0
4 0.34 11.03 189.83 193.14 7.73 0

The combined WW3/GFS wind and wave products are available at 1 hour time
increments over three spatial resolutions as shown in Figure 5: (1) 4 arc-min (≈7 km) over
coasts of the continental United States, Alaska, Puerto Rico, and Hawaii, labeled wc_4m,
at_4m, and ak_4m; (2) 10 arc-min (≈18 km) over 4 arc-min regions and the US territories
in the southern pacific labeled wc_10m, at_10m, ak_10m, and ep_10m; and (3) 30 arc-min
(≈55 km) globally labeled glo_30m. Although wind and wave predictions at resolutions
finer than even 7 km are desirable when predicting SMAP 1 km radar backscatter, the
global availability of the WW3/GFS data, especially in the southern hemisphere where
prominent swell waves are present, motivates the use of the 30 arc-min wind product, with
finer resolution wind products used for additional verification purposes.

https://www.remss.com/
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Figure 5. WW3 MultiGrid spatial resolution map; 4, 10, and 30 arc-min regions are shown using
yellow/red, light/dark blue, and light-gray colors, respectively. See [51] for additional details.

3.3. NDBC 2D Buoy Spectra

The 1D swell-only spectrum model to be discussed in Section 5.1 utilizes 2D NDBC
buoy spectra [52]. They are arranged in a [50 × 36] [frequency × azimuth] grid and are
computed every 3 h daily starting at midnight. The 2D directional spectra are estimated
using a simpler directional Fourier approach, and do not use advanced methods such as
the Maximum Likelihood Method (MEM) or Maximum Entropy Method (MEM) [53]. The
azimuth grid is uniformly sampled at every 10◦ while the frequency grid is non-uniformly
sampled between fb,min = 0.0350 Hz and fb,max = 0.9640 Hz. This study uses data from
16 buoys over May, June, and July of 2014 and 2015 with locations shown in Figure 6.
An example 2D spectrum oriented in the up-cross-wind direction (+x-axis indicates the
up-wind direction) is also shown with contributions from wind and multiple swell systems
with peak periods between 11 ≤ Tp ≤ 20 s.
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Figure 6. Buoy Data. (Left): Locations of the 16 buoys used. The buoy labels in the central Atlantic
coast are arranged based on latitude such that top-most buoy corresponds to the top-most buoy label.
(Right): 2D spectrum of Buoy 46006 on 14 June 2015 at 12:00:00 UTC in the up-cross-wind coordinate
system. The associated wind speed is u10 = 5.63 m/s from φ = 50.3◦.

4. SMAP Data Processing and Wind-Driven Model Predictions

SMAP measurements were first screened by applying SMAP and user-defined quality
flags. A subset of the SMAP quality flags is outlined in Figure 7 for orbit 1318D on
1 May 2015, over Hawaii. The yellow regions in each figure fail to meet data quality
thresholds and the cumulative yellow shaded region is excluded from data. The user-
defined quality flags include spatial masks to remove SMAP measurements adjacent to
land boundaries and regions containing possible sea ice based on Polar View sea ice data
(https://www.polarview.aq/, Date Accessed: 6 November 2018). SMAP L1-C data at
1 km original spatial resolution were then averaged to 4, 10, or 30 arc-min resolutions to
match-up with the WW3/GFS dataset as shown in Figure 8. Model comparisons were

https://www.polarview.aq/
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facilitated by pre-computing a lookup table for wind-only seas over 84 wind speeds and 36
relative azimuth angles:

u19.5,sim = {1, 1.25, 1.5, · · · , 21.5, 21.75}ms−1 (14)

φsim = {−170◦,−160◦, · · · , 170◦, 180◦} (15)

In Equation (15), φsim is defined as the relative azimuth between the SMAP mean
antenna azimuth projected onto Earth’s surface and the WW3 wind direction in an up-
cross-wind coordinate system.

Figure 7. SMAP L1-C quality flags for orbit 01318D on 1 May 2015 over Hawaii. Figures from (left)
to (right) show Kp noise, Faraday correction, look-quality, and presence of RFI. In each figure, the
black region identifies high-fidelity data, while the yellow region identifies poor quality data. The
overall quality mask is a combination of these and other quality flags. See [47] for additional details.

Figure 8. SMAP L1-C HH-polarized backscatter NRCS for orbit 01318D on 1 May 2015 over Hawaii.
Figures from (left) to (right) show original SMAP measurements, high-fidelity measurements retained
after applying quality flags, and SMAP NRCS degraded to ep_10m resolution.

Figure 9 shows the resulting backscatter NRCS vs. wind speed scatter density plots
for each polarization for the entire SMAP dataset. Each plot contains approximately
1.15 million scatter points with the vertical and horizontal axes (NRCS and wind) binned
every 0.25 dB and 0.1 ms−1, respectively. The empirical GMF from [41] (co-pol only) and the
physics-based wind-only backscatter NRCS predictions (TSM for co-pol, SSA2 for cross-pol)
are also overlaid to provide direct comparisons. The results show that the co-pol empirical
model predictions capture the highest density portions of the scatter plot regions more
accurately than the “wind-only” TSM predictions. The under-prediction of the TSM results
is greater at lower wind speeds and diminishes with increasing wind speed, and also is
greater for the HH polarization. Taken together, these observations suggest the presence of
swell that is impacting the backscattered NRCS.
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Figure 9. SMAP wind speeds vs. backscatter NRCS scatter density plots. Figures from (left) to
(right) show HH-, VV-, and HV-polarizations. SMAP L1-B GMF (co-pol only) and wind-only model
predictions (TSM for co-pol, SSA2 for cross-pol) are also shown.

5. Calculating Swell-Only Mean-Square Slopes (MSS)

The excess MSS representation presented in Section 2.4 requires swell-only MSS values
at all SMAP temporal and spatial locations under consideration. Swell-only MSS is not
directly reported by the wave model outputs, but could be computed if a general 2D swell
spectrum model is available. The remainder of this section focuses on defining parameters
of a general swell spectrum Ss( f , φ). It is expressed in terms of the temporal wave frequency
f as

Ss( f , φ) = C0S̄s( f , φ) =
1
f

C0S̄s( f )Ψs( f , φ), (16)

where S̄s( f ) is the 1D swell spectrum with its peak normalized to unity, Ψs( f , φ) is the
swell spreading function, and C0 is a normalizing constant calculated based on the SWH.
Note the frequency-dependent spectrum can be redefined in terms of wavenumber using
the deep-water dispersion relationship [35]. Section 5.1 examines the 1D swell spectrum in
detail and represents it using the JONSWAP model parameters extended into the swell-
dominated regime through a NDBC buoy spectra analysis. Section 5.2 defines the 2D
spreading function, while Section 5.3 examines the fidelity of the approximated swell-only
2D spectrum.

5.1. 1D Normalized Swell Spectrum

1D swell spectra Ss(k) have been modeled in past studies as a narrow-band Gaussian
spectrum, but recent studies have shown a JONSWAP spectrum to be a more accurate
substitute [36,54]. In [54], the authors use the mean values for JONSWAP peak shape
parameters γ, σa, and σb identified for wind-driven spectra in [35] (3.3, 0.07, and 0.09,
respectively) to show that the resulting JONSWAP model spectral shape and significant
wave height reasonably predicts observed swell spectra with periods Tp ∈ [10, 15] s.
Parameter values for γ, σa, and σb for other swell period values, however, is not clear in the
existing literature. Narrower swell spectra are expected to be associated with larger γ (the
“peak enhancement” factor) and smaller σa and σb values (which describe the width of the
spectral peak). Although the high-frequency decay for wind-driven spectra is proportional
to f−5 [35] where f is the wave frequency, and [54] uses this rate for swell spectra, the
appropriate exponent to use for more general swell spectra is also uncertain.

To obtain swell-only spectra, one has to separate wind-driven spectral components
from those driven by swell. Separating swell-seas from wind-seas in the wave spectrum
has been thoroughly studied in the literature [55–58]. A common technique used is to
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divide the spectrum close to the peak frequency of the wind-driven spectrum fm such that
the separation frequency in Hz is

fs1 = X fm (17)

where X is an empirically determined factor identified to be 0.8 and 0.75 in [57,58], respec-
tively, with the latter showing minimum marginal impact if varied in the vicinity of 0.75;
this study uses X = 0.69.

First, a set of class I, 1D swell-only NDBC buoy spectra with their peaks normalized to
unity were compiled (see [54] for class definitions). The resulting normalized swell spectra
were then binned based on their peak frequency (50 possible locations based on the NDBC
frequency axis), and spectra within each bin were averaged to obtain a set of averaged,
normalized swell spectra. The JONSWAP spectrum with its peak normalized to unity was
then swept over 48-γ, 30-σa, and 30-σb values:

γi = [1, 1.25, 1.50, · · · , 6.75, 7.00, 8.00, 9.00, · · · , 29.00, 30.00] (18)

σa,j = [0.01, 0.02, · · · , 0.30] (19)

σb,k = [0.01, 0.02, · · · , 0.30]. (20)

For each iteration, the root-mean-square error (RMSE) between the JONSWAP and
NDBC averaged spectra over a region that immediately surrounds the spectral peak was
calculated. Note that confining the RMSE calculation to the spectral peak region deliberately
excludes frequencies that define the high-frequency spectrum decay so that the JONSWAP
form remains applicable. The RMSE was then minimized to obtain each parameter versus
the peak swell frequency.

Figure 10 shows the resulting JONSWAP parameters as a function of the peak swell
frequency fm. In each plot, the optimal parameter values determined through the RMSE
minimization described above are shown as blue circles. The minimum peak frequency
in the analysis was limited by the minimum NDBC frequency, and no swell-only class I
spectra could be identified for fm > 0.375 Hz using the wind/swell separation technique
described earlier. As hypothesized in Section 2, high-frequency damping resulting from
swell wave propagation narrows the 1D spectral shape for fm ≤ 0.1 Hz leading to a sharp
increase in the associated γ values. For fm > 0.1 Hz, γ approaches 3.375, which is in
excellent agreement with the mean γ = 3.3 reported in [35]. The γ values were then fitted
to the dashed curve in the figure as

γ = a0 + a1ea2 fm (21)

using least-squares minimization that resulted in a0 = 3.3, a1 = 408.0 (both in normalized
units), and a2 = −55.7 s. The green squares in Figure 10 show γ values computed using
Equation (21) at the NDBC spectrum frequencies used in the analysis. Similarly, variations
in σa and σb are largely in agreement with [35]. The bottom plot finally illustrates the
resulting modeled normalized 1D swell-only spectral shapes S̄s( f ) at each peak frequency.
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Figure 10. JONSWAP peak shape parameters extended to the swell-dominated region as a function
of peak frequency based on NDBC buoy data. Variations in γ, σa, and σb are shown in (top), (middle
left), and (middle right) figures, respectively. The (bottom) figure shows resulting normalized 1D
swell spectral shapes S̄s( f ). See text for details.

5.2. Swell Spreading Function

Although the JONSWAP model assumes a cos2 φ spreading function, we used the
cos2s form suggested in [59]:

Ψs( f , φ) = A0 cos2s((φ− φm)/2), (22)

due to its consistency with the WW3 model [5]. Here, φm is the mean wave direction and

s =
2

σ2
φ

− 1 (23)

controls the directional spreading (see (38) in [59]). Note that φm and σφ values are directly
available through WW3 partitioned spectra (see Table 2; units converted from degrees to
radians). The spreading function is normalized along azimuth such that∫ 2π

0
Ψs( f , φ)dφ ≡ 1, (24)

which determines the constant A0.
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5.3. 2D Swell Spectrum

The 2D swell-only spectrum can now be modeled using Equation (13) and the spectrum
partition information. For each partition, A0 in Equation (22) was first identified by
enforcing Equation (24) via numerical integration. Similarly, C0 was found by enforcing the
partition swell-only SWH Hs,1/3:

Hs,1/3 ≈ 4
√

h2
s,rms (25)

h2
s,rms = C0

∫ 2π

0

∫ fsu

fsl

S̄s( f , φ) f d f dφ, (26)

where h2
s,rms is the swell-only surface height variance in m2, and fsl and fsu are lower- and

upper-cutoff swell frequencies, respectively. It has been experimentally determined that
the impact of swell diminishes for wavenumbers that are greater than ksu = 2 rad/m
( fsu = 0.705 Hz) [60,61], while the lower-cutoff limit is constrained by the instrument spatial
resolution. For SMAP L1-C, it is fsl = 3.95× 10−2 Hz, which captures swell wave periods
Tp ≤ 25.31 s. Hs,1/3 is directly available for swell-only partitions (i.e., having wind fraction
W f = 0; see Table 2) and defined for mixed wind/swell partitions as

Hs,1/3 =
√

H2
1/3(1−W f ). (27)

Note that WW3 partitioned peak wave frequencies are not guaranteed to align with
NDBC frequencies. This may result in under-sampling of the S̄s( f ) spectral peak as it is
only defined at NDBC frequencies, leading to incorrect C0 values. Therefore, the frequency
axis was interpolated to ensure adequate sampling of the spectral peak.

Figure 11 compares measured and approximated 2D spectra for NDBC buoy 46002 on
2 May 2015 at 00:00:00 UTC. The buoy spectrum is shown on the top row where zoomed-in
and zoomed-out views are displayed on the left and right plots, respectively. The zoomed-
in view highlights swell-only contributions with all six swell-only partition peaks indicated
using green circles. The contribution of the wind-dominated partition is highlighted using
the zoomed-out view with a green circle in the +x direction (i.e., all spectra shown are in
the up-cross-wind coordinate system). The swell-only 2D spectrum approximated using
non-zero WW3 partitions is shown in the middle row with zoomed-in and zoomed out
views on the left and right, respectively. The resulting spectrum appears to capture the buoy
swell peaks reasonably both in magnitude and direction. The zoomed out view only shows
the fractional swell contribution captured by the wind partition (no wind contributions are
shown). For comparison purposes, the bottom right plot shows the approximated wind and
swell spectrum, which compares favorably with the buoy spectrum shown in the top-right
plot. In contrast, the swell-only spectrum approximated using the zeroth-partition data (not
used in this study) is only able to capture the primary swell direction and magnitude.

Although the approximated spectrum captures buoy swell magnitudes and directions
favorably, a clear difference exists in the down-wind direction where the approximated
spectrum predicts magnitudes that are much larger than those measured by the buoy. This
discrepancy is primarily evident in the swell-only 2D spectrum (middle row), while the
inclusion of wind partition information (bottom right) only has a minimal impact in the
down-wind direction. Two sources for these differences are possible: (1) the high-frequency
decay rate of S̄s( f ), and (2) the cos2s-form of Ψs( f , φ). In both cases, the swell-only model
assumes parameter values derived based on wind-driven spectra, but a more rapid high-
frequency decay rate than f−5 and/or a narrower spreading function may be warranted.
These investigations are beyond the scope of the current study; note that the differences
obtained are at a level exponentially smaller than the peak swell contributions, which are
expected to dominate the MSS values of interest.
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Figure 11. A comparison of NDBC buoy spectra and approximated 2D spectra. Plots shown are
as follows: (top row): NDBC buoy 46002 spectrum on 2 May 2015 at 00:00:00 UTC (u10 = 5.63 m/s
and φ = 50.3◦); (left) zoomed-in view; (right) zoomed-out view. (Middle row): approximated
swell-only buoy spectrum using non-zero WW3 partitions; (left) zoomed-in view; (right) zoomed-out
view. (Bottom row): (left) swell-only spectrum approximated using WW3 0th-partition data; (right)
middle-right plot with wind contributions added. All plots are in the up-cross-wind coordinate
system. See text for more details.

To account for swell impact, the forward model lookup tables were extended using
31 additional excess slopes in the up-cross-wind directions

su = su,w + m∆su (28)

sc = sc,w + n∆sc (29)

{m, n} ∈ {0, 1, 2, · · · , 30, 31} (30)

{∆su, ∆sc} = 0.005 (31)

for a total of 1024 swell conditions (including no swell for m = n = 0). The resulting wind
speed, relative azimuth, and up-cross-wind swell-only excess slopes lookup table was then
used to produce forward model backscatter NRCS predictions under various conditions.

6. Results, Additional Refinements, and Discussion

Figure 12 repeats the results of Figure 9 including the combined wind and swell
(W+S) model predictions. The impact of swell is clearly visible in HH-polarization where
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a larger increase in NRCS over wind-only predictions can be observed. VV-polarization
shows a reduced impact due to its lack of sensitivity to tilt effects. The cross-polarized
results indicate some responsiveness to swell under low wind speeds, but the −38 dB
measurement noise floor (see [47]) makes detailed interpretation difficult. Generally, the
model predictions are consistent with the discussion in Section 1, increasing confidence in
the backscatter model described in Section 2. Based on these observations, the remainder
of this paper focuses on characterizing swell effects using the HH-polarization.

Figure 12. Combined wind and swell model (W+S) backscatter NRCS predictions vs. wind speed
shown using red curves. Figures from (left) to (right) show HH- and VV-polarizations. Corrected
W+S model predictions are shown using green curves. Uses the same plot configuration used in
Figure 9.

Although HH-polarized results compare favorably with the GMF, the combined model
shows a larger difference from the GMF predictions at low wind speeds. As discussed in
Section 2, the surface roughness due to local winds is captured by the wind model, while
swell provides an additional source of Bragg wave tilting. We apply the low-wind correction
described below to the modified DV spectrum to achieve improved NRCS predictions
under low wind speeds. The combined model also slightly over-predicts the GMF at high
wind speeds, potentially due to fetch-limitations in the near-coastal regions considered.
Therefore, the fully-developed DV spectrum is further modified to accommodate fetch
limited seas using [37].

6.1. Fetch-Limited Seas

Fully-developed wind-driven spectra assume adequate fetch and wind durations that
achieve an equilibrium in wave-inducing and restoring forces: this is seldom achieved in
reality [1,35]. The fetch requirements defined in [35] suggest that achieving such conditions
becomes increasingly challenging for higher wind speeds. Near-coastal regions are further
challenged due to geographical constraints and may result in seas that are not fully-
developed even at low wind speeds. The Elfouhaily spectrum in [37] models this behavior
using the inverse wave-age parameter Ωc

Ωc =
u10

cp
cos φ̄, (32)

where cp is the wave phase-speed and φ̄ is the relative angle between the wind and
dominant wave directions at the spectral peak. Figure 13 illustrates an inverse wave-age
map computed using WW3 partitioned spectrum data for1 May 2015, at 00:00:00 UTC at
glo_30m spatial resolution; the corresponding wind speed map is also shown for reference.
The results show the existence of fetch-limited ocean conditions primarily over high wind
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and/or near-coastal regions. The histogram on the bottom-left plot further examines the
Ωc distribution for |φ̄| < 20◦ over the entire L1-C dataset. It peaks in the vicinity of
Ωc = [0.7, 0.8] and is consistent with the Ωc = 0.84 fully-developed sea definition in [37].
It also shows that Ωc values in the [0.84, 2] range are also common. The dependence
of Ωc on wind speed is further explored in the bottom-right plot where Ωc cumulative
distribution functions (CDF) for multiple wind speeds are shown. Under very low wind
speeds, for example u10 = 2 ms−1, nearly all the data can be well-approximated using a
fully-developed model, while only 6% appears fully developed for u10 = 22 ms−1.
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Figure 13. The WW3 inverse wave age Ωc and wind speed on 1 May 2015, at 00:00:00 UTC at glo_30m
spatial resolution are shown on (left) and (right) plots of the (top row), respectively. The distribution
of Ωc computed using Equation (32) for |φm − φw| ≤ 20◦ for all L1_C data files in Table 1 is shown in
the (bottom left) plot. The Ωc dependence on wind speed is shown in the (bottom right) plot using
cumulative distribution functions for multiple wind speeds.

The effects of fetch-limited seas on the forward model were predicted using seven
additional Ωc values beyond the 0.84 value originally used:

Ωc = {1.00, 1.16, 1.48, 1.96, 2.92, 4.04, 5.00}. (33)

These values span the Ωc domain in [37] with more frequent sampling for Ωc < 2. The
expanded look-up table is then used in terms of wind speed, relative azimuth, up-cross-
wind swell-only excess slopes, and wave-age to make backscattered NRCS predictions.

6.2. Durden–Vesecky Spectrum Modifications

To incorporate model refinements described above, the fully developed Durden–
Vesecky spectrum in Equation (7) was modified to include fetch-limited and low-wind
correction terms. As fetch-limitations primarily affect the peak of the spectrum, the km
parameter (see Section 2.3) is redefined as

k̃m =
g

u2
19.5

0.84−2Ω2
c (34)
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such that Equation (7) is recovered under fully-developed seas. The piece-wise form of
Equation (7) models the wind-driven peak using an exponential term for k < 2 rad/m,
while the function defined over k > 2 rad/m captures the capillary peak. The underlying
assumption that the wind-driven peak does not cross k = 2 rad/m is now rendered false
by Equation (34), which necessitates the redefinition of the boundary as

k̃n =

{
k̃p k̃p ≥ 2
2 k̃p < 2,

(35)

where k̃p is the peak of the 1D DV spectrum

k̃p =

√
2β

3
k̃m. (36)

To ensure continuity of the piece-wise form across k = k̃n, b0 is redefined such that

b̃0 = a0

(
bk̃nuE

∗
g̃∗

)a log10

(
k̃n/2

)
eβ
(

k̃m/k̃n
)2

, (37)

where g̃∗ = g + 7.25× 10−5k̃2
n. The low-wind correction term is introduced by modifying

the friction velocity exponent (equal to 2) in Equations (7) and (37) to

Ẽ =

2 u∗ ≥ c̃m
−0.7
c̃2

m
(c̃m − u∗)2 + 2 u∗ < c̃m,

(38)

where c̃m = 0.3616 ms−1 corresponds to u19.5 = 10 ms−1 (or u10 = 9.4 ms−1) and is
motivated by the excellent agreement between combined model predictions and empirical
GMF for HH-polarization seen in the vicinity of u19.5 = 10 ms−1 in Figure 12. Note that
this approach is similar to that of [37], with two regimes defined for the friction velocity,
either below or above 0.23 m/s (u10 = 6.75 ms−1). Therefore, the resulting modified DV
spectrum is

Sw(k, φ) = k−4Ψw(k, φ)


b̃0e−β

(
k̃m/k

)2

k < k̃n

a0

(
bkuẼ
∗

g̃∗

)a log10(k/2)

k ≥ k̃n.
(39)

Figure 14 shows the modified DV spectra and curvature spectra for three different
wind speeds and four different Ωc conditions (fully-developed and three fetch-limited
cases). The resulting impact on NRCS can be divided into two categories: (1) those due to
changes in the spectral density in the vicinity of the Bragg wavenumber, and (2) those due
to a reduction in MSS due to fetch-limited seas. The fully-developed DV spectrum remains
unchanged for u19.5 ≥ 10 ms−1 but results in increased NRCS for u19.5 < 10 ms−1 due to
higher spectral density at the Bragg wavenumber. There is a narrow subset of data where
fetch-limited seas at very low wind speeds result in decreased NRCS due to a reduction
in spectral density at the Bragg wavenumber. The overall impact of this subset on NRCS
predictions is negligible based on the results in Figure 13. In contrast, fetch-limited seas
lead to a reduction in MSS over all wind speeds. Based on Figure 13, Ωc = 2 can be used
as an upper bound to constrain the wave age dependency, however, this still represents
a minor perturbation to the spectrum (and to MSS) compared to fully-developed seas.
Therefore, a very small reduction in NRCS can be expected at higher wind speeds (where
the proportion of fetch-limited seas is greater) while it is negligible at moderate to low
wind speeds (where the proportion of fetch-limited seas is smaller). These refinements are
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expected to increase the combined wind and swell model NRCS predictions over low wind
speeds while slightly reducing the NRCS at high wind speeds as hypothesized earlier.

Figure 14. The modified Durden–Vesecky spectra (left) and curvature spectra (right) for different
wind speeds (solid color curves) and Ωc values (dashed color curves). For each set of three dashed
curves, the left-most, middle, and right-most curves represent Ωc = 1, Ωc = 2, and Ωc = 5,
respectively. The gray solid curves show corresponding fully-developed DV spectra defined in (7).
Note that gray curves for u10 = {10, 25} m/s are not visible, as (39) fully recovers (7) under those
conditions. See text for details.

6.3. Results and Discussion

The green curve in Figure 12 shows the combined wind and swell model predictions
with additional model refinements at glo_30m resolution as a function of wind speed.
The results show a significant HH backscatter NRCS model prediction improvement over
low wind speeds, while the inclusion of fetch-limited seas decreases the overall NRCS
overestimation over high wind speeds. Although the low-wind correction term also
resulted in improved VV-backscatter NRCS model predictions (not shown), the VV model
predictions still have larger differences with GMF predictions due to the lack of sensitivity
to tilt effects.

Figure 15 provides scatter density plots that compare SMAP vs. model predictions for
the entire L1-C dataset. The percentage of predictions within±1 dB of SMAP measurements
increases from 39% for the wind-only model to 65% for the combined wind and swell model
with the largest gains observed at low wind speeds. The combined model increases the
average HH-polarized NRCS by approximately 2–2.5 dB to closely match the mean of
the SMAP distribution. The wider distribution of the model predictions as compared to
measurements is noted as an item warranting further study.

Figure 16 compares SMAP and model predictions for pass 02260_D on 5 July 2015, at
02:32:47 UTC near coastal Madagascar at the glo_30m spatial resolution. Measured and
modeled backscatter NRCS maps highlight significant spatial modulations of radar returns,
while the ancillary data maps (wind speed, swell-only SWH, and average wave period)
highlight the underlying sources of these variations. While the wind-only predictions
capture many large-scale features, they largely underestimate the SMAP measurements
as expected. The inclusion of swell features, which predominantly occupy the lower half
of the scene, significantly improves the overall model and measurement agreement. The
prediction improvement is more clearly shown in the scatter plot, where the percentage of
predictions within ±1 dB of SMAP measurements improves from 25% to 85%. Figure 17
further shows the corresponding backscatter NRCS measurements and model predictions
at the original 1 km SMAP resolution. The high-resolution maps are also consistent with
the results shown in Figure 16.
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Figure 15. HH-polarized backscatter NRCS model predictions for all L1-C data at glo_30m resolution.
Plots from (left) to (right): SMAP vs. wind-only, SMAP vs. wind and swell, and distributions of
NRCS data.
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Figure 16. SMAP vs. model backscatter NRCS comparison for pass 02260_D on 5 July 2015, at 02:32:47
UTC near Madagascar at glo_30m resolution. (Top row) from (left) to (right): backscatter NRCS for
SMAP, wind-only model, wind and swell model, and wind speed. (Bottom row) from (left) to (right):
swell-only SWH, average wave period, measured vs. modeled scatter data.
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Figure 17. SMAP 1 km high-resolution measured and modeled backscatter NRCS maps for passes
02260_D shown in Figure 16. From (left) to (right): SMAP, wind-only model, and wind and
swell model.

The improved backscatter NRCS prediction capability under all wind speeds can
next be used to identify possible swell features present in the SMAP data. As this study
characterizes swell effects as an excess slope contribution, excess NRCS obtained by sub-
tracting wind-only model results from SMAP measurements and model predictions can
be compared as shown in Figure 18. The WW3-derived swell-only SWH and numerically
computed swell-only MSS are also shown. For ease of comparison, excess NRCS features
of particular interest are highlighted using circles along with corresponding locations on
swell-only SWH and excess swell-only MSS maps. Features that are captured by the wave
model are highlighted in black circles (for example, the swell feature on the bottom left
corner of the map). In contrast, the red circle indicates a significant apparent wave effect in
the SMAP image that is not well predicted by the model, potentially due to an inaccuracy
in the predicted swell properties at this time and location.
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Figure 18. Comparison of swell features in HH-polarized SMAP data for pass 02260_D 5 July 2015,
at 02:32:47 UTC. Plots from (left) to (right) show excess SMAP NRCS (SMAP-TSM (W)), excess
model NRCS (TSM (W+S)-TSM (W)), WW3 swell-only SWH, and swell-only MSS derived from
approximated 2D spectra based on WW3 partitioned data, respectively.

The swell only MSS map shown in Figure 18 also indicates the magnitude of swell-
only MSS relative to wind-only MSS computed using Equation (3). As expected, low
swell-only SWH regions (<1 m) produce negligible swell-only MSS contributions (≈0.001).
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However, the strong swell feature in the bottom-left corner of the figure (swell-only SWH
≈4 m) results in swell-only MSS values up to 0.018–0.02, which, based on Equation (3),
corresponds to a wind speed u19.5 ≈ 4 ms−1. As seen in the figure, the impact of this is
marginal over high-wind regions, but can be significant when the wind speed is very low.

As mentioned in the introduction, the impact of swell on C- and Ku-band instruments
has been investigated in the literature. An analysis of ERS-1/2 SAR data in [12] concludes
that swell has some impact on C-band backscatter NRCS measurements. While the overall
impact appears to minimal over moderate to high wind speeds, Ref. [62] finds wave effects
to have an outsize impact under certain localized low-wind/high SWH conditions. This
study also finds evidence of greater swell wave impact on L-band backscatter NRCS under
similar localized conditions as shown in Figures 16 and 18. Similar conclusions are drawn
in [13] where C-band sensitivity to wave effects is somewhat higher compared Ku-band.
The 2–2.5 dB mean improvement shown in Figure 15 (though small in absolute terms)
indicates a relatively larger impact on L-band backscatter NRCS compared to C- or Ku-band
frequencies. This may be due to the larger marginal long-wave MSS contribution at L-band.
As MSS is primarily supported by the short waves, the larger cutoff wavenumbers for C-
and Ku-bands result in more MSS due to wind-driven waves and lessens the marginal
impact of swell waves.

The model developed can be used to examine the inverse problem of retrieving swell
properties in the form of an excess MSS map, provided that knowledge of wind vector is
available. This is a challenging one-to-many problem where a single excess NRCS value can
be mapped to multiple excess MSS values as shown in Figure 19. In order to simplify the
estimation process, excess MSS is assumed to be a scalar multiple of the leading-edges of the
2D surfaces in Figure 19. The leading edges are estimated using a 4th-degree polynomial of
the form

y = a0x4 + a1x3 + a2x2 + a3x (40)

where x and y represent the excess MSS and excess NRCS, respectively. Note that all
polynomials traverse through (x, y) = (0, 0) indicating no excess NRCS predictions in
the absence of excess MSS. The leading-edge definition used above predicts the smallest
possible excess MSS for a given excess NRCS observation. As shown in Figure 18, the excess
NRCS is first computed by subtracting wind-only TSM predictions from wind + swell
model predictions and SMAP observations. Equation (40) can then be inverted iteratively to
find an excess MSS such that the resulting excess NRCS is within ±0.01 dB of the computed
value above. Figure 20 shows the resulting excess MSS retrievals for wind + swell model
(left figure) and SMAP observations (middle figure), while the right figure shows excess
MSS computed using 2D swell-only approximated spectra discussed in Section 5.3. Note
that features highlighted using circles match those described in Figure 18. The initial
results are consistent with excess NRCS maps in Figure 18 as well as the excess swell MSS
computed using the 2D approximated spectra.
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Figure 19. The distribution of excess MSS and NRCS versus wind speed (at φ = 0◦) and relative
azimuth (at u10 = 10 m/s) are shown in (left) and (right) plots, respectively. The leading edge of
each surface, approximated using 4th-degree polynomial, is indicated using black curves.
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Figure 20. Swell retrieval comparisons for SMAP pass 02260_D. Plots from (left) to (right) show
retrieved excess MSS based on the wind + swell model, retrieved excess MSS based on SMAP data,
and excess MSS computed using 2D approximated spectra, respectively. Excess MSS retrievals are
based on excess NRCS results shown in Figure 16. See text for more details.

While these initial results suggest the potential of swell MSS retrieval, the inversion
process is challenged by several potential error sources. We have discussed the impact of
wind spectrum choice and wave age in preceding sections, but there may also be potential
errors in ancillary wind vector information. Furthermore, the near-coastal coverage of
the SMAP L1-C dataset makes near-coastal bathymetry an important factor. For example,
the spatially varying water depths may introduce additional sources of surface roughness
(changing currents, tidal flow, etc.) and may also increase the impact of effects such
as breaking waves that generally has a low impact on L-band observations. Therefore,
additional work and examples are clearly required for continued progress, and will be
considered in future work.

7. Conclusions

This paper presented an investigation of the impact of swell waves on NASA’s SMAP
L1-C high-resolution SAR backscatter NRCS measurements. The radar data was pre-
processed and averaged to GFS/WW3 30 arc-minute spatial resolution to generate a wind-
wave-NRCS match-up dataset. Two physical models, namely TSM and SSA2-HF, were
used to model the backscatter NRCS in co- and cross-polarizations, respectively. Scatter
density plots shown in Figure 9 confirmed the backscatter NRCS dependence on wind
speed, but also indicated the non-negligible impact of swell waves on those observations.

The impact of swell waves on backscatter NRCS was modeled as an excess slope
contribution that leads to additional tilting of Bragg waves under the TSM. Although
various wind-driven spectra are available in the literature (the Durden–Vesecky spectrum
was chosen), the study was challenged by the absence of a general swell spectrum model
to compute excess swell-only MSS. A detailed analysis of NDBC buoy data was carried
out to assess the suitability of the JONSWAP spectrum to be used for swell spectrum
modeling. The results successfully extend the JONSWAP parameters γ, σa, and σb into
the swell regime as shown in Figure 10. The moment parameters associated with WW3
partitioned wave spectra were then used to approximate the 2D swell-only spectra as
shown in Figure 11. They were numerically integrated to obtain excess MSS due to swell in
up- and cross-wind directions.

These excess MSS values were then incorporated into the TSM to make combined
wind and swell backscatter NRCS predictions. The combined model results demonstrated
a significant improvement over the conventional wind-only model predictions. Model
predictions also identified a disagreement under low wind speeds, which was corrected
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by modifying the DV spectrum over low wind speeds (u19.5 ≤ 10 ms−1). The assumed
presence of a fully-developed sea surface was also investigated in detail as shown in
Figure 13, and the wind + swell model was further modified to accommodate fetch-limited
ocean conditions.

The refined results show a significant improvement in backscatter NRCS prediction
capability. As hypothesized, a larger improvement in HH-polarized backscatter NRCS
predictions was observed compared to VV, while the cross-polarized observations were
limited by system noise. In general, the impact of swell waves was more prominent under
low wind conditions. Although small in absolute terms, the impact of swell on L-band
backscatter NRCS appears to be larger compared higher radar frequencies. The excess
NRCS features were then examined carefully for the presence of swell features, and the
results demonstrate the modeling capability achieved. The inverse problem of predicting
swell (excess MSS) based on excess NRCS was also examined. Even though the initial
results appeared promising, the swell prediction process should be further refined to make
more broadly applicable conclusions.
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