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Abstract: Point clouds are one of the most widely used data formats produced by depth sensors.
There is a lot of research into feature extraction from unordered and irregular point cloud data. Deep
learning in computer vision achieves great performance for data classification and segmentation of
3D data points as point clouds. Various research has been conducted on point clouds and remote
sensing tasks using deep learning (DL) methods. However, there is a research gap in providing a
road map of existing work, including limitations and challenges. This paper focuses on introducing
the state-of-the-art DL models, categorized by the structure of the data they consume. The models’
performance is collected, and results are provided for benchmarking on the most used datasets.
Additionally, we summarize the current benchmark 3D datasets publicly available for DL training
and testing. In our comparative study, we can conclude that convolutional neural networks (CNNs)
achieve the best performance in various remote-sensing applications while being light-weighted
models, namely Dynamic Graph CNN (DGCNN) and ConvPoint.

Keywords: point clouds; deep learning; remote sensing

1. Introduction

The light detection and ranging (LiDAR) mapping generate precise spatial information
about the shape and surface components of the Earth. Advancements in LiDAR mapping
systems and their technologies have been proven to examine natural and manmade envi-
ronments across various scales with higher accuracy, precision, and flexibility [1]. LiDAR
Remote sensing provides an accurate 3D representation of scanned areas with many fea-
tures that provide great performance for various applications. Such applications include
Digital Elevation Model (DEM), Digital Surface Model (DSM), and Digital Terrain Model
(DTM) generation, which, combined with intensity data, achieve excellent performance
in urban land cover classification [2]. Some other urban applications include pavement
crack detection [3], collapsed building detection [4], road markings and fixtures extraction
and classification [5], cultural heritage classification [6], and change detection [7]. Because
LiDAR is sensitive to variations in vertical vegetation structure, it makes it very effective
for natural resources [8] and forest applications [7], such as tree species classification [9].
Additionally, full-waveform LiDAR adds more advantages to using LiDAR in forestry
applications [10].

Various deep learning models have been developed with outstanding performance for
data classification on point cloud datasets in multiple applications. Existing deep learning
methods for point cloud classifications involve architectures based on the traditional neural
network, the Multi-Layer Perceptron (MLP). These models are called PointNet-Based as
they build on the pioneering work of PointNet [11]. PointNet is a great performer that is
very lightweight but suffers from local information loss. Global features are features of a
scene, object, or image that describe it as a whole, compared to local features that are ex-
tracted at different points and represent patches of the scene or image [12]. PointNet++ [13]
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mitigates the loss by building a feature aggregation pyramid to learn hierarchically, sim-
ilar to how a traditional Convolutional network learns. One of the biggest challenges
of using LiDAR point clouds in deep learning is the unstructured shapes of the point
cloud data; a convolutional kernel that works on uniform grid-structured data cannot be
directly applied to the raw point cloud. A convolutional neural network can better capture
spatial features, which performs better than a traditional neural network while being more
lightweight than most handcrafted models. The convolutional neural network is structured
as a convolution layer, non-linearity, e.g., Rectified linear unit (ReLU), and pooling layers to
distil features from low-level to high-level [14]. Applying CNNs on point clouds involves
the 2D projection of the point cloud to obtain images that can then be fed into traditional
convolution layers in a convolutional neural network. Another approach is resampling or
restructuring the point cloud into uniform volumetric grids using occupancy functions and
3D convolutional layers to create the CNN or to design novel convolutional layers that can
operate on pointsets and the custom convolution operation to build the CNN.

This paper provides a roadmap for current DL deep learning models for LiDAR point
cloud classifications in remote sensing. Existing deep learning methods can be classified
as projection-based and point-based models. Each category enjoys specific characteristics;
however, they show some limitations. Thus, this paper summarizes the significant subcate-
gories: 2D projection, Multiview projection, voxelization, Convolutional-based networks,
and graph convolutional networks. Additionally, we cover some examples that encompass
most of the fundamentals within each subcategory. Remote sensing applications require
different datasets or workflows; thus, we cover some examples from remote sensing that
employ or build upon computer vision models. Our comparative analysis shows that
DGCNN and ConvPoint have shown the best performance in various remote-sensing
applications while being light-weighted models. The rest of this paper can be organized as
Section 2 focuses on LiDAR point cloud data and processing overview, Section 3 introduces
the primary computer vision deep learning models that are often used to classify 3D data,
and Section 4 presents Point cloud computing tasks that are common in remote sensing
applications, Section 5 introduces the benchmark 3D datasets used in training and testing
of deep learning models grouped as objects, indoor, arial scanned, mobile scanned, and
terrestrial scanned datasets, Section 6 shows the evaluation metrics commonly used to
measure and benchmark model performance; Section 7 provides a comparative analysis
of existing models on different datasets for different classification tasks. Finally, Section 8
concludes the paper.

2. LiDAR Point Clouds

A typical LiDAR system in remote sensing uses a laser, Global Positioning System
(GPS) and an Inertial Measurement Unit (IMU) to approximate the heights of objects on
the ground. Discrete LiDAR data are generated; each point represents high energy points
along with rebounded energy. Discrete LiDAR points contain each point’s x, y, and z values.
The z value is used to obtain height. The LiDAR data can estimate surface structures with
various methods [15]. The raw LiDAR data are delivered as points, known as point clouds,
that can be further processed to create Digital Elevation Models (DEMs) or Triangulated
Irregular Networks (TINs) [1]. Point data are commonly stored in LAS (LASer) format,
regarded as an industry standard that contains information in a binary file specific to the
LiDAR nature of data without being complex [15]. The LiDAR data can also contain other
information such as the intensity of the rebounds, the point classification (if applicable),
number of returns, time, and source of each point [1,15]. LiDAR scanners use a laser pulse
to measure the distance from the sensor using the time for the laser pulse to return in the
case of time-of-flight sensors (Figure 1a) [16] or using the triangulation angle on the optical
sensor for triangulation-based scanners (Figure 1b) [17]. The LiDAR scanners then generate
an [x, y, z] position relative to the sensor’s locations based on the distance from the sensor
and the degrees of rotation of the sensor, such as pitch, roll, and yaw [18]. Most LiDAR
sensors also measure the intensity of the return signal, which can be used to differentiate
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between different surface types with different reflectivity [1]. Additionally, the sensor
is often paired with a GPS and an IMU to capture data required for georeferencing and
mapping of the point cloud.
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Figure 1. Time of Flight LiDAR sensor calculation (a) [16] and triangulation-based LiDAR calculation
(b) [17].

For supervised classification, a significant challenge when working on LiDAR point
clouds is the variation in density inherent in the nature of the data. The density of similar
objects is also varied, as it depends on the speed of the vehicle mounting the sensor. Some
areas will be too dense and expensive to process, requiring some form of downsampling.
Other regions of a point cloud will have few or no points present. Additionally, for LiDAR
point clouds that include intensity values, the intensity of the same object could be affected
by different conditions and result in the same object having slightly different intensities [18].

3. Point Cloud Computing

Remote sensing data go through multiple processing steps to generate information
that can be consumed for production. Over the past few years, deep learning has been
applied to almost all remote sensing data processing aspects. Most notably, classification
and segmentation tasks. Regarding remote sensing 3D LiDAR point clouds, there is limited
interest in whole scene classification and more in semantic classification or segmentation
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tasks. Some other examples of deep learning tasks tackled by deep learning include change
detection, registration, fusion, and completion.

Traditionally, deep learning classification describes classifying an entire scene or an
object as belonging to a specific class as a whole. One example of classification tasks that
use 3D point clouds in remote sensing is the classification of tree species or roof types
previously segmented. However, remote sensing classification tasks involve semantic
classification and segmentation rather than aiming to identify an entire scene or object to
a single class. A significant example of semantic classification is Land use/Land cover
classification of Terrestrial and Arial Laser scanned (TLS/ALS) data. Segmentation divides
and assigns the data into different target classes and is split into three types, semantic,
instance, and panoptic segmentation [19]. Semantic segmentation assigns every point/pixel
from the input data to one of the target classes without distinguishing different objects; for
example, all tree points will be labelled trees. Instance segmentation involves identifying
and labelling objects belonging to target classes while distinguishing them from each other,
such as tree1, tree2, etc. Panoptic segmentation classifies every point/pixel in the input as
part of a class while distinguishing separate objects of a class from each other [19].

The most common application of image fusion in LiDAR remote sensing is the fusion
of 3D point clouds and RGB images to train a deep learning model for classification and
segmentation tasks [20–22]. The features extracted from both types of data are used to
enhance the performance of each class in the application of each class. Registration is the
process of matching and aligning two or more images or point clouds in the case of LiDAR
data obtained from different viewpoints and/or using different sensors; one example is
illustrated in [23], which achieves state-of-the-art performance. Completion is the process
of filling in missing information from datasets that could result from the limitations of the
sensors, conditions at the time of data capture, or the method of capture. For far-away
distances, the spatial resolution of a LiDAR sensor is lower, sometimes resulting in finer
details, such as road markings, signs, poles, etc., showing up incomplete. One example of
completion can be found in [5]. Most completion tasks on LiDAR point clouds are done
before training a classification model to improve performance and robustness.

4. Deep Learning Models

Advances have been made to produce DL models that are lightweight and efficient.
Feature learning models on 3D point clouds can be categorized as projection-based and
point-based models. This section briefly discusses models used as backbones or improved
for newer networks.

4.1. Projection-Based Methods

Some projection-based models create 2D projections from 3D point clouds and use
traditional 2D feature learning. This process primarily depends on projection direction (X,
Y or Z—default: Z) and other aspects such as the grid (size, scale, shape). Other projection
models create volumetric grids or voxels through 3D feature extraction layers.

• 2D Convolutional Neural Networks

U-Net [24]: builds on a fully convolutional model and extends it to work with few
training data while providing better performance. The U-Net architecture consists of
repeated two unpadded 3 × 3 convolutions followed by ReLU and downsampling 2 × 2
max pooling with stride 2. For each convolution step, the number of feature channels is
doubled. In the deconvolution steps, the features are upsampled and followed by a 2 × 2
convolution that halves the number of channels. The resulting feature map goes through
cropping and two 3 × 3 convolutions followed by a ReLU. The cropping is necessary
because of the border pixels lost after every convolution. Finally, a 1 × 1 convolution is
applied to label pixels and generate segmentation results.

DeepLab [25]: employs atrous convolution [25,26] to change the scope of convolution
and extract global features while also allowing larger networks without extra parameters.
DeepLab proposes Atrous Spatial Pyramid Pooling (ASPP) to segment at different scales
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by applying the same filters at different sampling rates and field-of-views, then the outputs
are added together. To overcome the toll downsampling and max pooling operations in
deep convolutional neural networks (DCNNs), DeepLab implements the fully connected
Conditional Random Field (CRF) from [27], which is trained separately from the rest of
the network. Iterations DeepLabV3 [28] and DeepLabV3+ [29] improve the performance
of DeepLab. Unlike [25], DeepLabV3 [28] performs batch normalization within ASPP.
Additionally, global average pooling is applied to the last feature map. The resulting image-
level features are fed into a 1× 1 convolution with 256 filters, then multiplied to the desired
spatial dimension. DeepLabV3 abandons the CRF and replaces it with concatenating and
aggregating the resulting features and passing them through another 1 × 1 convolution
with 256 filters before computing the final logits. DeepLabV3+ [29] uses a decoder module
to refine segmentation results, especially around object boundaries. Depth-wise separable
convolutions are applied to ASPP pooling and decoder modules resulting in a faster and
more robust network.

VGGNet [30] evaluates the effect of increasing the network depth of a convolutional
network using very small 3 × 3 convolution filters. It improves the classification perfor-
mance compared to previous state-of-the-art models by pushing the depth to 16–19 weight
layers. ResNet [31] adopts residual learning to every stacked layer in the convolutional
network. The shortcut connections are added without increasing parameter or computa-
tion complexity. The residual learning allows deep networks with performance gain over
shallower networks.

• Multiview representation

MVCNN [32] tackles 3D feature learning using traditional image-focused networks by
making 2D renders of the 3D object from different angles and passing it through a standard
CNN. MVCNN generates 80 views of the 3D object by placing 20 virtual “cameras” pointed
at the object’s centroid, then generates 4 renders per camera at 0-, 90-, 180-, and 270-degree
rotation along the axis through the camera and object center. After each image is passed
through the first CNN, the outputs are aggregated at a view-pooling layer which performs
element-wise maximum operation across the different input views before passing through
the remaining section of the network, i.e., the second CNN.

• Volumetric grid representation

VoxNet [33] uses occupancy grids to efficiently estimate occupied, free, and unknown
space provided by ranging measurements. Small (32 × 32 × 32 voxels) dense voxels
are used to optimize GPU usage. VoxNet uses a more basic 3D CNN to extract and
learn features, consisting of 5 of two convolution layers, a convolution and pooling layer,
and two fully connected layers. The model can perform object classification in real-time
while achieving state-of-the-art performance. VoxelNet [34] introduces a multi-layer voxel
feature encoding (VFE) that enables inter-point interaction within a voxel. The point cloud
is divided into equally spaced voxels encoded using the stacked VFE layers, allowing
complex local 3D information learning. VoxelNet works on object detection using a Region
Proposal Network (RPN) at the final stage to create bounding boxes.

4.2. Point-Based Methods

Point-based methods consume unstructured and unordered point clouds. Some of the
models covered in this section are used as backbones or parts of a larger architecture, while
others are adapted for remote sensing tasks with minimal modifications.

• PointNets

PointNet [11] directly consumes point cloud data for feature extraction. The network
provides a unified approach to 3D recognition that can be applied for various tasks such
as object classification, instance segmentation, and semantic segmentation. PointNet uses
Multi-Layer Perceptrons (MLPs) combined with a joint alignment network. To hold invariance
under geometric transformations, the input is passed through a T-Net module [11], where
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it is multiplied by an affine transformation matrix. PointNet provides great performance
while remaining lightweight and computationally efficient. PointNet cannot produce
local features of neighbouring points; PointNet++ [13] introduces a class pyramid feature
aggregation scheme. The scheme comprises three stacked layers: the sampling layer, the
grouping layer, and the PointNet layer. This allows PointNet++ to extract features in a
hierarchical fashion similar to traditional image learning, reducing local information loss.
PointASNL [35] is an end-to-end network that effectively deals with noisy point clouds.
The two primary components of the model are the adaptive sampling (AS) and the local-
nonlocal (L-NL) modules. Initially, the AS module reweighs neighbour points surrounding
the initial sampled points from the farthest point sampling and then adaptively adjusts the
sampled points beyond the point cloud. The L-NL module captures the neighbour and
long-range dependencies of the sampled point. Self-Organizing Network (SO-Net) [36]
generates a Self-Organizing Map (SOM) to simulate point cloud spatial distribution. The
SOM retrieves hierarchical features from individual points and SOM nodes. A Point-to-
node search is performed on the output of the SOM for each point. Each point is normalized,
and features are learned through a series of fully connected layers. Node feature extraction
is done through channel-wise max-pooling the point features. Final learned features are
extracted using a batch of fully connected layers referred to as a small PointNet.

• (Graph) Convolutional Point Networks

ConvPoint [37] proposes continuous convolution kernels to allow arbitrary point
cloud sizes. Points {q} are selected iteratively from the input point cloud {p} until the
target number of points is reached through a score-based process. Using a kd-tree built
on the input point cloud, K-nearest neighbour search from {p} is performed on points
in {q}. A convolution operation is performed for each subset, generating the output
features. Operations detailed by ConvPoint are successfully adapted for classification,
part segmentation, and semantic segmentation tasks. ConvPoint can produce significant
performance with time- and cost-efficient. Dynamic Graph CNN (DGCNN) [38] generates
local neighbourhood graphs and applies convolution on the edges connecting neighbour
point pairs. Unlike traditional graph CNNs, DGCNN uses a dynamic graph where the set
of k-nearest neighbours for a point change between layers in the network and is calculated
from the sequence of embeddings. The EdgeConv block introduced by DGCNN computes
edge features for each input point and applies an MLP followed by channel-wise symmetric
aggregation. Taylor Gaussian mixture model (GMM) network (TGNet) [39] is composed of
units named TGConv that perform convolution operations parametrized by a family of
filters on irregular point sets. The filters are products of geometric features expressed by
Gaussian weighted Taylor kernels and local point features extracted from local coordinates.
TGConv features are aggregated using parametric pooling to generate feature vectors for
each point. TGNet uses a CRF at the output layer to improve segmentation results.

5. Benchmark Datasets

Advancements in Deep learning on point clouds have attracted more and more atten-
tion, especially in the last few years. Several publicly available datasets were also released,
which helped further support research on DL development. An increasing number of meth-
ods have been introduced to deal with various challenges related to point cloud processing,
including 3D shape classification, 3D object detection and tracking, 3D point cloud seg-
mentation, 3D point cloud registration, 6-DOF pose estimation, and 3D reconstruction [18].
Table 1 briefly overviews some of the most commonly used publicly available point cloud
datasets. Outdoor datasets are classified based on acquisition technique, Aerial, Mobile,
or Terrestrial Laser scanned data or ALS, MLS, and TLS, respectively. The remaining
datasets in this paper are indoor laser-scanned datasets and datasets of object scans. While
ModelNet40 and S3DIS are not LiDAR scanned datasets, they are included as we found
that they are the most commonly tested datasets for their respective tasks in remote sensing
classifications. ModelNet40 dataset consists of CAD files; most point cloud network testing
uses a point cloud sampled from the 3D object files. The models that used the ModelNet40
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dataset outlined later in the paper are tested on the dataset by sampling the objects into a
point cloud and then applying the model. Similarly, S3DIS, while not LiDAR data, is a point
cloud and the models tested on it are suitable for point clouds obtained from LiDAR scans.

Table 1. Benchmark datasets for training and testing deep learning on 3D point clouds.

Dataset Data Type Data Format Points/Objects No. of Classes Density

ModelNet40 [40] 3D CAD OFF Files 127,915 Models 40 N/A

ISPRS 3D Vaihingen
[41] ALS LiDAR x, y, z, reflectance,

return count 780.9 K pts 9 4–8 pts/m2

Hessigheim 3D [42] ALS LiDAR x, y, z, intensity,
return count

59.4 M training pts,
14.5 M validation
pts

11 800 pts/m2

2019 IEEE GRSS Data
fusion contest [43] ALS LiDAR x, y, z, intensity,

return count

83.7 M training pts,
83.7 M validation
pts

6 Very dense

AHN(3) [44] ALS LiDAR

x, y, z, intensity,
return count,
additional
normalization, and
location data

190.3 M pts 5 20 pts/m2

RoofN3D [45] ALS LiDAR multipoints,
multipolygons 118.1 K roofs 3 4.72 pts/m2

semanticKITTI [46] MLS LiDAR x, y, z, reflectance,
GPS data 4.549 K pts 25 (28) Sparse

S3DIS [47]
Indoor
Structured-light
3D scanner

x, y, z, r, g, b 215.0 M pts 12 35,800 pts/m2

Paris-Lille-3D [48] MLS LiDAR
x, y, z, reflectance,
additional position
data

143.1 M pts 10 coarse (50
total) 1000–2000 pts/m2

Toronto3D [49] MLS LiDAR

x, y, z, r, g, b,
intensity,
additional position
data

78.3 M pts 8 1000 pts/m2

ArCH [50] TLS LiDAR,
TLS+ALS LiDAR

x, y, z, r, g, b,
normalized
coordinates

102.1 M training
pts, 34.0 M testing
pts

6–9
depending on
the scene

subsampled
differently
depending on the
scene

Semantic3D [51] TLS LiDAR x, y, z, intensity, r,
g, b 4.0 B pts 8 Very dense

3D Forest [52] TLS LiDAR x, y, z, intensity 467.2 K pts 4 15–40 pts/m2

6. Performance Metrics

Various evaluation metrics have been used for segmentation, detection, and classi-
fication. The summary of the evaluation metrics [53] is shown in Table 2. Metrics for
segmentation, detection, and classification are the intersection over union (IoU), mean IoU,
and overall accuracy (OA) [53]. Detection and classification results are mainly analyzed
using precision, recall and F1-score, which takes the true positives (TP), false positives (FP),
and false negatives (FN) for calculation.
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Table 2. Performance Evaluation Metrics.

Metric Formula

IoU IoUi =
cii

cii+∑j 6=i cij+∑k 6=i cki

Where cij is ground truth class,
i predicted as j

mIoU mIoU = ∑N
i=1 IoUi

N
Where N is the number of

classes

OA OA = ∑N
i=1 cii

∑N
j=1 ∑N

k=1 cjk

Precision Precision = TP
TP+FP

Recall Recall = TP
TP+FN

F1 score F1 = 2TP
2TP+FP+FN

Average precision (AP) AP = 1
11 ∑

r∈{0,1,...,1}
max:≥r p()

Kappa coefficient K =
N ∑k

i=1 xii−∑k
i=1(xi+×x+i)

N2−∑k
i=1(xi+×x+i)

7. Comparative Analysis

The datasets ModelNet40, S3DIS, and Toronto3D provide an overview of benchmarks
used for different classification tasks: object classification, indoor scene classification, and
urban outdoor classification. Table 3 shows the performance comparison for the current 3D
object classification, indoor scene segmentation, and outdoor urban semantic segmentation
models using various evaluation metrics. The best-performing configuration for each
model was selected. For example, using a higher sampled point cloud in ModelNet40 tests
can produce better performance. Therefore, if the authors tested the models using different
point counts, the best set of results is used. The results outlined in the table are obtained
from the testing by each model’s respective author(s) except for the ConvPoint results
on Toronto3D, which we tested for this paper. From Table 3, we can see that DGCNN
and ConvPoint achieve the best performance on most datasets while being lightweight
relative to models with similar performance. Additionally, these two models have been
tested on multiple different tasks and different types of datasets. The major limitation of
ConvPoint is that the convolutional layer introduced is a scale agnostic, i.e., the object’s
size is important for scans and provides valuable information. DGCNN could be further
improved by adjusting the implementation details to improve the computational efficiency
of the model.

Most remote sensing papers use one of the previously outlined computer vision
models. The model is deployed directly for the application dataset or modified and attached
to post and/or preprocess pipelines. To further test the performance of the ConvPoint
model in this paper, we have also experimentally trained ConvPoint on Toronto3D using
labels such as L001, L003, and L004 and used L002 for testing. The training was run using
batch size 8, block size 8, and #of points 8192 for 100 Epochs. The testing results are
marked with a (*) in Table 4. Table 4 includes some applications categorized according to
their dataset, performance, and remote sensing deployment. We can conclude that both
DGCNN and ConvPoint have shown promising results across the different applications in
remote sensing.
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Table 3. Comparative Analysis of Deployed Models.

ModelNet40 Object Classification

Method OA Class Average Accuracy

PointNet [11] 89.2 86.2

PointNet++ [13] 91.9 -
ConvPoint [37] 92.5 89.6
DGCNN [38] 93.5 90.7
MVCNN [32] 90.1 79.5

FKAConv [54] 92.5 89.5

VoxNet [33] 83.0 -

SO-Net [36] 93.4 90.8

PointASNL [35] 93.2 -

S3DIS Indoor Semantic segmentation

Method OA mIOU

PointNet [11] 78.62 47.71

ConvPoint/Fusion [37] 85.2/88.8 62.6/68.2

DGCNN [38] 84.1 56.1

PointASNL [35] - 68.7

TGNet [39] 88.5 57.8

FKAConv [54] - 68.4

Toronto3D Urban MLS Semantic segmentation

Method OA mIoU Road Road
mrk. Natural Bldg Util.

line Pole Car Fence

PointNet++ [13] 84.88 41.81 89.27 0.00 69.00 54.10 43.70 23.30 52.00 3.00
DGCNN [38] 94.24 61.79 93.88 0.00 91.25 80.39 62.40 62.32 88.26 15.81
TGNet [39] 94.08 61.34 93.54 0.00 90.83 81.57 65.26 62.98 88.73 7.85

MSAAN [55] 95.90 75.00 96.10 59.90 94.40 85.40 85.80 77.00 83.70 17.70
ConvPoint * [37] 96.07 74.82 97.07 54.83 93.55 90.60 82.9 76.19 92.93 12.42
[56] 93.6 70.8 92.2 53.8 92.8 86.0 72.2 72.5 75.7 21.2

Table 4. Overview of some deep learning contributions focused on remote sensing data.

Paper Category Architecture(s) Based
on/ Proposed Test Dataset Performance 1 Application

[5] 2D Projection CNN, cGAN TUM MLS 2016 85.04 *

Road marking
extraction,
classification, and
completion

[57] 2D Projection 1D CNN, 2D CNN,
LSTM DNN ISPRS 3D Vaihingen 79.4 * ALS Point cloud

classification

[56] 2D projection
Point CNN 3D Convolution U-Net Toronto3D 70.8 ˆ MLS Point cloud

semantic segmentation

[58] Multi-view Projection MVCNN RoofN3D
99 * Saddleback
96 * Two-sided Hip
83 * Pyramid

Roof Classification

[59] Voxelization Clustering,
Voxelization, 3D CNN ISPRS 3D Vaihingen 79.60 * ALS Point cloud

classification
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Table 4. Cont.

Paper Category Architecture(s) Based
on/ Proposed Test Dataset Performance 1 Application

[60] Voxelization, 2D
projection DenseNet201 ISPRS 3D Vaihingen 83.62 * ALS Point cloud

classification

[61] PointNet/MLP/FCL
PointNet++, Joint
Manifold Learning,
Global Graph-based

ISPRS 3D Vaihingen
AHN3

66.2 *
83.7 *

ALS Point cloud
classification

[62] PointNet/MLP/FCL PointNet++ Proprietary 95.4 ~
TLS Forest Point cloud
Semantic
Segmentation

[21] PointNet/MLP/FCL MSSCN, MLP, Spatial
Aggregation Network

S3DIS
ScanNet

89.8 ~
86.3 ~

Point Cloud Semantic
Segmentation

[55] PointNet/MLP/FCL MSAAN, RandLA-Net CSPC (scene-2,
scene-5) Toronto3D 64.5 ˆ, 61.8 ˆ, 75.0 ˆ Point Cloud Semantic

Segmentation

[63] PointNet/MLP/FCL PointNet T-Nets,
FWNet, 1D CNN ZORZI et al. 2019 76 *

Full-Waveform LiDAR
Semantic
Segmentation

[64] Point CNN Dconv, CNN, U-Net ISPRS 3D Vaihingen 70.7 * ALS Point cloud
classification

[65] Point CNN ConvPoint, CNN
Saint-Jean NB
(provincial website)
Montreal QC (CMM)

96.6 ˆ
69.9 ˆ

ALS Point cloud
classification

[66] Voxelization
3D CNN 3D CNN, DQN ISPRS 3D Vaihingen 98.0 ~

Point cloud
classification and
reconstruction

[67] Graph/Point CNN Graph attention CNN ISPRS 3D Vaihingen 71.5 * ALS Point cloud
classification

[68] Graph/Point CNN DGCNN AHN3 89.7 * ALS Point cloud
classification

[6] Graph/Point CNN DGCNN ArCH 81.4 *
Cultural Heritage
point cloud
segmentation

1 f1-Score is denoted by *, mIOU is denoted by ˆ and OA is denoted by ~.

8. Conclusions and Future Directions

Recent work on the advances of deep learning on LiDAR 3D point cloud processing
was analyzed and summarized. An overview of the different model types and the state-
of-the-art and/or fundamental models of each type was provided. Additionally, the
performance of the models was provided on datasets for different classification tasks. The
strongest performing models were trending towards 3D Graph CNNs and 3D CNNs [69,70]
that work directly on the raw point cloud data. These models can provide state-of-the-art
performance and remain computationally lightweight. Finally, different applications of
remote sensing that deploy deep learning models were overviewed. One major challenge
when comparing the remote sensing models was the lack of standardized test datasets and
the frequent use of proprietary datasets. Notable test datasets available are Toronto3D,
Paris-Lille 3D, ISPRS 3D, and S3dIS. Future Directions would involve expanding the
application of the state-of-the-art methods in autonomous driving [71,72].
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