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Abstract: Visual relationship detection aims to completely understand visual scenes and has recently
received increasing attention. However, current methods only use the visual features of images
to train the semantic network, which does not match human habits in which we know obvious
features of scenes and infer covert states using common sense. Therefore, these methods cannot
predict some hidden relationships of object-pairs from complex scenes. To address this problem, we
propose unifying vision–language fusion and knowledge graph reasoning to combine visual feature
embedding with external common sense knowledge to determine the visual relationships of objects.
In addition, before training the relationship detection network, we devise an object–pair proposal
module to solve the combination explosion problem. Extensive experiments show that our proposed
method outperforms the state-of-the-art methods on the Visual Genome and Visual Relationship
Detection datasets.

Keywords: visual relationship detection; vision–language fusion; knowledge graph reasoning

1. Introduction

With the rapid development of deep learning, computer vision has achieved good
performance in many tasks, such as object classification [1,2], detection, and semantic
segmentation. However, given an image, understanding the relationship between object-
pairs is still a challenging task. It not only localizes the spatial and semantic information of
object-pairs but also infers pairwise relationships. Visual relationships are usually expressed
as triples <subject–predicate–object> [3–5]. They play an essential role in higher-level
vision tasks, such as visual question answering [6], image captioning [7], and image
generation [8]. There are many promising results in visual relationship detection works.
For example, Qi et al. [9] proposed a method to caption better sports videos by modeling
players’ interactions. Song et al. [10] devised a visual graph network to propagate semantic
information to capture relationships.

Although the existing methods have achieved superior performance in relationship
detection works, there are still two key dilemmas in this field, including combination
explosion and non-exclusive label problems, as follows. (1) The combination explosion
problem: prior works [11] follow the naive proposing method that if it extracts N objects
from an image, there are N(N-1) object-pairs in the object-pair proposal state based on N
detected objects. Even worse, multiple correlated relationships usually exist between two
objects, and we tend to reserve more visual relationship triplets so that the combinations
grow explosively. (2) The non-exclusive label problem. where, as different relationships in
the label space have similar semantic information, a pair of objects may be associated with
a group of predicates, not just one category. In particular, some predicates in the label space
do not satisfy this assumption and have very similar semantic meanings, which results in
blurred visual borders among these predicates. In other words, one visual object pair can
be associated with a set of labels, not only a one-hot category [12].
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To address these problems, there are two steps in our framework. First, we propose a
relationship proposing module, which predicts whether a relationship exists between two
objects. Relationship proposing filters out irrelevant pairings and only keeps relevant pair-
ings. Moreover, it predicts the probability of the relationship and ranks scores. Second, we
integrate two prediction modules. With the development of computer vision, especially the
emergence of ViT [13], transformers have been applied to the multimodal research field. To
capture useful semantic information, we propose a vision–language fusion module, which
utilizes visual features and word embedding to predict the probability of the predicate. In
addition, inspired by human cognition of relationships, we construct a knowledge graph
reasoning module to further reveal predicate-level semantic correlations.

As illustrated in Figure 1, when seeing the person and basketball, humans combine
common knowledge with many factors to infer what relationship there is between the
person and basketball. As a result, translation embedding is used to obtain the visual
semantic relationship [7], and then the convolution neural network is used to integrate
all the projection objects. The relationship features of the knowledge graph form a new
relationship feature and encourage higher probabilities for all possible predicates. We
summarize the contributions of our work below.
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Figure 1. Person sees the scene and infers the relationship between the player and basketball.

1. We propose a novel two-step prediction framework that unifies visual semantic rela-
tionship prediction, visual–language fusion prediction, and commonsense reasoning
with a knowledge graph.
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2. In the first step, we designed a relationship proposing module, which can effectively
filter out irrelevant objects to solve the problem of combination explosion in visual
relationship detection.

3. In the second step, we propose a relationship prediction model that fuses the two
modules of visual–language fusion and knowledge graph reasoning. Visual–language
fusion combines visual features and semantic embedding to find the potential as-
sociation between objects. Knowledge graph reasoning integrates visual semantic
relationships and external common knowledge to facilitate predicate inference.

4. Experiments on the Visual Genome and Visual Relationship Detection (VRD) datasets
show that our proposed method performs better than current state-of-the-art methods,
especially working well for infrequent relationships.

2. Related Work

In early works, visual relationship detection was developed as a phrase classification
task [14] whose scale developed poorly since it was significantly dependent on sufficient
training data [15]. Afterward, researchers proposed combining objects and predicates into
triples for expressing relationships. For example, Lu et al. [16] first detected subjects
and objects and then classified their predicates individually. Recently, as one of the most
challenging problems in computer vision, visual relationship detection has been extensively
investigated [17–19]. Li et al. [20] proposed a recurrent attention method, which can
detect pipelines and focus on different parts of the image when given more than two
predicates for object-pairs. Liu et al. [15] used the RGB-D information of images to represent
inaccurate depth features for extracting semantic information. Qian et al. [6] propose
to refine the scene graphs for improving the effectiveness and present a scene graph
refinement network (SGR), which introduces a transformer-based refinement network to
enhance the object and relation features for better classification. Wu et al. [21] propose to
enhance video captioning with deep-level object relationships that are adaptively explored
during training and present a transitive visual relationship detection (TVRD) module. They
estimate the actions of the visual objects, and construct an object–action graph (OAG) to
describe the shallow relationship between the objects and actions. Liu et al. [22] propose
a multimodal similarity guided relationship interaction network (MSGRIN) to explicitly
model the relations of relationships in graph neural network paradigm. The MSGRIN
takes the visual relationships as nodes to construct an adaptive graph and enhances deep
message passing by introducing entity appearance reconstruction, entity relevance filtering,
and multimodal similarity attention.

Based on the above work, we propose a unified framework that is generally divided
into two steps, which include object-pair proposal and predicate recognition [11]. First, the
main task of object-pair proposal is to remove some unrelated object pairs. Researchers
have performed some corresponding work in this regard. For example, Li et al. [23]
scored a triplet non maximum suppression (NMS) to reduce the number of object-pairs.
Zhou et al. [24] extracted the spatial relationship from an image and ranked the intersection
over union (IOU) scores while ignoring the semantic relevance. Compared with previous
methods, we integrate object spatial features, word semantic embedding, and attention
mechanisms to derive relational predicates to predict object pair proposals and rank scores.
Second, predicate recognition integrates vision–language fusion and graph reasoning with
common sense knowledge [23,25]. Liu et al. [15] proposed integrating object features with
the language prior and clustering-driven attention to infer visual predicates.

In our method, we make up for the above shortcomings and integrate the relationship
between vision and language. Vision–language fusion takes object-mechanism feature
information to analyze the existing characteristic relationship [25]. In addition, we also
integrate the knowledge graph into the model so that it can correct the probability of a
relational predicate by using common knowledge reasoning combined with the influence
of the environment and improve the accuracy of relational expression.
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3. Approach

In this section, the overall framework of our model is first introduced, and then we
describe each module of the model in detail. Finally, the process of training and reasoning
is shown.

As illustrated in Figure 2, our framework is divided into four modules, including
Feature Extraction of Image (blue box), Relationship Proposing (light green box), Vision-
Language Fusion (pink box), Knowledge Graph Reasoning (brown box). Firstly, if receiving
an image, Feature Extraction of Image is a pretrained detector that outputs a set of object
labels, object features and corresponding bounding boxes. Then all of feature factors are
fed into the Feature embedding module (yellow box) to output feature embedding. Feature
embedding is fed into relationship proposing module to obtain a rating score of object
proposal. Finally based on all of above factors, we utility vision–language fusion module
and knowledge graph reasoning module to recognize predicates.
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Figure 2. Structure of our proposed framework. A blue box is a module that is used to extract the
features of an image and predict object labels. The green box can propose object-pairs and rate location
embedding. The orange and brown boxes are the vision–language fusion module and knowledge
graph reasoning module, respectively.

3.1. Image Feature Extraction

In our work, gaining all of the information from the image is a crucial step for relationship
detection. The following sections detail several components of image feature extraction.

We choose the pretrained object detection model Faster R-CNN [11] with the ResNet_101
backbone as the image detector. Given an image, it exactly detects all object labels L = {li},
object features V = {vi}i∈N , and bounding boxes B = {xi, yi, wi, hi}i∈N , where (xi, yi) is
the upper left corner of i-th bounding box, wi is denoted as width and hi is height. The
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object-pairs are denoted as N (N − 1), and the corresponding feature of the union bounding
box is:

boxi,j
union =

[
xi; yi; xj; yj; ln

(
wi
wj

)
; ln

(
hi
hj

)
; ln
(wj

wi

)
; ln
(hj

hi

)]
(1)

where ln
(

wi
wj

)
is the width ratio and ln

(
hi
hj

)
is the height ratio. To adjust it, we introduce a

fully connected layer as follows:

Vemb =
{

Relu(Norm(Linear(Vi) + Linear(Bi) + idxi))
}

i∈{1, 2, 3}
(2)

As shown in Figure 2, the feature embedding module fuses the above information,
and the region index for each region is denoted as idx =

{
idxi

}
i∈{1, 2, 3}

, calculating the

embedding code of the image feature, denoted as:

Vemb =
{

Relu(Norm(Linear(Vi) + Linear(Bi) + idxi))
}

i∈{1, 2, 3}
(3)

where Linear(·) is denoted as full connection layer; Norm(·) denotes normalization func-
tion; and Relu(·) is denoted as nonlinear activation function.

3.2. Relationship Proposing

To determine whether two objects are related to one another, our proposed relationship
proposal module is built on the feature extraction of the image module. The proposed relation-
ship contains a multihead scaled dot-product attention sublayer [26], layer normalization [27],
and N fully connected layers, where N is set to 3. The feature embedding of the feature
extraction of an image module is denoted as Li ∈ Rdw , i ∈ K, where K is the number of initial
object-pairs. The calculation formula is represented as follows:

X = softmax(
(W0Li)

T•(W1Li)√
dw/H

) (4)

headh = (W2,hLi)X, h = 1, . . . , H (5)

L̃i = W3[head1, . . . , headH ] (6)

D = LN(L̃i + Li) (7)

where H is the number of attention heads. W0, W1, W2 ∈ R
dw
H ×dw are the projection matrices

for the H-th head. LN(·) denotes layer normalization, D is input into fully connected layers,
Y = f3(D), where f3(·) is an output network implemented by three full connection layers.
The probabilities of object-pairs being related to one another are denoted as P, defined as:

P = softmax(W4Y) (8)

To search the corresponding object pair closer to one human-annotated relationship in
one image, we calculate the area of intersection between bounding-box objects detected by
the detector and object annotations. In an image, relationship annotations are denoted as
{mk

<b̃sub,b̃obj>
}

k∈{1,2,...,n}
, which describes the relationship feature between object-pairs. The

target combination that should be obtained is represented as M
<b̃sub,bobj>

. The overlap rate

between object-pairs is defined as:

p = max({IOU (mk
<b̃sub,bsub>

) · IOU(mk
<b̃obj,bobj>

)}k∈{1,2,...,n}) (9)

where IOU(·) is denoted as the ratio of intersection and union of two bounding-boxes. The
larger p is the closer that the corresponding object-pair is to one human-annotated relationship.
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We make the binary rating label λ indicate whether a relationship exists between
object-pairs and set λ as 1 or 0, as follows:

λ =

{
1 p > 0.5
0 p < 0.3

(10)

Object-pairs are removed when p is between 0.3 and 0.5 in the training process. The
loss is:

Lpr =
1
K

K

∑
k=1

[λk log Pk + (1− λk) log(1− Pk)] (11)

where K is the batch size.

3.3. Proposal Scores of Object-Pairs

Plausible proposals are produced from the outputs of the pretrained object-pair pro-
posal model. We calculate the probability of each object-pair < oi, oj >, and the proposal
score is defined as

Pij
r = P<oi ,oj>·Φ(oi)·Φ(oj) (12)

where Φ(·) is the probability of an object from the object detector. The rating score comes
from the ranking proposal of object-pairs by proposal scores Pij

r .

3.4. Vision–Language Fusion

Based on the output of the feature extraction of an image module, we encode feature
embedding and object labels as inputs and use bidirectional multimodal transformers [12]
as backbones. As shown in Figure 2, vision–language fusion, text embedding, and visual
features are concatenated as input, represented by t = {tv

1, . . . , tv
|v|, tx

1 , . . . , tx
n} = Cod(ev, ex).

As discussed in Section 3.1, the feature extraction of an image module attains the feature
vector denoted as ev = {emb1, emb2, emb3} and ex = {encode(label1), encode(label2)}.
The multimodal transformers architecture consists of an encoder and decoder. The encoder
is a stack of m transformer encoder blocks denoted as Em, and the decoder is a stack of m
transformer decoder blocks denoted as Dm. Each transformer encoder block consists of a
self-attention layer and a fully connected layer with additional residual connections [2].
However, the transformer decoder has an additional cross-attention layer compared with
the encoder in each block. The output of the encoder is oe = Em(t) and the output of
the decoder is od = Dm(oe, yi), where yi denotes the decoder’s input token. Finally, the
probability of feature text tokens is predicted.

Pθ(yi+1|yi, t) =
exp od

i+1

∑yj∈Y exp od
yj

(13)

The model parameters θ are trained by minimizing the negative log-likelihood of text
embedding and visual feature vector as:

Lvlf = Lcel(Ppred,n, yn) = −
|y|

∑
i=0

logPθ(yi+1|yi, t) (14)

where the initial input token y0 is a start-of-sequence token and Lcel is the cross-entropy loss.

3.5. Knowledge Graph Reasoning

In Figure 2, for knowledge graph reasoning, the object space contains the entities
obtained from the image and represented by the brown color. At the same time, we map
relationships from a commonsense knowledge graph to the object space, represented
by yellow. In the knowledge graph, the relationship between entities is expressed by
translation embedding models, subject + predicte ≈ object. Moreover, it can also solve
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the relationship characteristics of visual objects. From Sec. A, we can obtain all the object
features, which are denoted as VDd

, vi, vj ∈ VDd
, where vi is the object and vj is the subject.

The relationship formula between two entities can be expressed as follows:

Wfsvi + rso ≈Wfo vj (15)

where embedding matrices Wfs, Wfo ∈ Ru×Dd
and relationship vector rso ∈ Ru.

Based on feature extraction of the image, the spatial union box feature vij between two
objects can be obtained. The relationship representation can be deduced Rij from Formula (15):

Rij = (Wfovj −Wfsvi) ◦ vij (16)

where Rij ∈ Ru×Dd
is a relationship group indicating k relationships between object-pairs.

To select the correct relationship predicate, it distinguishes the relationship between
two objects. Transformation matrices Wvl ∈ R(Dd+L)×Dc

map Wl(li, lj) ∈ Ru×L and Rij con-
catenation matrix, resulting in multiple groups of entities’ evolved features, as following:

Ra = ∑
li ,lj∈L

Wvr[Rij, Wl(li, lj)]Wvl (17)

where Ra ∈ RDc×Dc
, Wvr ∈ RDc×u is a transformation matrix.

As human common knowledge has the function of reasoning about the relationship
between two entities, we will use common knowledge semantics to constrain the repre-
sentation of nodes in the knowledge graph. Â is an adjacency matrix that contains the
original A and identity matrix I and is denoted as Â = A + I in graph G. We use graph
convolutional networks [28] such that all rows sum to one, i.e., Q−

1
2 AQ−

1
2 , where Q is the

diagonal node degree matrix of A. Relational knowledge presentation is Smc ∈ RM×Dc
and

the formulation is represented as:

Smc = σ(Q̂−
1
2 ÂQ̂−

1
2 [Ra, S]Wm) (18)

where S ∈ RDc×L maps the common relationship from the knowledge graph.
For making Smc refine relationship characteristics, we extended the concatenation of

R and Smc, representing R̂ ∈ RN×M×Dd
and Ŝmc ∈ RN×M×Dc

. Through a trainable weight
matrix, Wh ∈ R(Dd+Dc)×1 evaluates the compatibility of relational knowledge presentation,
resulting in Srt

Srt = σ(
⌊

R̂, Ŝmc
⌋
Wh)SmcWst (19)

where Wst ∈ RDc×Dd
is a transformation matrix, adjusting the dimension of output.

Srt ∈ RN×Dd
is N groups of relational knowledge presentations.

To enhance relationship representations, we fuse the spatial relationship Rij and the

common knowledge relationship sij
rt ∈ Srt is as follows:

Pij
r = softmax(αWp

r Rij + βWp
s sij

rt) (20)

where α and β are the trade-off parameters and Wp
r and Wp

s are learned parameters.

3.6. Training and Inference Procedures

During the training stage, we unify vision–language fusion and knowledge graph
reasoning into the overall framework, and the training loss is defined as:

Lr = αLvlf + βLcel(Pr
ij, yn) (21)
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4. Experiments

In the following work, we perform experiments to verify the proposed model, compare
it with current state-of-the-art methods and use charts to show the relevant detection results.
In addition, we also adjust the hyper-parameters and configuration structure of the model
and then analyze their impact on the results.

4.1. Datasets

Visual Relationship Dataset (VRD) [11]. VRD is a previous dataset using relational triples
as annotations for visual relationship detection. It consists of 70 predicate categories, 100 object
categories and 5000 images. We use 20% of the images for testing and 80% of the images for
training. In addition, there are 6672 unique relationships and 37,993 relationship instances.

Visual Genome (VG) [29]. VG is a larger scale relationship dataset than VRD. Currently,
the pruned version of VG contains 19,237 unique relations, 1,174,692 relation instances,
200 object categories, and 100 predicate categories. In addition, there are 99,658 images,
consisting of 73,801 images for training and 25,857 for testing [30].

4.2. Analysis of Common Sense Knowledge

We extract structured information such as entities, relationships, and entity attributes
from semi-structured and unstructured data. After acquiring new knowledge, they are
integrated to eliminate contradictions and ambiguities, for some entities may have multiple
expressions, and a specific title may correspond to multiple different entities. As the
knowledge obtained by the automatic extraction method often has a large number of
missing relationships, we further complete the knowledge based on the existing knowledge.
For the new knowledge that has been merged, the qualified part can be added to the
knowledge base only after the quality evaluation (part of which needs to be manually
screened) to ensure the quality of the knowledge graph. In knowledge graphs, there are
219,506 relationship instances, 816 object categories, and 113 predicate categories.

4.3. Evaluation of Model

Phrase detection. Given an image, phrase detection aims to indicate what the relation
is between objects and output the triplet of labels <subject–predicate–object>. There are
correct labels and bounding box proposed has more than 0.5 IOU with the ground truth box.

Relationship detection. Relationship detection not only detects two correct object
labels and corresponding bounding boxes, but also it locates their IOU with the ground
truths more than 50% of which each box has. Equally, the output is a relationship triplet of
labels <subject–predicate–object>.

Predicate Classification. With the ground truth boxes and categories of object given,
the task of predicate classification is to predict possible predicates between the objects.

4.4. Experimental Environment and Parameter Settings

In the experiment, our server is conducted on a single NVIDIA Quadro RTX 8000 GPU
and 128 G RAM. We implement our method with the PyTorch [11] framework and use
Faster R-CNN as the object detector. Adam [31] is used as the optimizer with an initial
learning rate of 0.00001. We trained our model for 60 epochs on the VRD and on the VG.

4.5. Comparison with the State-of-the-Art Methods

BLOCK [17] combines image features and semantic embedding, ignoring spatial loca-
tion information between the subject and object. Compared with BLOCK, Zoom-Net [32]
performs better, fusing image features, spatial location information, and semantic em-
bedding. Based on fusing the three features mentioned above, HGAT [29] constructs an
object-level attention graph and a triplet-level attention graph, and MF-URLN [33] ex-
plores undetermined relationships and achieves significant improvements. In contrast
to MF-URLN, which directly incorporates determinate confidences into final predictions,
TCE [11] utilizes rating scores that indicate probabilities of objects being related to one



Sensors 2022, 22, 7918 9 of 13

another to select plausible proposals to reduce computational complexity. Inspired by the
previous methods, we integrate all the advantages of the previous methods and achieve
better performance.

To prove the advantages of our method, we compare our model with the above state-
of-the-art methods and describe the detailed results of relation detection, phrase detection,
and predicate detection in the following sections.

4.5.1. Experiments on the VRD

We compare our method with the representative method TCE and MSGRIN [22] at
present in R@n; when n is set to a different parameter, the result is greatly impacted. As
shown in the Figure 3, our method considerably improves and our model outperforms
TCE, e.g., 92.35% vs. 90.25% for R@50 in predicate detection. In different tasks, the perfor-
mance of the model is also different. In relationship prediction, our model outperforms
MSGRIN by 3% and 41.87% vs. 38% for R@100, while our model outperforms MSGRIN
33.81% vs. 30.8% for R@50. Compared with TCE and MSGRIN, we have added attention
mechanism in our model to associate image features with relationships, which produces
better results.
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Figure 3. While k is set 70, our method surpasses TCE and MSGRIN in R@n, reaching state-of-the-art
results in predicate detection.

Based on R@n, we introduce the top-k predicate after sorting the confidences of
predicates between a pair of objects. Hyper-parameter k is set to 1 and 70 in per n value. As
illustrated in Table 1, compared to TCE, our model achieves comparable performances in
predicate detection, especially 61.13% vs. 57.93% for R@50, k = 1. In addition, our method
outperforms MSGRIN by more than 2% on all sets in the relation detection.
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Table 1. Comparison with previous methods on VRD, where bold font indicates the best results.

Method
Predicate Detection Phrase Detection Relationship Detection

R@100/50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50
k = 1 k = 70 k = 70 k = 1 k = 1 k = 70 k = 70 k = 1 k = 1 k = 70 k = 70

Zoom-Net [32] 55.98 94.56 89.03 28.09 24.82 37.34 29.05 21.41 18.92 27.30 21.37
BLOCK [17] - 92.58 86.58 - - 28.96 26.32 - - 20.96 19.06

TCE [11] 57.93 96.05 90.25 40.01 33.46 45.69 36.69 31.37 26.76 37.13 30.19
MF-URLN [33] 58.20 - - 36.10 31.05 - - 26.80 23.90 - -

HGAT [29] 59.54 97.02 90.91 - - - - 24.63 22.52 27.73 22.90
MSGRIN [22] 57.9 96.9 91.0 - 33.8 47.3 37.4 - 27.2 38.0 30.8

Ours 61.13 97.59 92.35 42.55 35.71 47.96 38.83 34.43 29.95 41.87 33.81

Since the number of training instances is even smaller than the possible triplet com-
binations, it is important to detect unknown relationships for the model. In a real en-
vironment, the relational semantics are similar between two different object-pairs. For
example, <person-sit on-desk> and <person-sit on-chair>. A successful model should have
the ability to generalize similar predicates. We evaluate our model in zero-shot detection
and compare it with current state-of-the-art methods, the results are listed in Table 2. As
we used the common sense relationship in the knowledge graph to reason the relationship
of object-pairs in the image, our model performs better than other methods in all sets.

Table 2. Comparison with previous methods on the VRD zero-shot set; bold font indicates the best results.

Method
Predicate Detection

k = 1 k = 70
R@100/50 R@50 R@100 R@50

MCN [34] 26.7 26.7 - -
TCE 26.52 26.52 86.66 72.97

MSGRIN - - 89.15 75.28

Ours 29.13 29.13 89.87 75.95

4.5.2. Experiments on the VG

To further validate that our method outperforms other methods, we evaluated our
method with the different metrics on VG.

As illustrated in the Table 3, our model performs better than the other methods in all
sets. We compare the method with TCE in R@n, k = 1, and our method respectively yields
3.37% and 4.14% gains for R@50 and R@100 in relationship detection. In addition, in R@n,
k = 100, our model significantly outperforms MSGRIN (e.g., for R@100, the result increases
from 23.19% to 26.95% and for R@50, it increases from 19.51% to 21.82%).

Table 3. Comparison with state-of-the-art methods on VG; bold font indicates the best results.

k Methods
Predicate Detection Phrase Detection Relationship Detection

R@100 R@50 R@100 R@50 R@100 R@50

1

MF-URLN 72.20 71.90 32.10 26.60 16.50 14.40
TCE 71.25 70.95 34.31 26.90 21.45 17.22

MSGRIN 71.64 71.23 33.49 26.35 21.08 16.79
Ours 73.32 72.69 36.83 28.76 25.59 20.59

100
TCE 96.23 91.19 35.04 27.75 22.82 18.47

MSGRIN 96.58 91.36 35.47 27.82 23.19 19.51
Ours 97.86 92.79 36.92 28.66 26.95 21.82

In summary, in the process of semantic understanding, TCE uses a fully-connected
network, while we use bi-transformers [12], which include an attention module and a fully-
connected network. Thus, by capturing the semantic information, our method performs
better than TCE. Moreover, we introduce a knowledge graph for common knowledge
reasoning, which not only helps to enhance the accuracy of relational predicates but can
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also greatly promote the prediction of similar predicates in zero-shot. In the next section,
we compare the result of the method without common knowledge reasoning with the
complete model from the perspective of visualization.

4.5.3. Qualitative Comparison of Our Model

To verify the effect of common knowledge reasoning, we compare our full method
and the method without the knowledge graph reasoning module, listing their results in the
Figure 4. As the knowledge graph includes all of environmental factors, the accuracy of
relationship detection between objects improves significantly and more relationships are
deduced in line with common knowledge. Moreover, the predicate between two objects
will be reasonably adjusted. In particular, it achieves a quite good effect on detecting the
predicate with similar semantics in zero shots.
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5. Conclusions and Future Work

In this paper, we devise a unified network architecture for visual relationship detec-
tion, which is the supervised model to realize triplet <subject–predicate–object>. We first
propose an object-pair proposal module to predict plausible proposals. Second, we fuse the
vision–language fusion module and the knowledge graph reasoning module to capture
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features of relationships from different perspectives, including attention-level information
and knowledge graph reasoning. In particular, we inject external common sense knowledge
to support the visual common sense reasoning task, which greatly promotes the accuracy of
predicate-detection. The experiment on the VRD and VG datasets shows that our method
outperforms the state-of-the-art methods.

In future work, we will attempt to extend our method to operate mobile robots, hoping
that relationship detection can play a great role in visual language navigation in the real world.

Author Contributions: Conceptualization, S.X.; writing—original draft preparation, S.X.; writing—review
and editing, S.X. and W.F. All authors have read and agreed to the published version of the manuscript.
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