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Abstract: Tremor is one of the common symptoms of Parkinson’s disease (PD). Thanks to the recent
evolution of digital technologies, monitoring of PD patients’ hand movements employing contactless
methods gained momentum. Objective: We aimed to quantitatively assess hand movements in pa-
tients suffering from PD using the artificial intelligence (AI)-based hand-tracking technologies of Me-
diaPipe. Method: High-frame-rate videos and accelerometer data were recorded from 11 PD patients,
two of whom showed classical Parkinsonian-type tremor. In the OFF-state and 30 Minutes after taking
their standard oral medication (ON-state), video recordings were obtained. First, we investigated the
frequency and amplitude relationship between the video and accelerometer data. Then, we focused
on quantifying the effect of taking standard oral treatments. Results: The data extracted from the
video correlated well with the accelerometer-based measurement system. Our video-based approach
identified the tremor frequency with a small error rate (mean absolute error 0.229 (±0.174) Hz) and
an amplitude with a high correlation. The frequency and amplitude of the hand movement before
and after medication in PD patients undergoing medication differ. PD Patients experienced a decrease
in the mean value for frequency from 2.012 (±1.385) Hz to 1.526 (±1.007) Hz and in the mean value
for amplitude from 8.167 (±15.687) a.u. to 4.033 (±5.671) a.u. Conclusions: Our work achieved an
automatic estimation of the movement frequency, including the tremor frequency with a low error
rate, and to the best of our knowledge, this is the first paper that presents automated tremor analysis
before/after medication in PD, in particular using high-frame-rate video data.

Keywords: Parkinson’s disease; tremor; video-based analyses; mediapipe; artificial intelligence

1. Introduction

Parkinson’s disease (PD) is one of the most frequent movement disorders that was first
described by James Parkinson in 1817 [1]. This disorder severely affects the patient’s quality
of life [2]. Worldwide, more than six million individuals suffer from PD [3]. Three out of four
PD patients develop a tremor [4]. Clinical evaluation of PD is generally done qualitatively or
semi-quantitatively using validated scales, like the Unified Parkinson’s Disease Rating Scale
(UPDRS) [5]. Quantitative methods, such as electromyography optionally, including an
accelerometer, are time-consuming and sensitive to any other body movement that corrupts
the signal [6]. In this context, research on automated diagnosis may have significant
importance in assisting medical professionals in the diagnosis and monitoring of tremors.

Due to the evolution of digital technologies, alongside the improved capabilities of
machine learning algorithms, we observe a strong increase in research activity regard-
ing automatic monitoring of PD motor symptoms [7], monitoring of the hands being of
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particular interest [8]. In this context, researchers have mostly focused on smart devices,
such as smartwatches [9–11] and smartphones [12–14]. However, in recent years, non-
contact sensing modalities using cameras have emerged with tremendous success [15].
These modalities could complement or even replace some of the existing contact-based
technologies soon since they offer several advantages. Contactless measurements provide
more comfortable diagnostics for patients [16], are more hygienic, and are easier to set
up. Research on how to utilize video recordings to monitor PD motor symptoms has been
performed in several works [17–21].

In the literature, researchers have presented different approaches for video-based anal-
ysis. Uhríková et al. [17] extracted signals based on intensity changes between video frames
(25 fps) for manually marked hands and conducted frequency analysis. Pintea et al. [18]
proposed Lagrangian and Eulerian approaches for hand-tremor frequency estimation from
videos (30 fps) localizing the hand by Convolutional Pose Machines [22]. To improve the
accuracy of Kinect-based (30 fps) estimation of amplitude and frequency, Alper et al. [19]
presented a fusion of Pose and Optical Flow methods analyzing a specified region of inter-
est (ROI). In another study, Williams et al. [20] used a smartphone to record videos (60 fps)
and performed the frequency analysis by manually localizing the hand.

The aforementioned studies showed the general feasibility of the approach but were
limited by the need for pre-processing, manual labeling, cropping, model training, and/or
ROI selection. An approach using automatic hand or hand region detection without
model training could facilitate the usage of video-based hand movement/tremor analysis
methods and shorten the analysis time by eliminating the labeling, algorithm training, or
ROI selection process.

In the following work, we performed an automatic video-based analysis of hand
movement using high-frame-rate (≥180 fps) video recordings with artificial intelligence
(AI)-based hand-tracking technology for before- and after-medication cases. We used
the novel MediaPipe [23] framework to detect the hand and derive location changes
between video frames automatically. Firstly, we compared the estimation of frequencies
and amplitudes from the video and the accelerometer data to show the accuracy of our
approach. In the second step, we investigated the frequency and amplitude changes before
(OFF-state) and after medication in patients undergoing standard oral treatment, including
L-Dopa and dopamine agonists (ON-state). To the best of our knowledge, this is the first
paper that presents automated analysis of hand movements of patients suffering from PD
before and after medication with a contactless measurement method, in particular using
high-frame-rate video data.

2. Materials and Methods

In this section, we describe the data recording and processing process.

2.1. Participants

In this study, 11 PD patients (between 52 and 83 years of age, mean age 66 years,
7 males and 4 females) participated. On average, they had been diagnosed with PD
for 10 years (min. 3, max. 20 years). In terms of disease severity, the Hoehn and Yahr
classification was between 2 and 3, and the average UPDRS Part III was 37.9 points (min.
22, max. 73 points). All patients were in-house patients of university hospital Aachen
enrolled in a 3-week rehabilitation program. The accelerometer data was recorded before
medication, and videos of the affected hand (in pronation position) were recorded before
and after medication. Extended information, including the UPDRS on patients, is given
in Table 1. Question 3.15 of the UPDRS estimates the postural tremor of the hands, only
the tremor-dominant site is given. The rating is between 0 (normal) and 4 (severe) [5].
Medication was taken according to the regular, individual scheme, the measurements were
done just before the next regular medication intake and then 30 min after.
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Table 1. Extended patient information.

Patient Age Sex Years Since Disease Onset

L-Dopa Equivalent Doses (mg)
UPDRS *

Part III (3.15) H&Y *
Daily Before the Second

Measurement

PAT001 58 m 7 500 100 22 (2) 2

PAT002 83 f 13 632 133 35 (1) 3

PAT003 69 f 3 175 75 29 (0) 3

PAT004 67 m 7 600 100 26 (0) 2

PAT005 68 f 7 1125 150 36 (0) 2

PAT006 69 m 20 725 125 41 (1) 2–3

PAT007 52 m 17 785 75 26 (0) 2

PAT008 57 f 10 1716 133 48 (1) 2–3

PAT009 71 m 9 837 100 52 (3) 3

PAT010 63 m 10 601 109 73 (1) 3

PAT011 71 m 7 775 150 29 (0) 3

* UPDRS: Unified Parkinson’s Disease Rating Scale, Sum, (X) value of question 3.15, dominant side, * H&Y: Hoehn
and Yahr.

2.2. Accelerometer Data Recording

Accelerometer data were recorded for 30 s with the Natus Nicolet™ VikingQuest
EMG/EP (Natus, Middleton, WI, USA) equipment by the same researcher throughout the
study with a standardized methodology. The subjects were sitting in a quiet temperature-
controlled room. An acceleration sensor was placed on the middle phalanx of the index
finger of the upper extremity of the tremor-dominant side while holding the hand still.
Surface-recording EMG electrodes were placed on the wrist (data not used). The raw data
of the recorded curves were then transferred to Matlab (Mathworks, Natick, MA, USA) for
further analysis.

2.3. Video Recording

The videos were taken of the tremor-dominant hand for 30 s with a camera, Lumix
GH5, Kadoma, Japan (PAT001 and PAT002), GoPro HERO7, San Mateo, CA, USA (all
others). The recording settings were set to slow-motion video recording with at least
180 frames/s. Image processing was performed with Python (Python Software Foundation)
and Matlab (Mathworks, Natick, MA, USA).

2.4. Data Extraction and Processing

The main data extraction and processing concept in this work aims to track the hand
movements from video recordings with high accuracy and precision. We used the AI-based
novel MediaPipe [23] hands algorithm to extract hand location changes automatically from
the videos. To achieve an accurate measurement, captured images should not contain
motion blur, which can be achieved by employing high-frame-rate cameras. MediaPipe
uses two models in a pipeline (a hand palm detection model and a hand landmark model).
Each frame of a video is fed into the palm detection model, which produces a bounding
box based on the palm. The hand landmark model uses this bounding box as an input and
returns a list of 21 hand landmarks given in Figure 1, each of which has three coordinates
(x, y, and z). Detailed descriptions of landmarks are given in Table 2. The frame width and
height, respectively, are used to normalize x (width) and y (height) to [0.0, 1.0]. z denotes
the landmark depth. By multiplying x with the frame width and y with the frame height,
the vertical and horizontal pixel coordinates of the hand landmarks can be calculated.
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to observe, the information from the vertical (y) axis of the hand landmarks was used for 
video-based acceleration estimation. Both the reference accelerometer data and extracted 
video time-series data were band-pass filtered between 0.5–15 Hz. 

Generally, variations of frequency over time in tremors are expected. To observe 
these changes, following the filtering, both accelerometer and video time-series data (for 
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signal for accelerometer and 5 segments of 2-s signal for video data). The segment length 
of 2 s was chosen to obtain a more detailed and precise frequency spectrum in comparison 
to 1-s segment length. 

Figure 1. MediaPipe hand landmarks.

Table 2. Descriptions of MediaPipe landmarks.

00 Wrist
01 Thumb carpometacarpal joint
02 Thumb metacarpophalangeal joint
03 Thumb interphalangeal joint
04 Thumb tip
05 Index finger metacarpophalangeal joint
06 Index finger proximal interphalangeal joint
07 Index finger distal interphalangeal joint
08 Index fingertip
09 Middle finger metacarpophalangeal joint
10 Middle finger proximal interphalangeal joint

11 Middle finger distal interphalangeal joint
12 Middle fingertip
13 Ring finger metacarpophalangeal joint
14 Ring finger proximal interphalangeal joint
15 Ring finger distal interphalangeal joint
16 Ring fingertip
17 Little finger metacarpophalangeal joint
18 Little finger proximal interphalangeal joint
19 Little finger distal interphalangeal joint
20 Little fingertip

Depending on the hand positions (some patients start keeping their hand on their lap
and then lift it later on, or some put it down before the video ends), a couple of seconds
from the start and end of every video were cut. From the remaining videos, 21 landmarks
of the affected hand were extracted sequentially over 10 s and represented as a 10-sec long
signal. Besides blur-free videos, using a high-frame-rate helps to determine the correct
signal amplitude and waveform of the extracted one-dimensional signal, as its sampling
frequency obviously corresponds to the frame-rate. A sample landmarks extraction is given
in Figure 2.
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Since videos were recorded from a viewpoint where vertical hand movement is easy
to observe, the information from the vertical (y) axis of the hand landmarks was used for
video-based acceleration estimation. Both the reference accelerometer data and extracted
video time-series data were band-pass filtered between 0.5–15 Hz.

Generally, variations of frequency over time in tremors are expected. To observe these
changes, following the filtering, both accelerometer and video time-series data (for all
landmarks) were segmented into non-overlapping 2-s long signals (15 segments of 2-s
signal for accelerometer and 5 segments of 2-s signal for video data). The segment length
of 2 s was chosen to obtain a more detailed and precise frequency spectrum in comparison
to 1-s segment length.

In the next step, all segmented data are converted into the frequency domain using
the Fast Fourier Transform (FFT). Dominant frequency calculation from the accelerometer
and estimation from video data were conducted as follows for every patient. Samples of
accelerometer and video time-series data with FFT calculations are given in Figure 3.
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estimated frequency (bottom-right).

For the accelerometer data, the mean frequency value of 15 signal snippets was
calculated. Since the goal of this work is to find only the dominant tremor frequency
throughout the experiment, frequency values that deviated more than three standard
deviations from the mean were considered outlier values and were eliminated automatically.
To have a robust calculation of the dominant accelerometer frequency, the rest of the values
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were averaged, and the averaged value was noted as the dominant frequency and used as
a baseline to compare the camera-based approach.

During the frequency estimation from video data, some landmark points produced
frequencies with a high deviation from the real accelerometer frequency (see Section 3.1).
The most important reason for these outliers is that not all landmarks estimated are actually
visible in the video at all times because of hand position and resulting occlusion. For this
situation, MediaPipe works based on a position assumption considering other landmarks
and creates pseudo/noisy data of those landmarks. A visualization of this is given in
Figure 4.
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positions are estimated (beige: thumb, lilac: index finger, yellow: middle finger, green: ring finger,
blue: little finger, red: wrist, carpometacarpal and metacarpophalangeal joints).

Data points responsible for the outlier frequency values were excluded automatically,
as described above for the accelerometer data. Additionally, to suppress the effect of
pseudo/noisy landmark values and to obtain a robust frequency estimation, frequencies
from the (non-excluded) landmarks were averaged, and the dominant frequency was
calculated. The same method was applied both before- and after-medication. Besides
frequency analysis, the amplitude analysis was also conducted by averaging the amplitudes
of the maximum frequencies from the power spectrum to calculate the amplitude.

3. Results

This section presents the results of the frequency and amplitude estimations. First,
ground-truth accelerometer data and data extracted from the videos were compared (be-
fore medication). Second, results were analyzed for before and after-medication cases
(video only).

3.1. Preliminary Results of Video and Accelerometer Data

In this part, the frequency distributions for the accelerometer and video data are
visualized before the outlier elimination process. Figure 5 shows the distributions of
estimated frequencies.
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From Figure 5, we see that both accelerometer and video data contain some outlier
values which need to be eliminated to have a robust frequency calculation and estimation.

3.2. Video and AccelerometerAnalysis Results

A comparison of dominant frequencies between accelerometer and video data is
provided in Table 3. Results were compared using Absolute Error (AE). The formula of the
AE can be expressed as follows:

∆f = |facc − fvid|, (1)

where facc denotes accelerometer frequency, and fvid denotes frequency extracted from the
video. In addition to AE, the Root Mean Square Error (RMSE) between frequencies of the
accelerometer and video data was calculated as:

RMSE =

√
1
n

n

∑
i=1

(facc,i − fvid,i)
2 (2)

where n denotes the number of patients. Table 3 presents the estimated dominant frequencies.
For PAT011, no accelerometer data was available. In Table 3, the highest error was

found at 0.554 Hz, while the lowest error was 0.011 Hz. RMSE was calculated as 0.283 Hz.
Figure 6 presents the error analysis between the accelerometer and video data.

From Figure 6, we see that the frequency values were estimated with small deviations.
In ten patients, only the frequencies of two patients were estimated to be lower than the
accelerometer frequency (PAT 003 and PAT 006).

To observe the relation between the accelerometer and data extracted from the videos,
the correlation was calculated over the respective frequencies. The correlation was found
to be 0.98 with a p-value of 7.256 × 10−7. Figure 7 shows the result of the analysis. In
terms of tremor analysis, two patients showed the classical parkinsonian tremor with 4 Hz
(PAT 001 and PAT 009) detectable in both accelerometer and video data. This tremor was
clinically present and represented in the UDPRS part 3.15 (score ≥ 2). All other patients
showed a lower rhythmic movement with detectable frequencies of 1–2 Hz. From the
clinical evaluation, there was no Parkinsonian tremor as measured via the UPDRS (see
Table 1). The possible reasons for this rhythmic movement are discussed below.
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Table 3. Dominant frequencies from the accelerometer and the video data.

Patient Accelerometer
(Hz)

Video Analysis
(Hz)

AE
(Hz)

PAT001 4.877 4.888 0.011

PAT002 1.001 1.223 0.222

PAT003 1.467 1.065 0.402

PAT004 1.533 2.087 0.554

PAT005 1.334 1.632 0.298

PAT006 1.258 1.054 0.204

PAT007 1.034 1.050 0.016

PAT008 1.577 1.638 0.061

PAT009 4.002 4.205 0.203

PAT010 1.134 1.462 0.328

PAT011 - 1.052 -

Mean 1.921 (±1.357) 1.941 (±1.338) 0.229 (±0.174)

RMSE - - 0.283
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In addition to frequency calculations, amplitudes were also estimated. Results of the
estimated amplitude of the accelerometer and video data are given in Table 4.

Table 4. Averaged amplitudes from the power spectrum. Accelerometer values from the video
analysis are given in arbitrary units (a.u.).

Patient Accelerometer
(cm/s2)

Video Analysis
(a.u.)

PAT001 14.251 5.720

PAT002 7.900 4.347

PAT003 12.589 2.213

PAT004 5.172 2.463

PAT005 4.7820 2.228

PAT006 3.2490 4.246

PAT007 6.259 1.982

PAT008 7.325 2.603

PAT009 202.873 52.637

PAT010 4.788 5.368

PAT011 n.a. n.a.

Since the two data sources use different scales and units, extracted amplitudes cannot
be compared directly. However, to observe the association between these methods, the
correlation was calculated for the amplitudes. For the correlation analysis of amplitudes,
we found a correlation of 1.0 with a p-value of 2.041 × 10−9. Figure 8 shows the result of
the analysis.
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3.3. Video before/after Medication Analysis Results

In this study, the video-based examination of the medication effect was also explored.
Table 5 provides the estimated dominant frequencies and changes before and after medi-
cation for the video data. Frequency changes were calculated by subtracting the before-
medication frequency from the after-medication frequency.

Table 5. Estimated dominant frequencies.

Patient Before Medication
(Hz)

After Medication
(Hz)

Frequency Change
(Hz)

PAT001 4.888 3.447 −1.441

PAT003 1.065 1.024 −0.041

PAT004 2.087 1.027 −1.060

PAT005 1.632 1.030 −0.602

PAT006 1.054 1.027 −0.027

PAT007 1.050 1.028 −0.022

PAT008 1.638 1.217 −0.421

PAT009 4.205 3.421 −0.784

PAT010 1.462 1.025 −0.437

PAT011 1.052 1.017 −0.035

Mean 2.012 (±1.385) 1.526 (±1.007) −0.487 (±0.491)
“−” sign means there is a frequency decrease.

In Table 5, all patients had a decreased frequency value for the after-medication case
compared to the before-medication case. The mean frequency value decreased by 0.487 Hz
after medication. Figure 9 shows the visualization of frequency estimations and changes.
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From Figure 9, we see that the median frequency of 1.5 Hz before medication decreases
by approximately 0.5 Hz after medication. Moreover, the spread of the frequencies decreased.

As before, we also performed an amplitude analysis additional to the frequency
analysis to see the changes before and after medication. Estimated amplitudes and
changes for before and after medication for the video data are given in Table 6. Am-
plitude changes were calculated by subtracting the before-medication amplitude from the
after-medication amplitude.

In Table 6, all patients had a decreased amplitude value for the after-medication case
compared to the before-medication case. The mean amplitude value dropped from 8.167 a.u.
to 4.033 a.u after medication. In general, for the patients that have minor frequency changes
after medication, amplitude changes were also small (under 1 a.u.). Figure 10 shows the
visualization of amplitude estimations and changes.

From Figure 10, we can see that some patients exhibited only minor changes in the
amplitude, however, the amplitude distribution graph shows that there is a noticeable
amplitude change between the two cases.
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Table 6. Averaged amplitudes for video data.

Patient Before Medication
(a.u.)

After Medication
(a.u.)

Amplitude Change
(a.u.)

PAT001 5.720 3.505 −2.215

PAT003 2.213 1.988 −0.225

PAT004 2.463 1.569 −0.894

PAT005 2.228 1.839 −0.389

PAT006 4.246 3.557 −0.689

PAT007 1.982 1.840 −0.142

PAT008 2.603 1.489 −1.114

PAT009 52.637 20.038 −32.599

PAT010 5.368 2.488 −2.880

PAT011 2.213 2.023 −1.900

Mean 8.167 (±15.687) 4.033 (±5.671) −4.304 (±9.983)
“−” sign means there is an amplitude decrease.
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4. Discussion

In this study, our aim was a video-based analysis of tremors using high-frequency
video recordings and an AI-based hand-tracking approach. To evaluate the accuracy
of the video-based method, the Absolute Error between frequencies extracted with the
accelerometer and with the video analysis was calculated. As seen in Table 3, the highest
error was calculated as 0.554 Hz, while the lowest error was 0.011 Hz (mean = 0.229 Hz).
In addition to this low absolute error, the correlation between accelerometer and video was
very high (0.98). Second, amplitudes from the power spectrum were calculated for both
video and accelerometer data. Since these two methodologies have different scales and
units, a direct comparison of them is not possible. Instead, we calculated the correlation. The
result showed a high correlation between amplitudes, which led us to use our amplitude
measurement approach in the next step. We acknowledge that the number of subjects is
small, and thus, the high correlation has to be taken with a grain of salt. Nevertheless,
we emphasize that the high-amplitude case responsible for a high correlation does not
constitute a classical outlier, as the high tremor amplitude was indeed observed.

In the literature, there are a couple of studies that also put effort into analyzing hand
movement using smartwatches [9–11] and smartphones [12–14]. These methods have
already proved that using wireless devices could accelerate the data recording process and
ease of access. However, there still exists physical contact with the user or patient in these
methods, and using a contactless method provides more comfort and hygiene. Thus, studies
on video-based analysis of hand movements/tremors have gained momentum recently.
In one of them, Uhríková et al. [17] created signals using intensity changes from video
frames. In some of the cases, they had errors over 1 Hz. In another study, Pintea et al. [18]
used two different approaches to estimate the tremor frequency from the videos and had
a 2.398 (±2.024) Hz Mean Average Error (MAE). In 2021, Williams et al. [20] employed
videos recorded by a smartphone and, in most cases, achieved errors less than 0.5 Hz.

In our work, different from other video-based analysis studies, we focused on ana-
lyzing the effect of medication and aimed to do this by an automated approach achieving
an accurate estimation of hand movement/tremor frequency from the video. Based on
the results of the other papers, it is obvious that researchers have already achieved small
errors for the tremor frequency estimation, and our results are also within that range. In
contrast to our work, Uhríková et al. [17] and Williams et al. [20] used manual hand region
of interest selection to conduct their study, which is a time-consuming method, while
Pintea et al. [18] trained human body pose estimation models which also requires more
time. In that sense, our work achieved an automatic estimation of hand movement/tremor
frequency with a low error rate.

In the second step, we investigated the effect of medication on movement/tremor
frequency and amplitude. Table 5 shows that for each patient, there was a decrease in
terms of frequency. Two patients (PAT 001 and PAT 009) showed a typical parkinsonian
tremor of around 4 Hz. All other patients had no classic tremor, but a low-frequency
movement at between 1–2 Hz was detectable. We assume this rhythmic movement to
be pulse related, i.e., a ballistocardiographic artifact. The heart beats with 60 to 90 beats
per minute (1–1.5 Hz) at rest and creates a rhythmic signal in the hands, detectable in
both the accelerometer and the video data. This signal shows that our approach is very
sensitive to detect different frequencies, whether it is Parkinsonian tremor with around
4 Hz or the heartbeat conducted as a subtle movement artifact into the hands with around
1–2 Hz. In general, the patients that have a frequency for the before-medication case over
1.5 Hz, had frequency changes around 0.5 Hz. In addition to the frequency change, all
patients also experienced a decreased amplitude value. These results showed that the
short-time effect of medication on movement and tremor could be quantified automatically
by a video-based approach.
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5. Conclusions

In this work, we performed the automatic analysis of hand tremors using a video-
based approach. Our study was based on employing high-frequency videos and tracking
the hand via AI-based technology. In the first step, we investigated the frequency and
amplitude relationship between the data extracted from the video and accelerometer.
Results of the first step showed that our video-based approach can identify the tremor
frequency by a small error rate (mean AE = 0.229 ± 0.174 Hz) and amplitude with a high
correlation. In the second step, we focused on quantifying the effect of taking standard
oral treatments like L-Dopa and dopamine agonists on tremor frequency and amplitude on
video recordings. Our results suggest that patients experienced decreases in mean frequency
from 2.012 ± 1.385 Hz to 1.526 ± 1.007 Hz and in mean amplitude from 8.167 ± 15.687 a.u.
to 4.033 ± 5.671. Overall, our approach provides contactless automated analysis. Using
this approach on a broader scale could have a significant impact in several scenarios. For
one, it could make objective quantification of tremor in a medical setting easier for patients
as well as the medical personnel. For another, it would allow unobtrusive tremor analysis
at home, which would empower patients to supervise the progression of their disease or
their response to medication with high accuracy on a daily basis.
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17. Uhríková, Z.; Šprdlík, O.; Hlaváč, V.; Růžička, E. Action Tremor Analysis from Ordinary Video Sequence. In Proceedings of
the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of
Biomedicine, Minneapolis, MN, USA, 3–6 September 2009; pp. 6123–6126.

18. Pintea, S.L.; Zheng, J.; Li, X.; Bank, P.J.M.; van Hilten, J.J.; van Gemert, J.C. Hand-Tremor Frequency Estimation in Videos. In
Computer Vision—ECCV 2018 Workshops; Lecture Notes in Computer Science Series (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2019; Volume 11134, pp. 213–228.

19. Alper, M.A.; Goudreau, J.; Daniel, M. Pose and Optical Flow Fusion (POFF) for Accurate Tremor Detection and Quantification.
Biocybern. Biomed. Eng. 2020, 40, 468–481. [CrossRef]

20. Williams, S.; Fang, H.; Relton, S.D.; Wong, D.C.; Alam, T.; Alty, J.E. Accuracy of Smartphone Video for Contactless Measurement
of Hand Tremor Frequency. Mov. Disord. Clin. Pract. 2021, 8, 69–75. [CrossRef] [PubMed]

21. Wang, X.; Garg, S.; Tran, S.N.; Bai, Q.; Alty, J. Hand Tremor Detection in Videos with Cluttered Background Using Neural Network
Based Approaches. Health Inf. Sci. Syst. 2021, 9, 30. [CrossRef] [PubMed]

22. Wei, S.E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional Pose Machines. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 4724–4732.

23. Google: MediaPipe (Hands). GitHub Repository. 2020. Available online: https://github.com/google/mediapipe (accessed on
22 June 2022).

http://doi.org/10.1002/mds.22340
http://www.ncbi.nlm.nih.gov/pubmed/19025984
http://doi.org/10.1016/j.cnp.2019.06.002
http://www.ncbi.nlm.nih.gov/pubmed/31886436
http://doi.org/10.1038/s41746-022-00568-y
http://www.ncbi.nlm.nih.gov/pubmed/35304579
http://doi.org/10.2196/33157
http://www.ncbi.nlm.nih.gov/pubmed/35262502
http://doi.org/10.1016/j.jns.2019.04.011
http://www.ncbi.nlm.nih.gov/pubmed/31005763
http://doi.org/10.3389/fneur.2019.00048
http://www.ncbi.nlm.nih.gov/pubmed/30761078
http://doi.org/10.1016/j.jneumeth.2014.04.021
http://www.ncbi.nlm.nih.gov/pubmed/24769376
http://doi.org/10.4103/jmss.JMSS_50_17
http://www.ncbi.nlm.nih.gov/pubmed/29928630
http://doi.org/10.3233/JPD-160936
http://www.ncbi.nlm.nih.gov/pubmed/27662333
http://doi.org/10.1055/s-0039-1677914
http://www.ncbi.nlm.nih.gov/pubmed/31419822
http://doi.org/10.1088/1361-6579/ab755c
http://www.ncbi.nlm.nih.gov/pubmed/32148333
http://doi.org/10.1016/j.bbe.2020.01.009
http://doi.org/10.1002/mdc3.13119
http://www.ncbi.nlm.nih.gov/pubmed/34853806
http://doi.org/10.1007/s13755-021-00159-3
http://www.ncbi.nlm.nih.gov/pubmed/34276971
https://github.com/google/mediapipe

	Introduction 
	Materials and Methods 
	Participants 
	Accelerometer Data Recording 
	Video Recording 
	Data Extraction and Processing 

	Results 
	Preliminary Results of Video and Accelerometer Data 
	Video and AccelerometerAnalysis Results 
	Video before/after Medication Analysis Results 

	Discussion 
	Conclusions 
	References

