
Citation: Na, D.; Park, S. IoT-Chain

and Monitoring-Chain Using

Multilevel Blockchain for IoT

Security. Sensors 2022, 22, 8271.

https://doi.org/10.3390/s22218271

Academic Editors: Kamanashis

Biswas, Mohammad Jabed Morshed

Chowdhury and Muhammad Usman

Received: 14 August 2022

Accepted: 24 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

IoT-Chain and Monitoring-Chain Using Multilevel Blockchain
for IoT Security
Dongjun Na and Sejin Park *

Department of Computer Engineering, Keimyung University, Daegu 1095, Korea
* Correspondence: baksejin@kmu.ac.kr; Tel.: +82-53-580-5270

Abstract: In general, the Internet of Things (IoT) relies on centralized servers due to limited computing
power and storage capacity. These server-based architectures have vulnerabilities such as DDoS
attacks, single-point errors, and data forgery, and cannot guarantee stability and reliability. Blockchain
technology can guarantee reliability and stability with a P2P network-based consensus algorithm
and distributed ledger technology. However, it requires the high storage capacity of the existing
blockchain and the computational power of the consensus algorithm. Therefore, blockchain nodes
for IoT data management are maintained through an external cloud, an edge node. As a result,
the vulnerability of the existing centralized structure cannot be guaranteed, and reliability cannot
be guaranteed in the process of storing IoT data on the blockchain. In this paper, we propose a
multi-level blockchain structure and consensus algorithm to solve the vulnerability. A multi-level
blockchain operates on IoT devices, and there is an IoT chain layer that stores sensor data to ensure
reliability. In addition, there is a hyperledger fabric-based monitoring chain layer that operates the
access control for the metadata and data of the IoT chain to lighten the weight. We propose an export
consensus method between the two blockchains, the Schnorr signature method, and a random-based
lightweight consensus algorithm within the IoT-Chain. Experiments to measure the blockchain size,
propagation time, consensus delay time, and transactions per second (TPS) were conducted using
IoT. The blockchain did not exceed a certain size, and the delay time was reduced by 96% to 99% on
average compared to the existing consensus algorithm. In the throughput tests, the maximum was
1701 TPS and the minimum was 1024 TPS.

Keywords: Internet of Things; multilevel blockchain; lightweight; data reliability; privacy protection

1. Introduction

The use of the Internet of Things (IoT) has been increasing, and it is applied to
various services in numerous fields [1], such as healthcare, energy, and smart homes. The
anticipated IoT device growth is also on the rise. According to Exploding Topics [2],
there are over 700 million IoT devices installed worldwide. That number is expected to
over 30 billion by 2025. As IoT devices in homes, industrial environments, transportation
networks, and elsewhere continue to proliferate, so does the attack surface for malicious
IoT network attackers.

The IoT attack activity in 2020 dramatically surpassed the combined volume of IoT
activity observed by IBM Security X-Force [3] in 2019. The IoT network is a centralized
structure, and all IoT devices mainly use a structure that is linked to the central cloud, or
data are stored in the cloud storage using fog and edge computing technologies. Owing to
the centralized structure, the central server processes all data, and security vulnerabilities
exist owing to the risk of data forgery and falsification, along with attacks on the central
processing system, such as distributed denial of service (DDoS) [4] attacks. Depicted in
Figure 1 is the centralization problem of existing IoT servers.

Vulnerabilities in centralized server architecture (1) Problems owing to IoT device
performance limitations: The data measured by the sensor are transmitted to the server. The

Sensors 2022, 22, 8271. https://doi.org/10.3390/s22218271 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7394-9143
https://orcid.org/0000-0001-5050-3093
https://doi.org/10.3390/s22218271
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218271?type=check_update&version=1


Sensors 2022, 22, 8271 2 of 25

performance is worse than those of the existing PCs and servers, so there exists a limit [5]
to applying existing security vulnerability solutions. Therefore, the Mirai botnet [6] may
become a device that executes a server DDoS attack owing to malware infection through
firmware updates.

Vulnerabilities in centralized server architecture (2) Vulnerabilities owing to fog and
edge nodes: These nodes receive real-time data from IoT devices and provide temporary
data storage until the necessary data are sent to the cloud. If the fog node is subjected
to a security attack [7], it is possible that IoT-generated data may be forged or tampered
with. Furthermore, the edge node computes and processes data in edge computing close
to the data collection source and sends the data to the cloud. It serves to transmit data.
Edge nodes also exhibit a problem in that data are forged and stolen when subjected to a
security attack [8].

Vulnerabilities in centralized server architecture (3) Security weakness owing to cen-
tralized structure: The administrator is responsible for the performance and management
of data stored in the central server. Data may be forged or falsified because of the authority
of the administrator of the centralized server [9]. Moreover, owing to attacks by hackers
and infected devices, the centralized server affects all systems if one server is attacked as a
result of a single point of failure [10].

1.1. Motivation

Blockchain technology is used to solve the problem of centralized structures [11].
Blockchain is a distributed system that shares information with all non-central participants
and distributes data to all network nodes using a peer-to-peer (P2P) network. The problem
of data forgery and falsification of existing centralized servers can be solved by allowing
nodes in all networks to store the same data. In addition, by securing the reliability of data
through an inter-node consensus algorithm, the security problem of IoT devices can be
solved with the blockchain function.

However, due to the limitations of blockchain technology, there is a limit to operation
in IoT devices, and high-performance external cloud and edge computing technologies are
used. This guarantees the immutability of the stored data, but it goes through multiple
gateways and nodes during the storage process and cannot guarantee the reliability of
the data. Therefore, the blockchain-based IoT data management method cannot achieve
decentralization and cannot solve the limitations of the existing centralized structure.

1.2. Challenges

Blockchain technology can solve the security vulnerabilities of IoT devices, but it has
the following limitations.

1.2.1. Capacity Requirement

For an IoT device to become a full node that maintains the blockchain in the blockchain
network, all of the blockchains must be stored in storage. However, IoT devices are
not suitable for participating as full nodes in blockchain networks because of their low
storage capacities.

1.2.2. Consensus Requirement

The consensus algorithm for block generation uses proof of work (PoW) [12], which
requires a high amount of CPU operation, or practical Byzantine fault tolerance (PBFT) [13],
which requires a certain amount of network communication. For IoT devices, a consensus
algorithm that requires substantial computation is not suitable owing to its low perfor-
mance [14], and a consensus algorithm that requires substantial communication in an IoT
network with many nodes is not effective, particularly when using a wireless network.



Sensors 2022, 22, 8271 3 of 25

1.2.3. Data Privacy

Blockchain discloses data transparently, as all nodes have the same blockchain. As IoT
data are increasingly used, personal data are also created and managed; thus, data privacy
must be guaranteed.

1.3. Contribution

We propose an IoT-operable blockchain that overcomes the limitations of the blockchain
that cannot guarantee privacy because of the storage space requirement owing to the in-
crease in the blockchain length, the amount of computation and network communication
of the consensus algorithm, and data transparency. To this end, we present a multilevel
blockchain structure consisting of the IoT-Chain, which is a lightweight blockchain that
operates on IoT devices and is pluggable into Hyperledger Fabric or Ethereum, and the
Monitoring-Chain, which is implemented based on Hyperledger Fabric.

The IoT-Chain, which is a blockchain that operates on IoT devices, and a monitoring
chain to solve the performance limitations of devices that operate nodes of the IoT-Chain,
are configured. In addition, by applying the lightweight consensus algorithm of IoT-
Chain and the process of periodically distributing and storing IoT-Chain and storing only
metadata after verification through consensus of all nodes, a reliable lightweight technique
is applied to centralize existing IoT device data management. The limitations of the existing
server structure can be solved through blockchain.

1.3.1. Capacity Requirement

We propose the IoT-Chain and Monitoring-Chain to lighten the blockchain. Blocks are
created in the IoT-Chain through a consensus method in which all nodes using the Schnorr
signature participate and verify the hash value of the last block to ensure the reliability
between the two blockchains that can be operated on IoT devices. After distributing and
storing the chain in a distributed file system, only the address value is embedded into the
Monitoring-Chain, following which the blockchain of the IoT-Chain is initialized so that the
blockchain capacity stored in the IoT-Chain does not exceed a specific size. The blockchain
can be maintained even in IoT devices with limitations.

1.3.2. Consensus Requirement

We propose a block generation consensus algorithm that overcomes the limitations of
the IoT device CPU operation and network communication volume. By using the verifiable
random function (VRF) [15] and public key infrastructure (PKI) [16], we present a method
to select a leader node for generating a block by determining verifiable random values.

1.3.3. Data Privacy

After distributing the IoT-Chain and embedding the returned address in the Monitoring-
Chain, it was stored in the Monitoring-Chain network that is constructed based on Hyper-
ledger Fabric [17], which is a permissioned blockchain, and it is only accessed by authorized
users through smart contracts [18]. The data can be accessed to ensure the privacy of IoT
data. The proposed blockchain structure was implemented and registered as an open
source program [19]. It was verified that it can operate in IoT devices. Subsequent papers
will consist of research relating to the proposed blockchain structure, and descriptions
of the constructed blockchain module and system, architecture, analysis, experiments,
and results.

2. Related Work

We compare existing lightweight blockchains in Table 1. The comparison is based on
the node’s operating location, TPS, storage overhead, amount of computation, whether
access control is supported, scalability, and whether off-chain storage is used. The amounts
of computation were divided into PoW (high), PoS (mid), and PBFT (low) series based
on the consensus algorithm. Sensor-chain [20] was proposed as a lightweight solution to



Sensors 2022, 22, 8271 4 of 25

use IoT devices appropriately for blockchain. Spatial blockchain [21], which divides the
blockchain into spatial units, and the migration manager function [22], were used when
migrating according to time. Each blockchain owns the blockchain according to the space,
and as time passes, the contents of all blockchains are summarized in one block, following
which the blockchain size is reduced by starting from that block. However, data loss may
occur by summarizing the data that are collected from IoT devices as data such as averages,
and only simple data such as sensor values can be used.

Table 1. Comparison of the existing Lightweight blockchain.

Node
Location

TX
Throughput

Storage
Overhead

CPU
Overhead

Access
Control

Scalability
Off

Chain
Storage

Method Summary/Discussion

Sensor
Chain [20]

On IoT
Device

- Low Low X O X

- Blockchain structure organized by region
- PoS Consensus Algorithm
- Lightweight by aggregating sensor values
stored in the block chain at specific cycles

- A lightweight blockchain framework suitable for IoT
devices with low computing power and storage.
- IoT Data loss can occur because the data is averaged
and summarized.

Richard
Dennis,

et al. [22]

On IoT
Device

- Low - X O X
- ’rolling’ method that deletes all blocks
older than a preset period

- Propose a temporal “rolling” blockchain which solves
the problem of its current exponential growth,
instead replacing it with a constant fixed-size
blockchain
- IoT Data loss occurs by erasing blocks of a certain
period.

IOTA [23]
On

Server
1000+ High High X O X

- DAG (Directed Acyclic Graph) based
Tangle Consensus Algorithm
- PoW Consensus Algorithm

- Tangle algorithm-based cryptocurrency platform for
IoT data storage
- CPU operation is required using PoW method.

Li Bai,
et al. [24]

On
Server

- Low Mid O X
Built

in

- Data access control using smart contracts
- On-demand data sharing using smart
contracts
- Off-chain networks to solve storage and
data processing challenges

- A light-weighted Blockchain-based platform for IIoT to
address security, trust, and island connection problem
in the process of IIoT ecosystem construction
- Blockchain nodes cannot be operated on-iot device.

Fusion
Chain [25]

On IoT
Device

- Low Low X O
Built

in

- Distributed storage for storing ’blocks’
- PBFT-based consensus algorithm
- PKI method to ensure data privacy

- A decentralized lightweight blockchain that can
operate on IoT devices by solving the limitations of
blockchain for IoT Security and Privacy
- Based on the PBFT consensus algorithm, O(n2)is
required.

Edge
chain [26]

On
Server

- High Low O O X

- Blockchain-based IoT data management
- IoT device regulation using smart
contracts
- Credit-based Edge Device Resource
Management

- Integrates a permissioned blockchain to link the edge
cloud resources with each IoT devices account,
resource usage and hence behavior of the IoT device
- TPS measurement experiment was not carried out.

* Proposed
Structure

On IoT
Device

1000+ Low Low O O
Built

in

- IoT-Chain for IoT device data generation
and temporary storage
- Monitoring-chain for IoT data monitoring
and data access control
- Schnorr signature-based data access
control and signature lightweight
- Data transfer method between blockchain
networks using distributed file system
- PBFT-based consensus algorithm

- A lightweight multi-level blockchain network
consisting only of IoT device node that can ensure IoT
security and data privacy

IOTA [23] is a cryptocurrency platform that is designed to apply blockchain to the IoT.
It uses the proprietary tangle algorithm of the blockchain to reduce the blockchain size
and to make it suitable. However, owing to the semicentralized form that cannot achieve
complete decentralization of the IoT of the blockchain, the nodes that store a large amount
of data may be attacked, and there are vulnerabilities in the hacking methods, such as
centralized attacks. Furthermore, it is not suitable for IoT devices with low computing
power using PoW as a consensus algorithm.

In BPIIoT [24] and Fusion-Chain [25], the InterPlanetary File System (IPFS) that utilizes
a distributed hash table (DHT) for lightweight functions is used to store transactions, which
are sensor data, in blocks, and to distribute and store blocks and accessible addresses.
It uses a method to store only the values. However, in this study, the IPFS is not a method
for distributing and storing the blocks to be stored. The blockchain is distributed and stored
after the consensus of all nodes at a specific cycle, and then exported to another blockchain,
and the blockchain is restarted.

EdgeChain [26], using edge computing, applies a credit-based resource management
system to control all IoT devices from the edge server. Moreover, it stores all activations
and transactions created by the IoT devices, and audits the data resources of the IoT devices
through records. In the case of BlockEdge, blockchain is used to audit the different processes
involved in industrial IoT applications.

HyperLoRa [27] detects tampering of IoT data using Hyperledger Fabric. Certain
studies [28] have also used a smart grid network and permissioned blockchain.



Sensors 2022, 22, 8271 5 of 25

BLA [29] uses blockchain in a fog-based IoV environment, and the Group Signature
and Authentication Scheme for Blockchain-Based Mobile-Edge Computing [30] was used
to authenticate new users in multi-access edge computing. This enables local authentication
without the need for authentication from the cloud; thus, it is possible to reduce the latency
required for verification in edge computing.

However, in all of the above methods, the blockchain does not work in IoT devices,
and vulnerabilities exist, as illustrated in Figure 1. Regarding blockchains based on shard-
ing, OmniLedger [31], RapidChain [32], and RepChain [33] are limited to cryptocurrency
applications. RepChain also defines the reputation by using the trust and activeness of
validators, based on their decisions on the list of transactions. RepChain uses the accumu-
lated reputation values for balanced sharding and leader selection. However, when the
leader node is selected through the accumulated values of the reputation, the randomness
is reduced. In this study, a leader node was randomly selected using VRF.

Existing blockchain-based 
IoT data management

Storage

Consensus
Algorithm

FogFog

Central Server Architecture
Decentralized IoT data 
management structure

(1) IoT Device

(2) Edge Nodes

(2) Fog Nodes

(3) Hacker
(3) Admin

Figure 1. Comparison of IoT data management methods according to architecture (red indicates
vulnerability).

HomeChain [34], which is a novel attribute-based access control scheme for IoT
systems [35], and Fabric-IoT [36], have been used for the access control of IoT devices
based on blockchain. In this study, the access control function for the user is implemented
for security by using the smart contract of the blockchain, but forgery and falsification of
the sensor data storage generated by the IoT device mean that stability is not guaranteed.
Studies on consensus algorithms have been conducted, including PoBT [37], Algorand [38],
and Tendermint [39].

PoBT consists of a structure that is suitable for IoT scalability and performance based
on the consensus structure of Hyperledger Fabric, and Algorand is a VRF-based consensus
algorithm. Tendermint is a PBFT-based consensus algorithm. In this study, although
Hyperledger Fabric is used, a new blockchain that operates on IoT devices is proposed.
A random-based consensus algorithm is suitable for IoT performance. Unlike PBFT, a
consensus method and lightweight method that are suitable for network traffic and sensor
generation speed are proposed. Moreover, as opposed to Algorand, this study presents a
blockchain that is suitable for IoT devices by selecting a consensus leader node based on
the size of a value without using VRF to form a committee.

Reference [40] proposed a consensus algorithm that improves the performance of
the routing algorithm. A lightweight blockchain-based secure routing algorithm has
been proposed to address the challenges [41] of swarm unmanned aircraft system (UAS)
networking, and a proof of traffic consensus algorithm that reduces passive broadcasts
is used.

Reference [42] proposed a consensus construction with high verification efficiency
with base stations for cellular network connection. Unlike the above paper, in this paper,
we propose an efficient group authentication method based on the consensus algorithm
and Schnorr signature based on lightweight communication in IoT-Chain.



Sensors 2022, 22, 8271 6 of 25

Reference [43] proposed a blockchain that requires minimal hardware and software
performance. To this end, we propose a witness protocol, which can maintain a blockchain
with minimal hardware, and does not require additional equipment or access to a cen-
tralized network. In contrast, the blockchain in this paper is a multi-level blockchain
configuration so that blockchain nodes can participate in the maintenance of the blockchain
and participate in the consensus algorithm and data verification process.

3. Background
3.1. Hyperledger Fabric

Hyperledger Fabric [17] is a private blockchain that provides network security and
distributed ledger technology with scalability, confidentiality, and improved performance.
Furthermore, as network roles are assigned for each node type in Hyperledger Fabric,
network concurrency and parallelism are provided, which offers the advantage of high
TPS compared to public blockchain platforms. In this study, the monitoring chain was
implemented with Hyperledger Fabric, and the chaincode of Hyperledger Fabric was used
to monitor the data generated by the IoT sensors and to implement the access control
function to check the user’s authority when accessing the data.

3.2. InterPlanetary File System

The IPFS [44] distributes files such as photos, texts, and videos on the Internet and
uses a unique hash value to load the distributed data rapidly. High-capacity files can be
loaded quickly and efficiently, and by using a unique hash value, the existence of duplicate
files can be known for efficient file storage. The nodes participating in the IPFS network
manage the hash table independently and store data without a server. This provides a
method of mapping filenames to values in the hash table that is held by each node without
using a central server through the DHT. The DHT can suppress the load on the network,
and enables the fast and accurate retrieval of files in the network. The IPFS is content
addressed, where the file itself acts as an address. If the file name (CID) is found in the
DHT through data, the node that has the distributed fragment of the file is found and
the file is loaded. When distributing files, the IPFS converts all files on the network into
the Merkle-DAG format. For each node, the CID, which is a hash of the node content, is
used for Merkle-DAG. By using Merkle-DAG, the IPFS can address content, and prevent
tampering and duplication. By using these functions, the IPFS distributes and stores the
blockchain for every round of the IoT-Chain and returns a hash value to the monitoring
chain. Data can be accessed on the IoT-Chain through the hash value that is stored in the
Monitoring-Chain.

3.3. Schnorr Signature

The Schnorr signature [45] is similar to the method of extracting a public key from a sin-
gle number (e.g., private key) in the elliptic curve digital signature algorithm (ECDSA) [46],
but has the characteristic of linearity. The ECDSA involves many heavy operations, such as
modular inverse and points multiplication, in the calculation process, whereas Schnorr has
relatively few heavy operations in comparison. Schnorr signatures also enable collective
signatures that combine the signatures of multiple signers into a single signature. As a
result, N signatures can be verified once instead of N times, and the size of the signature is
reduced. In this study, the Schnorr signature is used when signing following the verification
of all nodes.

3.4. Verifiable Random Function

The VRF [15] is a function that outputs a verifiable pseudo-random value for the input.
The VRF generates a unique and verifiable pseudorandom number Y for input X when the
key pairs VK and SK are fixed. The VRF is similar to the digital signature method in that
the output can be verified using a separate verification key. However, the digital signature
differs from the VRF function in that multiple valid signatures exist for one input, and the



Sensors 2022, 22, 8271 7 of 25

output value is not sufficiently random to satisfy the pseudorandom number condition.
In this study, it is used to select a leader node in the consensus process of the IoT-Chain
that can be operated in IoT devices. All IoT-Chain nodes that create a transaction execute
the VRF function, include the returned result value in the transaction, and send it to the
leader node. The leader node selects the node with the largest VRF value as the next leader
node and creates a block to propagate to all of the nodes.

4. Architecture

The proposed architecture is a multi-level blockchain structure consisting of an IoT-
Chain network that can only be configured with IoT devices, and a monitoring chain to
increase the size of the IoT-Chain and solve the limitations of controlling access to data.
Through a multi-level blockchain structure, decentralized data management is possible
only with IoT devices, and blocks are verified using consensus that does not require a
computational load through a PBFT-based consensus algorithm in the IoT chain. In addition,
when exporting blockchain from IoT-Chain to Monitoring-Chain, signatures of all IoT-Chain
nodes are required during the consensus process, and network communication must be
guaranteed not to be lost during consensus. Therefore, by using the Schnorr signature
method, the capacity of the signature is reduced in the consensus process to reduce the
message size during the consensus of the export process, and there are nodes that deliver
only the external monitoring chain and metadata through the Exporter node. Forgery and
falsification of the node’s data can be guaranteed through the Schnorr signature, which
contains the compressed signatures of all nodes. The following describes the overall
architecture of the structure proposed in this paper, the structure and operation of the
IoT-Chain, and the Monitoring-Chain.

4.1. System Design

As depicted in Figure 2, Networkic runs on IoT devices and maintains the IC that
stores the sensor data. It consists of Nodeic, Nodeleader, and Nodeexport. Nodeic generates
sensor data to generate TX. Nodeleader is randomly selected, collects TX generated by the
node, generates Blockic, and propagates them to all nodes. Nodeexport maintains a routing
table for consensus, sets a path to receive the signatures of all nodes, detects a certain
size, and verifies that BHlast of all Nodeic is the same to start an agreement. Every Nodeic
encrypts BHlast via Keypriv to create Sig, which is combined with the signatures generated
by other Nodeic in the consensus path Sigschnorr and adding Keypub to create Keyschnorr, and
can verify the signatures of all nodes with one verification. All BHlast are verified to be
the same, and Nodeexport uploads IC to DFS and returns Addressic to create Blockexport.
Networkmc is implemented based on Hyperledger Fabric, receives Blockexport generated
by Blockexport, and sends Sigschnorr through SC to Keyschnorr. If the decoded value is the
same as BHlast, it is stored in MC, and the IC of all Nodeic starts from Blockgenesis again.
In the IoT-Chain, there are nodes that generate transactions and exporter nodes that lighten
the IoT-Chain by periodically communicating with a leader node and a monitoring chain
that are randomly selected among nodes and generate blocks. In the case of a leader node,
a block is created by receiving the broadcast transaction. An exporter node is a node
registered in the monitoring chain as a gateway that ensures network communication
rather than a general IoT device for communication with the monitoring chain. In addition,
stable communication is ensured through the exporter node, preventing data loss during
network communication, and it is possible to ensure that all nodes have verified data for
the lightweight blockchain through a compressed signature during the consensus process.
Table 2 lists the terms used in this study.



Sensors 2022, 22, 8271 8 of 25

3/0&)"

IoT Chain

User

Data Generation

Block Consensus

Blockchain

Export Module

Data Generation

Block Consensus

Schnorr Signature

Blockchain

Schnorr Signature

Monitoring Chain
Smart Contract Smart Contract

Smart Contract
IoT chain Enrollment

Smart Contract

Smart Contract

3A"<B+,-&'.
C&&.'22)/

Schnorr Signature

Certificate 
Authority

IoT chain Embedding

Schnorr Signature 
Verification

Distributed File 
Storage System

1. Register the monitoring chain
after issuing the certificate

2. Create 3A"<B)/

3. Upload to distributed 
storage IoT Chain

4. Send 3A"<B+,-&'. 5. Request an Export Block

6. Request IoT-Chain
to distributed storage

D'E-')0

%'.0

3A"<B+,-&'.

$"&'+,-&'.

$"&')/

3/0&#$%&'(

3/0&!"3/0&!"

Figure 2. System Architecture: (1) All Nodeic register their identity through CA and then participate
in the network and register the IC by storing the Genesis Block hash value in the MC. All IoT-Chain
nodes must obtain a key through CA and register a certificate for the public key. In (2) Networkic,
Nodeic generates the sensor data, Blockic is generated, and the length of the IC increases. (3) To
maintain the IC at no more than a certain size (storage capacity of IoT device), Nodeexport is all
BHlast of all Nodeic. By starting a consensus to verify that all Nodeic have the same IC, Sigschnorr and
Keyschnorr are created. (4) Nodeexport uploads IC to DFS and returns Addressic and Blockexport with
Sigschnorr, and BHlast is created and passed to Networkmc. Nodemc requests Keypub from CA, creates
Keyschnorr, validates Sigschnorr, and if verified, Blockexport is MC, which is saved and embedded.
(5) For user access control, the smart contract verifies the access rights of the user, and if verified,
it allows access to Blockexport stored in the MC. (6) The user can access the IC stored in the DFS
through Addressic stored in Blockexport.



Sensors 2022, 22, 8271 9 of 25

Table 2. Notation.

Symbol Description

IC IoT-Chain
MC Monitoring-Chain
HF Hyperledger Fabric
Networkic Network composed of IoT-Chain nodes
Networkmc Hyperledger Fabric-based Monitoring-Chain network
DFS Distributed file system
Addressic Address returned after uploading IoT-Chain to DFS
Route Consensus path maintained by export nodes
Keypriv Private key for signing IoT-Chain nodes
Sig Signature of IoT-Chain node
Keypub Public key to verify IoT-Chain node signature
Sigschnorr Combined signatures for consensus upon export
Keyschnorr Combined public key to verify consensus during export
CA Certificate authority for IoT-Chain node registration
Cert Certificate for public key verification of IoT-Chain node
Valrand Verifiable random value returned after VRF function execution
Round Restart cycle for IoT-Chain lightweight
SC Smart contracts installed on the Monitoring-Chain
Blockic Blocks created in IoT-Chain
Blockexport Address, last block hash signature is stored in block
Blockmc Blocks created in Monitoring-Chain
Blockgenesis Genesis Block when IoT-Chain is restarted
BHlast Last block hash value of IoT-Chain
BHgenesis Genesis Block hash
Nodeic Nodes that create transactions and maintain the blockchain in IoT-Chain
Nodemc Node that maintains the blockchain in Monitoring-Chain
Nodeleader Nodes that are randomly selected from IoT-Chain to generate blocks
Nodeexport Node acting as a gateway in IoT-Chain

4.2. Multilevel Blockchain

This section explains why it is composed of a multilevel blockchain. As depicted in
Figure 3, we compare the structure (A) consisting of only the IoT chain and the structure
(B) consisting of only the monitoring chain. Additionally, in (C), the problem of solv-
ing the limitations of the two structures (A, B) in the multilevel blockchain is explained.
(A) is a case in which the blockchain is configured with only the monitoring chain in the IoT
device’s external network. (A-1) Each IoT device forwards a transaction to the blockchain.
For delivery, there are two methods: sending a transaction to the API server and sending it
to the blockchain, and sending it to the blockchain. (A-2) is the method of delivery to the
server, and data tampering may occur during this process. (A-3) is the process of delivering
a transaction directly from an IoT device to a blockchain, and TPS degradation may occur
in this process. (B) is a case of maintaining the blockchain with only IoT devices. (B-1) All
blockchains are recorded in IoT devices, and even if data are lighter, data size increases.
Thus, if it goes above a certain size, IoT devices will not be able to sustain the blockchain
due to insufficient storage capacity. In addition, the consensus process is essential for block
creation in the blockchain. The consensus algorithm is divided into PoW consensus, which
requires CPU operation, and PBFT, which proceeds only through network communication.
However, as both consensus algorithms have to be operated on IoT devices as in (B-2), they
require CPU computation or high network traffic. (C) is a multi-level blockchain structure
to supplement the limitations of (A) and (B). In this structure, IoT devices maintain the
IoT-Chain. The monitoring chain supports the IoT-Chain. (C-1) When the storage capacity
becomes insufficient, the blockchain from the genesis block to the present is recorded
externally (C-2) to the external distributed file system. After recording, the data are backed
up in the monitoring chain, and in this process, the export process is performed for data
verification. This process is not verified by a single node, but by (C-3) monitoring chain



Sensors 2022, 22, 8271 10 of 25

nodes. Therefore, the monitoring chain supports the IoT-Chain in performing data backup
and decentralized verification. In addition, the IoT-Chain network is not a private network,
but it is necessary to record node information in the monitoring chain for verification in
the export process. Therefore, anyone can participate in the network, and the participating
sensors are based on P2P communication, ultra-low power, and ultra-low performance
hardware, so basic calculations are possible, unlike in a sensor network environment.

B. Pure IoT Chain

A. Pure Monitoring Chain

Fog

Distributed
Filesystem

IoT
Chain

Monitoring Chain

(C-1)

(C-2)

(C-3)

C. Multilevel blockchain
(Proposed architecture)

Data
Data

Data

Data
Data
Data

(A-1)

(A-2)

(A-3)

(B-1)

(B-2)

Figure 3. Multilevel blockchain structure.

4.3. IoT-Chain

Networkic creates a block through a lightweight consensus algorithm, and follow-
ing consensus using Sigschnorr for each round, the address is returned after storing the
blockchain in an external distributed file system (DFS). After transferring only the value
to Networkmc, IC is lightened by starting from the Genesis Block. As depicted in Figure 4,
presents the block structure of IC. The data in the block are composed of Index, BlockHash,
PreviousHash, timestamp, and Nodeleader. Nodeleader recorded in the block instructs the
generation of the next block. TX is created as a node. TX is stored in the body and includes
the sensor data, Sig, and Valrand.

31

Genesis Block IoT Chain Block 1 IoT Chain Block N

Index
Genesis Blockhash

timestamp

Transaction 
Sensor data

Transaction 
Sensor data

Transaction 
Sensor data

Transaction 
Sensor data

… …

Block Structure

Leader Node 1

Index
BlockHash

timestamp
Leader Node 2

Index
BlockHash

timestamp
Leader Node N+1

PreviousHash PreviousHash

…

Block Header Block Header Block Header

Body Body Body

VRF Value VRF Value

VRF Value VRF Value

Figure 4. IoT-Chain block: block structure of IoT-Chain.



Sensors 2022, 22, 8271 11 of 25

Figure 5 depicts the process in which Nodeic generates TX and sends TX to Nodeleader,
and Nodeleader generates Blockic. The node that generates TX from Networkic executes the
VRF and includes the returned value, sensor data, and Sig generated through Keypriv in
TX, which is sent to Nodeleader.

x x

17

1. Execute the VRF function

2. Send a transaction to the leader node

3. The leader node selects the next
leader node and distributes blocks.

$"&')/

Chain Node

트랜잭션생성노드

Chain Leader Node

생성된블록

$"&'1+2%+' 3A"<B)/

Figure 5. Blockic generation process: (1) Nodeic executes the VRF function when TX is created, returns
Valrand, and encrypts data with its own Keypriv and Sig. After generation, Nodeleader is checked to
generate the next block in the last block of the blockchain and to send TX. (2) The TX structure, Sig,
and Valrand of Nodeleader that received TX are verified. (3) If all Valrand are verified, the node with
the largest Valrand among the nodes that transmitted TX is selected as the next Nodeleader, recorded
in a block, and distributed to all nodes.

The Nodeic executes VRF every set round and delay, the Nodeic with the lowest value
is selected as the Nodeleader, and a Blockic is generated from the Nodeleader. In this way,
the next Nodeleader is unpredictable, thus preventing the attack. Round means the cycle to
create a Blockic, and delay is the time to select a Nodeleader. The selected Nodeleader creates
as many blocks as rounds, and then all nodes execute VRF during delay and broadcast the
result to the Networkic in the gossip protocol. After the delay time is over, the node with
the lowest value among the nodes is selected as the Nodeleader.

In this paper, to lighten the IoT chain, the blockchain is stored in a distributed file
system, and only metadata are stored in the monitoring chain. This process corresponds to
the export process, and a monitoring chain and exporter node are required for operation.
The monitoring chain enables decentralized verification of the Schnorr signature, the result
of the export process, as nodes verify through smart contracts. In addition, the export
agreement proceeds in the ring signature [47] method. Therefore, it is necessary to have
a node that initiates and terminates consensus, collects it, and sends the result of the
consensus to the monitoring chain. The export node is responsible for initiating the export
consensus and transferring the generated Schnorr signature to the monitoring chain.

4.4. Monitoring-Chain

The monitoring chain serves to support the export process in the IoT-Chain. In the
IoT-Chain, after the export process is performed, the “Schnorr signature” is created by
combining the signatures of the nodes. If the Schnorr signature is verified with the stored
public key, it is verified that all Nodeic signed it. However, due to the centralization
problem, it cannot be guaranteed that all Nodeic signed after a single Nodeexporter verifies the
signature. Nodemc is verified through smart contracts, enabling decentralized verification
of the export process. Additionally, for decentralized verification through smart contracts,
IoT-Chain nodes do not need to know each other, but the monitoring chain needs to know
all IoT-Chain nodes. Therefore, in order to participate in the IoT-Chain, Nodeic must register
the IoT-Chain node in the monitoring chain to participate in the IoT-Chain. This course is
essential for lowering storage weight. In addition, the monitoring chain can maintain data
and record metadata about the distributed storage of the IoT-Chain. The value maintained



Sensors 2022, 22, 8271 12 of 25

in the monitoring chain is an IoT-Chain of a certain length, which is maintained even when
all IoT-Chain networks are terminated, and the recorded hash value allows access to the
IoT-Chain stored in the distributed file system.

Networkmc stores IC in DFS every round in Networkic and returns Addressic and
Sigschnorr. BHlast receives Blockexport and stores it in MC. Depicted in Figure 6 is the
block structure of MC. The BlockHeader includes Index, BlockHash, PreviousHash, and
timestamp. TX is stored in the body and Blockexport is stored in TX.

32

Block Structure

Genesis Block Monitoring Chain Block 1 Monitoring Chain Block N

Index
Genesis Blockhash

timestamp

Index
BlockHash

timestamp

Index
BlockHash

timestamp
PreviousHash PreviousHash

…

Block Header Block Header Block Header

Body Body Body

Export Block

timestamp

Transaction 

Export Block

Transaction 

Export Block

…
Transaction 

Export Block

Transaction 

Export Block

…

Metadata Metadata Metadata

Ordering system channel

Export Block
Address
Schnorr 

Signature

Figure 6. Monitoring-Chain block: Structure of Blockmc implemented based on HF. After saving the
DFS to lighten the IC, Addressic, and Sigschnorr, Sigpub is saved. Signature, Index, and TxValidation-
Code of Nodemc are stored in Metadata.

In Networkic, Networkmc is exported to round, where the IC is larger than a certain
size. Depicted in Figure 7 is the process of embedding the IC from Networkic to Networkmc.
Nodeexport acts as a gateway between Networkic and Networkmc, and among the nodes
of Networkic, the node with the highest network condition and hardware performance
is selected. Alternatively, the routing protocol method of the inferior gateway routing
protocol (IGRP), which is a dynamic routing method, maintains the routing table of the
consensus process that checks that BHlast of all Nodeic is the same.

x x

x

23

Export Consensus

IoT Chain Network

x

x

x

Distributed File Storage Systems

Monitoring Chain Network

1. Start export consensus

2. End export consensus

3. Upload IoT-Chain

4. Create and send Export Block

5. The Export Block is 
stored in the monitoring 
chain.

request a restart
5. Request a restart Round NRound 1

Round 2

IOTC Node Tx creation node Leader Node

$"&')/ $"&'#,-&'. $"&'3/ %C 3A"<B)/ 3A"<B3/

Figure 7. The export process between Networkic and Networkmc: (1) Nodeexport maintains the routing
table and agrees to verify that the BHlast of all nodes is the same. (2) The combined signature of
all nodes is sent to Nodeexport, and Keypub of Nodeic is requested from CA to generate and verify
Keyschnorr. (3) IC is saved in the DFS and Addressic is returned. (4) Blockexport, including Addressic,
Keyschnorr, and Sigschnorr, is transferred to Networkmc and saved. (5) All Nodeic of Networkic restart
the IC starting with Blockgenesis with PreviousHash of BHlast of IC embedded in MC.



Sensors 2022, 22, 8271 13 of 25

4.5. Workflow

This section describes the operation process of the proposed Networkic and Networkmc.
The processes of registering BHgenesis to Networkmc, creating TX and Blockic, embedding
IC from Networkic to Networkmc, verifying Blokcexport in Networkmc, and starting over from
Blockgenesis in Networkic are explained in order.

Algorithm 1 is the process of saving the information of Nodeic to register IC in
Networkmc. All Nodeic sends BHgenesis of the same IoT-Chain to MC and stores it through
SC. The operation process consists of a process of generating a signature and requesting
to register a node, and a process of registering node information by verifying the signa-
ture. In the case of signature generation, it runs on the nodes of the IoT chain, and in
the case of verification, it operates on the nodes constituting the monitoring chain. To
register Networkic in Networkmc, it is necessary to verify that all BHgenesis owned by the
node are the same. Nodeic encrypts BHgenesis through Keypriv to create Sig, and creates TX
containing Sig and BHgenesis to send to Networkmc. Nodemc requests Keypub from CA for
Sig included in TX, and all Sig included in TX are sent from Networkic. If the decrypted
value of BHgenesis is the same, the corresponding BHgenesis is stored in the MC. Multiple
Networkic can be distinguished through the saved BHgenesis, and Keypub of Nodeic can be
requested from the CA.

Algorithm 1 Networkic enrollment.
1: procedure PROCEDURE Nodeic :
2: for Nodeiot in Networkic do
3: Sig← CreateSig(BHgenesis, KeyPriv)
4: TX← CreateTx(GenesisBH, Sig)
5: SendTXtoMC(TX)
6: end for
7: end procedure
8:
9: procedure PROCEDURE Nodemc :

10: for Nodemc in Networkmc do
11: Sig, BHlast ← GetTX()
12: Keypub ← CA
13: if Veri f ySig(Sig, BHlast, Keypub) is true then
14: SetState(BHlast)
15: end if
16: end for
17: end procedure

Algorithm 2 is the process of creating blocks and transactions in the IoT-Chain. The
operation process consists of the process of creating a transaction, including the data
collected from the IoT device through the sensor, and the process of creating a block by
including the transaction in the block after verification. In the case of transaction creation,
it operates on the nodes of the IoT chain. In the case of block generation after transaction
verification, it is operated by a leader node randomly selected from among the nodes of
the IoT chain every block generation round. Nodeic generates sensor data and encrypts the
sensor data using Keypriv for TX generation. The VRF is executed to return Valrand and
to transmit TX, including sensor data, Sig, and Valrand, to Nodeleader recorded in the last
block. Nodeleader verifies the values stored in TX with Keypub and has the largest value of
Valrand. After selecting Nodeic as the next Nodeleader, it is recorded in Blockic, distributed
to Networkic, and added to the IC. Unlike O(n2), which is the communication amount
of the PBFT-based algorithm that achieves consensus through network communication,
a leader node is selected through a random function, and the block is verified with the
communication amount of O(n). Through the consensus algorithm with a reduced number
of messages compared to the PBFT-based consensus algorithm, consensus is possible even



Sensors 2022, 22, 8271 14 of 25

in IoT devices with low computational power without using the PoW-based consensus
algorithm that requires more computational power.

Algorithm 2 Networkic—Blockic/TX creation.
1: procedure PROCEDURE Nodeic :
2: Data← GenerateSensorData()
3: Sig← CreateSig(Data, KeyPriv)
4: Valrand ← VRF()
5: TX← CreateTX(Data, Sig, Valrand)
6: Blocklast ← GetLatestBlock()
7: Nodeleader ← BlockLast.LeaderNode
8: SendTX(TX, Nodeleader)
9: end procedure

10:
11: procedure PROCEDURE Nodeleader :
12: TX← ReceviceTX()
13: if TXs.Length is count then
14: TXs← TX
15: Count(TXs) is not count
16: Nodeleader ← GetMaxRandomValueNode(TXs)
17: Blockic ← CreateBlock(Txs, Nodeleader)
18: Broadcast(Blockic)
19: end if
20: end procedure

Algorithm 3 is a lightweight storage process for IC. Nodes in Networkic proceed with
“export consensus” to store IC in DFS. After the export consensus process, Blockexports with
the Schnorr signature is delivered to Networkmc through the export node. This process
is used to periodically store the IoT chain in a distributed file system and record only
metadata for verification in the monitoring chain in order to reduce the capacity of the IoT
chain. For verification, it is necessary to start the process of verifying data through the hash
value of the last block of the IoT chain. In addition, the final block hash value, which is
the verified result, and the signatures of IoT-Chain nodes, must be compressed to generate
a Schnorr signature. For operation, the export process of the IoT chain is executed in the
Exporter Node. The process of verifying and signing the last block hash value is executed
in the nodes of the IoT-Chain. Blockic is created in Networkic, the size of the IC increases,
and the round exceeds a certain size. Each Nodeic initiates a consensus verifying that BHlast
are all the same for embedding into Networkmc. Among the nodes, Nodeexpoert, which is
a pre-selected gateway node based on the network and hardware status, is the route of
consensus of all nodes through the routing protocol. Nodeexpoert creates a Sig encrypted
with BHlast with Keypriv, creates Blockexport containing BHlast and Sig, and delivers it to
the next node on the route. After receiving it, Nodeic sends Sigschnorr to Keypub, which is
verified through the CA. If the BHlast returned by creating and decrypting Keyschnorr is
the same as the BHlast of its own IC, the corresponding BHlast is encrypted with Keypriv to
create a Sig, the Sig is combined with a Schnorr signature method, and the Sig is added
by Sigschnorr to generate the combined Sig. It is created, passed to the next Nodeic in the
route, and this is repeated until the next Nodeic does not exist. Every node in the Networkic
repeats this process, the last Nodeic sends a Blockexport to Nodeexport, and Sigschnorr sends a
Blockexport to all nodes in CA. If the same BHlast value is returned after decrypting with
Keyschnorr created by combining Keypub, the IC is distributed and stored in the DFS, and
subsequently, Addressic is returned. Nodeexport transmits Blockexport to Networkmc. When
using the existing multi-signature method, a signature size of about O(n) and a number
of verifications are required, depending on the number of network nodes. The proposed
algorithm compresses the signature using the Schnorr signature method. As a result,
the number of validations required for group signatures and the storage capacity of the



Sensors 2022, 22, 8271 15 of 25

signatures are reduced by O(1). To create metadata of the IoT-Chain, signatures of all
IoT-Chain nodes are required. However, in order to receive the signatures of all nodes, the
number of signatures increases as much as the number of nodes, the size of the message
also increases, and O(n) signature verification processes exist. In the structure of this
paper, verification and verification data transmission are possible in a single signature by
compressing the signature using the Schnorr signature.

Algorithm 3 Blockexport creation.
1: procedure PROCEDURE Nodeexport :
2: if SizeO f (IC) is Maximum then
3: Sig← CreateSig(BHlast)
4: rawRoute← routingTable
5: Route← CreateSig(rawRoute)
6: Blockexport ← CreateBlockexport(BHLast, Sig, Route)
7: StartEmbedding(BlockExport, Cert, Route)
8: end if
9: end procedure

10:
11: procedure PROCEDURE Nodeic :
12: for Nodeic in Networkic do
13: Blockexport ← receive()
14: Keyspub ← CA
15: Keyschnorr ← AggregatePub(Keyschnorr, Keyspub)
16: if Veri f ication(Blockexport.Sigschnorr, Keyschnorr) is true then
17: Sig← CreateSig(BHlast, Keypriv)
18: Sigschnorr ← Blockexport.Sigschnorr
19: Sigschnorr ← CreateSchnorrSig(Sigschnorr, Sig)
20: Blockexport.Sigschnorr ← Sigschnorr
21: end if
22: if exist(consensusRoute.Next) is true then
23: Broadcast(BlockExport, Keyschnorr, Route)
24: exist(consensusRoute.Next) is f alse
25: Broadcast(BlockExport, Keyschnorr, Nodeexport)
26: end if
27: end for
28: end procedure

Algorithm 4 is the process of transferring and saving Blockexport from Networkic to
Networkmc. In this process, after verifying the block hash value made by the nodes of
the IoT chain, it is guaranteed that all nodes maintain the same blockchain. After this
verification process is performed, the process of transmitting the compressed signature
and hash value to the monitoring chain is performed. In addition, the process of verifying
the result value delivered to the monitoring chain and storing it in the monitoring chain
is performed. The resulting value of the export process is executed by the exporter node
and transmitted to the monitoring chain, and the verification process is performed in
the monitoring chain node. In Networkmc, Sigschnorr, which is stored in Blockexport and
delivered by Nodeexport, is requested by the CA. The returned Keypub is combined and
verified, and Blockexport is stored in the MC. In Networkic, the IC is restarted by storing the
address in the MC and embedding the IC and then performing the hash operation with
the stored BHlast and creating the connected block.



Sensors 2022, 22, 8271 16 of 25

Algorithm 4 Blockexport verification.
1: procedure PROCEDURE Nodeexport :
2: Blockexport ← receive()
3: Sigschnorr ← Blockexport.Sigschnorr
4: Keyspub ← CA
5: Keyschnorr ← CreateSchnorrPub(Keyspub)
6: if Veri f ication(Sigschnorr, Keyschnorr) is true then
7: Addressic ← DFS(IC)
8: Blockexport.Address← Addressic
9: SendBlockToMC(Blockexport)

10: end if
11: end procedure
12:
13: procedure PROCEDURE Nodemc :
14: for Nodemc in Networkmc do
15: Blockexport ← Receivce()
16: Keyspub ← CA
17: Keyschnorr ← CreateSchnorrPub(Keyspub)
18: if Veri f ication(Sigschnorr, Keyschnorr) is true then
19: PutState(Blockexport)
20: end if
21: end for
22: end procedure
23:
24: procedure PROCEDURE Nodeic :
25: ResetIoTChain(BlockExport.BHlast)
26: end procedure

5. Security Analysis

In this section, on the lightweight blockchain using the proposed multilevel structure
of Networkic and Networkmc, we analyze the existing security solution application’s limita-
tions owing to the low performance, which is the weakness of existing IoT devices, security
vulnerabilities of fog nodes and edge nodes, and whether vulnerabilities caused by data
forgery owing to the centralized server structure, single-point errors of the central server,
and DDoS attacks can be resolved. The STRIDE threat model technique was applied for the
existing IoT blockchain threat analysis.

5.1. STRIDE Threat Modeling

According to the Microsoft Threat Modeling Tool threats in Table 3, there are six threats
in the STRIDE model: identity spoofing, data tampering, denial, information disclosure,
denial of service, and elevation of privilege. We applied the STRIDE model to analyze
the threats of existing blockchain-based IoT data management methods and compared
them with the proposed structure. Figure 8 shows the data flow of the proposed structure
and the existing blockchain-based IoT device data management method. The existing
blockchain-based IoT data management method consists of the IoT Device Zone, IoT Filed
Gateway Zone, and Cloud/Edge Computing Zone, and the threats of each component
were analyzed and compared with those identified in this paper. Table 4 is the analysis of
results, and its contents are as follows.



Sensors 2022, 22, 8271 17 of 25

Table 3. STRIDE Threat Modeling [48].

Treat Threat Definition Property Violated
S Spoofing Identify Pretending to be something or someone other than yourself Authentication
T Tampering with Data Modifying something on disk, network, memory, or elsewhere Integrity

R Repudiation
Claiming that you didn’ t do something or were not responsible;
can be honest or false

Non-repudiation

I Information Disclosure Providing information to someone not authorized to access it Confidentiality
D Denial of Service Exhausting resources needed to provide service Availability
E Elevation of Privilege Allowing someone to do something they are not authorized to do Authorization

Table 4. STRIDE threat modeling—results.

Zone Component
Property
Violated

Description

IoT
Device

IoT Device
/User

S Authorization can be obtained when a device or user authenticates by disguising as another user.
E Attacks on data are possible if the access right of the device or user is allowed.

IoT Field
Gateway

IoT Cloud
Gateway

S, TRID
Information disclosure and data tampering occur through techniques such as spoofing attacks on
gateways that exist outside the IoT network.IoT Edge

Gateway
S, TRID

Cloud/Edge
Computing

Cloud
Eventhub

TRID - Due to centralized EventHub management, communication interference between
gateways and eavesdropping may occur.
- Data forgery occurs in storage due to centralized administrators or DDoS attacks.

Edge
Eventhub

TRID

IoT
Device

IoT
Device

IoT
Device

IoT Cloud
Gateway

IoT Edge
Gateway

Cloud
Interface

Edge
Interface

Data
Storage

Data
Storage

IoT Chain
Node

IoT Chain
Node

(Leader)

IoT Chain
Node

Smart
Contract

IPFS
Gateway

IPFS
Node

IPFS
Node

IPFS
Node

Monitoring
Chain Node

Monitoring
Chain Node

Monitoring
Chain Node

Existing model Proposed architecture

Device, 
Storage

Processes,
Service

Zone Request,
Response

User

Figure 8. Dataflow diagram in IoT.

5.2. IoT Device Zone Threats

As for the existing IoT device zone threats, there is a method that attempts to log in
with spoofed authentication and a threat that exploits it through authentication information.
In the structure of this paper, a private key exists for each device and is managed through
CA, and all device requests can be used if they are authenticated through a signature. In
addition, it is assumed that the private key is not leaked to anyone other than the device
and the user.



Sensors 2022, 22, 8271 18 of 25

5.3. IoT Flied Gateway Zone Threats

IoT devices are not suitable for application to existing security solutions owing to their
low performances. However, the storage requirements of the blockchain and excessive
computational amounts of the consensus algorithm will result in traffic problems in the
network. Therefore, in the existing blockchain-based IoT data management method, it acts
as a client that stores data by sending a transaction through the gateway to a blockchain
node operating in an external cloud with a gateway. However, this can lead to information
disclosure and data tampering through spoofing attacks on the gateway. In this study, we
minimized the use of gateways by using a lightweight blockchain that can operate on IoT
devices rather than external blockchain nodes. In addition, during the export process for
storage lightening, gateways are randomly selected to prevent attacks.

5.4. Cloud and Edge Computing Zone Threats

Existing blockchain-based IoT data management stores data in the cloud and central
server. Additionally, the central server is managed by an authorized administrator. Data
reliability and integrity cannot be guaranteed due to the possibility of data tampering by
privileged administrators and DDoS and SPOF attacks. Through the proposed lightweight
blockchain, all IoT devices participate as nodes rather than clients of Networkic to generate
Blockic through a consensus algorithm and maintain the IC to ensure data reliability,
and the same ledger is held by all Nodeic, thereby eliminating the possibility of forgery.
Moreover, by uploading the IC for each specific round to the DFS, Addressic is returned
and embedded into Networkmc, implemented based on the private blockchain HF, and
distributed and stored because of the decentralized structure, whereby all Nodeic agree for
consensus. Thus, decentralization can be guaranteed, and there is no possibility of service
failure owing to DDoS attacks and single-point errors.

6. Experiment

Table 5 is the experimental environments. An experiment was conducted using three
Raspberry Pi 4 B computers (system on chip: Broad-com BCM2711, quadcore Cortex-A72
(ARM v8) 64-bit SoC @ 1.5 GHz, memory: 4 GB LPDDR4-3200 SDRAM, OS: Raspbian GNU
Linux 10). As depicted in Figure 9, an IoT device network was configured to verify whether
the Networkic configuration can be built in an IoT network. Furthermore, by considering
the increase in the blockchain size and latency according to the data generated by the actual
IoT device, the average file size according to the file format, and the average data size
generated by the IoT device for TPS measurement, the experimental data were converted
into 8, 128, 1K, and 10K. Decentralization was guaranteed, and there was no possibility of
service failure owing to DDoS attacks and single-point errors.

Table 5. Experimental environment.

Type Name Function Specs (Version)

HW

Node in Monitoring Chain Running Monitoring Chain Node
DellEMC PowerEdge R740 server
(CPU: Intel Xeon Silver 4210R 2.4 G,
RAM: 32 GB, Ubuntu 18.04)

Node in IoT Chain Running IoT Chain Node

Raspberry Pi 4 B
(system on chip: Broad-com BCM2711,
quadcore Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz,
memory: 4 GB LPDDR4-3200 SDRAM,
OS: Raspbian GNU Linux 10)

SW

Node.js
Implementation Node
in IoT Chain

v14.12.0

Fabric-client
Connect IoT Chain to
Monitoring Chain

v1.4.17

Hyperledger Fabric
Deploy Node in
Monitoring Chain

v2.0

Golang
Implementation
Monitoring Chain Smart
Contract

v1.13

Docker
Deploy Node in
Monitoring Chain

v20.10.7



Sensors 2022, 22, 8271 19 of 25

Figure 9. IoT device for IoT-Chain network configuration.

6.1. IoT-Chain Size

In Networkiot, after consensus is reached for each round in which the IC becomes a
specific size, the IC is distributed and stored in the DFS to convert Addressic into Networkmc.
The blockchain size is lightened through the process of sending it, embedding it, and
starting the IC again. Depicted in Figure 10 are the size of the IC to which the proposed
export was applied and the IC to which the proposed export was not applied. The standard
of the round was when the size of the IC became 5 kB. The experiment demonstrated that
the size of IC to which the export process was applied did not exceed 5000 kB, but it was
confirmed that the size of the blockchain continued to increase when it was not applied.

Figure 10. Size comparison according to IoT-Chain export consensus.

6.2. Consensus Algorithm

In Networkic, the delay time is reduced by randomly selecting Nodeleader for consen-
sus when creating Blockic. As a result, only the delay time corresponding to 0.004 s is
displayed. For a performance comparison, the PBFT consensus algorithm implemented in
the Fusion-Chain of the IoT-Chain node was applied, and the PoW consensus algorithm
with Nonce = 2 was applied to compare the delay time. As a result of generating Blockic
from Networkic by applying the proposed consensus algorithm, there was an average delay
of 0.0044 s, as depicted in Figure 11. However, when blocks were generated through the
PBFT consensus algorithm, the average delay time was 0.1266 s. The average delay time
of 5.528 s was measured when using PoW. Through the proposed consensus algorithm,



Sensors 2022, 22, 8271 20 of 25

the block generation time was reduced by 96% compared to PBFT and 99% compared
to PoW. Moreover, when a leader node is selected, a DDoS attack can occur because all
nodes can know the leader node when using the method of sending a transaction to the
leader node recorded in the last block, but the problem could be solved with a delay of only
0.0044 s. The experimental results confirmed that the latency was reduced compared to the
representative consensus algorithm with high CPU computation and network communication.

Figure 11. Latency comparison according to IoT-Chain consensus algorithm.

As depicted in Figure 12, which is the experimental result of comparing the average
CPU usage of the leader node and the consensus participating node during consensus for
block generation, it was confirmed that the proposed consensus algorithm had the lowest
average CPU usage.

Figure 12. CPU usage comparison according to IoT-Chain consensus algorithm.

The experiments were conducted by changing the consensus algorithm of IoT-Chain
to PoW, PBFT, and the proposed consensus algorithm. In the case of CPU usage, average
CPU usage was sampled for 1 s, and the average CPU usage values of the leader node
(PBFT, proposed consensus algorithm) and mining node (PoW) were measured from block
creation to consensus. The number of nodes of all IoT-Chains was the same, five, and the
difficulty nonce value of PoW was set to two.

6.3. Block Propagation Delay

The time for the block to propagate from Nodeleader to Nodeic was measured according
to the data size to check whether the data size affected the propagation to nodes after the
block was created in Networkic. To measure the block propagation delay time according
to various data sizes in Networkic, the data were divided into sizes of 8, 128, 1K, and 10K
bytes; and blocks were created in the leader node for five IoT devices, Nodeic.



Sensors 2022, 22, 8271 21 of 25

For the experiment, after the block was created, the block propagation delay time from
Nodeleader to all Nodeic was measured, and the maximum, minimum, and average Boxplot
graphs are displayed.

By operating and configuring NetworKic, we measured the propagation time after
agreeing to Blockic, as depicted in Figure 13. It was confirmed that the propagation time
of Blockic increased depending on the data size, but the increase was not large, and the
maximum average delay time was only 36 ms.

Figure 13. Blockic propagation time according to data size.

6.4. Schnorr Signature

To export the IC from Networkic to Networkmc, Sig was created using the Schnorr
signature method to verify that the IC of Nodeic was the same as BHlast. To measure
the delay time of the method, the delay time of generating Sigschnorr by combining the
signatures generated by encrypting 128 bytes of data with Keypriv according to the number
of nodes was measured, as depicted in Figure 14. The experimental results revealed that
the IoT device generated Sigschnorr while increasing the number of Nodeic, but the delay
time for generating Sigschnorr from each Nodeic was constant. It was confirmed that when
generating the Schnorr signatures, there was no significant difference in delay time, even if
the number of signatures to be combined increased.

Figure 14. Latency measurement results for generating Schnorr signatures.



Sensors 2022, 22, 8271 22 of 25

6.5. Export Latency

Figure 15 depicts the results of measuring the delay time when exporting the IC
from Networkic to Networkmc. The delay time consisted of three parts: generating the
Schnorr signature, uploading the IC to the DFS, and transferring Networkic to Networkmc
Blockexport. The transmission latency consisted of Networkic using the DFS to embed the IC
with Networkmc. Nodeexport uploaded the IC held in the configured DFS by all Nodeic that
were verified, and it was confirmed that the delay time was only 50 ms. For embedding
from Networkic to Networkmc, all Nodeic have the same IC and go through the process of
agreeing to export. During this process, all nodes in Nodeic must receive and verify Sig.
However, since signatures of each node are all generated, there is an O(N) overhead due to
signatures in Nodeic.

Figure 15. Export latency: the results of measuring the delay time when exporting the IC from
Networkic to Networkmc.

In this paper, the signatures of nodes participating in consensus can be combined into
one signature through the Schnorr signature. In this way, each node reduces the storage
capacity through Sigschnorr compressed with signatures in O(1), and verification is possible
at the same time.

As a result of measuring the delay time of the Schnorr signature, it was confirmed that
the total delay time of signature verification of Nodeic increases linearly in the consensus
process because each node verifies the signature O(1) times. Additionally, to insert IC
from Networkic to Networkmc, IC was uploaded to DFS, and the returned address and
the combined signature of all nodes were sent to MC, so the final result, the size of the
signature stored, is the size of one signature.Fabric SDK can be executed asynchronously
with a delay that includes all processes from propagating a transaction to MC(Hyperledger
Fabric), consensus and saving it, so it was confirmed that the delay in the export process
takes about 2 s.

6.6. IoT-Chain Transactions per Second

As depicted in Figure 16, an experiment was conducted to confirm the change in the
TPS according to the number of Nodeic in Networkic and the data size. The size of the
experimental data was 8, 128, 1K, or 10K bytes. TX was created, and for the TPS calculation,
(1) SizeBlockchain/SizeTx = SizeTxPerBlock and (2) SizeTxPerBlock/TimeBlockCreation = TPS.

(1) and (2) were used to calculate the TPS. When the data size was 8 bytes, the TPS
decreased to 1701, 1634, and 1542 as the number of Nodeic increased. In the case of 128 bytes,
it decreased to 1586, 1583, and 1487. In the case of 1K, it decreased in the order of 1517,
1453, and 1401. At 10K, the TPS decreased to 1220, 1178, and 1024. In all tested cases, the
TPS was kept above 1000.



Sensors 2022, 22, 8271 23 of 25

Figure 16. IoT-Chain TPS measurement.

7. Conclusions

We have proposed a lightweight blockchain and multilevel blockchain structure for IoT
security. The challenges of existing blockchains, such as increasing the blockchain capacity,
the consensus algorithm’s calculation amount, the network communication volume, and
privacy not being guaranteed, can be overcome through this blockchain structure. To solve
the problem of increasing the blockchain capacity, the IC that can be operated in the IoT
is stored in the DFS for each specific round, and the returned Addressic is delivered to
Networkmc and stored to save the IC. To solve the problem of excessive computation and
network traffic of the existing consensus algorithm, the VRF-based leader node election
method, which is a random function, is used, and the average delay time was only 0.004 s.
A stable and tamper-resistant embedding method was applied by constructing a multi-
chain architecture and establishing a reliable metadata delivery consensus method and
export node between chains (IoT-Chain–Monitoring-Chain). We have proposed a consensus
algorithm that is suitable for IoT devices that produce data and generate transactions. It was
confirmed that the block propagation time was not affected by the data size. Moreover,
in the case of the IC export, when generating Schnorr signatures during the consensus
process, the delay time was not affected by the number of nodes. As a result of the total time
measurement analysis of the export, only the delay time of the Schnorr signature increased
linearly according to the number of nodes. Furthermore, it was confirmed that the upload
time to the DFS and the transfer time from Networkic to Networkmc were constant. After
distributing the IC to solve the privacy problem, Addressic was stored in the MC that was
implemented based on the private blockchain HF so that only users who have been granted
access to data can access the data. The results of the TPS measurement demonstrated
that one of the performance indicators of the blockchain system, Networkic, is suited to
devices similar to actual IoT devices. As a result of constructing and measuring the TPS, it
was proven to maintain more than 1000 tps. In a future study, the Schnorr signature and
data transmission delay time from NetworKic to Networkmc will be reduced to decrease the
export time, and a study will be conducted on configuring the optimal route of the routing
table of Nodeexport.

Author Contributions: Conceptualization, D.N.; methodology, D.N.; programming, D.N.;
writing—original draft preparation, D.N.; supervision and review, S.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Bisa Research Grant of Keimyung University in 2021.

Institutional Review Board Statement: Not applicable.



Sensors 2022, 22, 8271 24 of 25

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Knuth, D. Internet of Things (IoT) Market - Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026) [Online]. Available

online: https://www.mordorintelligence.com/industry-reports/internet-of-things-moving-towards-a-smarter-tomorrow-
market-industry (accessed on 25 May 2021).

2. Howarth, J. 6 Important IoT Trends For 2022–2024 [Online] . Available online: https://explodingtopics.com/blog/iot-trends
(accessed on 24 October 2022).

3. McMillen, D. Internet of Threats: IoT Botnets Drive Surge in Network Attacks [Online]. Available online: https:
//securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/ (accessed on 25 June 2021).

4. CDnetworks. What Is a DDOS Attack? [Online]. Available online: https://www.cdnetworks.com/ko/cloud-security-blog/
what-is-ddos-attack/ (accessed on 10 December 2021).

5. GREEN, A. The Mirai Botnet Attack and Revenge of the Internet of Things [Online]. Available online: http://varonis.com/blog/
the-mirai-botnet-attack-and-revenge-of-the-internet-of-things/ (accessed on 6 August 2021).

6. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;
Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th {USENIX} Security Symposium ({USENIX}
Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110.

7. Mukherjee, M.; Matam, R.; Shu, L.; Maglaras, L.; Ferrag, M.A.; Choudhury, N.; Kumar, V. Security and privacy in fog computing:
Challenges. IEEE Access 2017, 5, 19293–19304. [CrossRef]

8. Alwarafy, A.; Al-Thelaya, K.A.; Abdallah, M.; Schneider, J.; Hamdi, M. A Survey on Security and Privacy Issues in Edge-
Computing-Assisted Internet of Things. IEEE Internet Things J. 2020, 8, 4004–4022. [CrossRef]

9. CheckPoint. Main Cloud Security Issues and Threats in 2021 [Online]. Available online: https://www.checkpoint.com/cyber-
hub/cloud-security/what-is-cloud-security/top-cloud-security-issues-threats-and-concerns/ (accessed on 1 December 2021).

10. Kumar, V. Single Point of Failure|A Simple Overview [Online]. Available online: https://www.rankred.com/single-point-of-
failure/ (accessed on 7 October 2021).

11. David Rodeck, J.S. What Is Blockchain? [Online]. Available online: https://www.forbes.com/advisor/investing/what-is-
blockchain/ (accessed on 30 April 2022).

12. Frankenfield, J. Proof of Work (PoW) [Online]. Available online: https://www.investopedia.com/terms/p/proof-work.asp
(accessed on 20 May 2022).

13. Castro, M.; Liskov, B. Practical byzantine fault tolerance. Proc. OSDI 1999, 99, 173–186.
14. Ray, P.P. A survey on Internet of Things architectures. J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 291–319.
15. Micali, S.; Rabin, M.; Vadhan, S. Verifiable random functions. In Proceedings of the 40th Annual Symposium on Foundations of

Computer Science (cat. No. 99CB37039), New York, NY, USA, 17–19 October 1999; pp. 120–130.
16. Maurer, U. Modelling a public-key infrastructure. In European Symposium on Research in Computer Security; Springer:

Berlin/Heidelberg, Germany, 1996; pp. 325–350.
17. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,

Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

18. Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 2-1.
19. IoT-Chain Source Code [Online]. Available online: https://github.com/nadongjun/sensor-chain (accessed on 30 May 2021).
20. Shahid, A.R.; Pissinou, N.; Staier, C.; Kwan, R. Sensor-chain: A lightweight scalable blockchain framework for internet of

things. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
Atlanta, GA, USA, 14–17 July 2019; pp. 1154–1161.

21. Alsalih, W.; Islam, K.; Rodríguez, Y.N.; Xiao, H. Distributed voronoi diagram computation in wireless sensor networks.
In Proceedings of the SPAA, Munich, Germany, 14–16 June 2008; p. 364.

22. Dennis, R.; Owenson, G.; Aziz, B. A temporal blockchain: A formal analysis. In Proceedings of the 2016 International Conference
on Collaboration Technologies and Systems (CTS), Orlando, FL, USA, 31 October–4 November 2016; pp. 430–437.

23. Silvano, W.F.; Marcelino, R. Iota Tangle: A cryptocurrency to communicate Internet-of-Things data. Future Gener. Comput. Syst.
2020, 112, 307–319. [CrossRef]

24. Bai, L.; Hu, M.; Liu, M.; Wang, J. BPIIoT: A light-weighted blockchain-based platform for industrial IoT. IEEE Access 2019,
7, 58381–58393. [CrossRef]

25. Na, D.; Park, S. Fusion Chain: A Decentralized Lightweight Blockchain for IoT Security and Privacy. Electronics 2021, 10, 391.
[CrossRef]

26. Pan, J.; Wang, J.; Hester, A.; Alqerm, I.; Liu, Y.; Zhao, Y. EdgeChain: An edge-IoT framework and prototype based on blockchain
and smart contracts. IEEE Internet Things J. 2018, 6, 4719–4732. [CrossRef]

https://www.mordorintelligence.com/industry-reports/internet-of-things-moving-towards-a-smarter-tomorrow-market-industry
https://www.mordorintelligence.com/industry-reports/internet-of-things-moving-towards-a-smarter-tomorrow-market-industry
https://explodingtopics.com/blog/iot-trends
https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/
https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/
https://www.cdnetworks.com/ko/cloud-security-blog/what-is-ddos-attack/
https://www.cdnetworks.com/ko/cloud-security-blog/what-is-ddos-attack/
http://varonis.com/blog/the-mirai-botnet-attack-and-revenge-of-the-internet-of-things/
http://varonis.com/blog/the-mirai-botnet-attack-and-revenge-of-the-internet-of-things/
http://doi.org/10.1109/ACCESS.2017.2749422
http://dx.doi.org/10.1109/JIOT.2020.3015432
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-cloud-security/top-cloud-security-issues-threats-and-concerns/
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-cloud-security/top-cloud-security-issues-threats-and-concerns/
https://www.rankred.com/single-point-of-failure/
https://www.rankred.com/single-point-of-failure/
https://www.forbes.com/advisor/investing/what-is-blockchain/
https://www.forbes.com/advisor/investing/what-is-blockchain/
https://www.investopedia.com/terms/p/proof-work.asp
https://github.com/nadongjun/sensor-chain
http://dx.doi.org/10.1016/j.future.2020.05.047
http://dx.doi.org/10.1109/ACCESS.2019.2914223
http://dx.doi.org/10.3390/electronics10040391
http://dx.doi.org/10.1109/JIOT.2018.2878154


Sensors 2022, 22, 8271 25 of 25

27. Hou, L.; Zheng, K.; Liu, Z.; Xu, X.; Wu, T. Design and prototype implementation of a blockchain-enabled LoRa system with edge
computing. IEEE Internet Things J. 2020, 8, 2419–2430. [CrossRef]

28. Gai, K.; Wu, Y.; Zhu, L.; Xu, L.; Zhang, Y. Permissioned blockchain and edge computing empowered privacy-preserving smart
grid networks. IEEE Internet Things J. 2019, 6, 7992–8004. [CrossRef]

29. Yao, Y.; Chang, X.; Mišić, J.; Mišić, V.B.; Li, L. BLA: Blockchain-assisted lightweight anonymous authentication for distributed
vehicular fog services. IEEE Internet Things J. 2019, 6, 3775–3784. [CrossRef]

30. Zhang, S.; Lee, J.H. A group signature and authentication scheme for blockchain-based mobile-edge computing. IEEE Internet
Things J. 2019, 7, 4557–4565. [CrossRef]

31. Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Syta, E.; Ford, B. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018,
pp. 583–598.

32. Zamani, M.; Movahedi, M.; Raykova, M. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018, pp. 931–948.

33. Huang, C.; Wang, Z.; Chen, H.; Hu, Q.; Zhang, Q.; Wang, W.; Guan, X. RepChain: A Reputation-Based Secure, Fast, and High
Incentive Blockchain System via Sharding. IEEE Internet Things J. 2020, 8, 4291–4304. [CrossRef]

34. Lin, C.; He, D.; Kumar, N.; Huang, X.; Vijayakumar, P.; Choo, K.K.R. Homechain: A blockchain-based secure mutual authentication
system for smart homes. IEEE Internet Things J. 2019, 7, 818–829. [CrossRef]

35. Ding, S.; Cao, J.; Li, C.; Fan, K.; Li, H. A novel attribute-based access control scheme using blockchain for IoT. IEEE Access 2019,
7, 38431–38441. [CrossRef]

36. Liu, H.; Han, D.; Li, D. Fabric-IoT: A blockchain-based access control system in IoT. IEEE Access 2020, 8, 18207–18218. [CrossRef]
37. Biswas, S.; Sharif, K.; Li, F.; Maharjan, S.; Mohanty, S.P.; Wang, Y. PoBT: A lightweight consensus algorithm for scalable IoT

business blockchain. IEEE Internet Things J. 2019, 7, 2343–2355. [CrossRef]
38. Gilad, Y.; Hemo, R.; Micali, S.; Vlachos, G.; Zeldovich, N. Algorand: Scaling byzantine agreements for cryptocurrencies.

In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, 28 October 2017, pp. 51–68.
39. Buchman, E. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. PhD Thesis, University of Guelph, Guelph, ON,

Canada , 2016.
40. Wang, J.; Liu, Y.; Niu, S.; Song, H. Lightweight blockchain assisted secure routing of swarm UAS networking. Comput. Commun.

2021, 165, 131–140. [CrossRef]
41. Wang, J.; Liu, Y.; Song, H. Counter-Unmanned Aircraft System (s)(C-UAS): State of the Art, Challenges, and Future Trends. IEEE

Aerosp. Electron. Syst. Mag. 2021, 36, 4–29.. [CrossRef]
42. Wang, J.; Liu, Y.; Niu, S.; Song, H.; Jing, W.; Yuan, J. Blockchain enabled verification for cellular-connected unmanned aircraft

system networking. Future Gener. Comput. Syst. 2021, 123, 233–244. [CrossRef]
43. Anagnostakis, A.G.; Giannakeas, N.; Tsipouras, M.G.; Glavas, E.; Tzallas, A.T. IOT Micro-blockchain Fundamentals. Sensors 2021,

21, 2784. [CrossRef]
44. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014. arXiv:1407.3561.
45. Maxwell, G.; Poelstra, A.; Seurin, Y.; Wuille, P. Simple schnorr multi-signatures with applications to bitcoin. Des. Codes Cryptogr.

2019, 87, 2139–2164. [CrossRef]
46. Johnson, D.; Menezes, A.; Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.

[CrossRef]
47. Bresson, E.; Stern, J.; Szydlo, M. Threshold ring signatures and applications to ad hoc groups. In Annual International Cryptology

Conference ; Springer : Berlin/Heidelberg, Germany, 2002; pp. 465–480. [CrossRef]
48. Microsoft Threat Modeling Tool threats [Online]. Available online: https://docs.microsoft.com/en-us/azure/security/develop/

threat-modeling-tool-threats (accessed on 3 September 2022).

http://dx.doi.org/10.1109/JIOT.2020.3027713
http://dx.doi.org/10.1109/JIOT.2019.2904303
http://dx.doi.org/10.1109/JIOT.2019.2892009
http://dx.doi.org/10.1109/JIOT.2019.2960027
http://dx.doi.org/10.1109/JIOT.2020.3028449
http://dx.doi.org/10.1109/JIOT.2019.2944400
http://dx.doi.org/10.1109/ACCESS.2019.2905846
http://dx.doi.org/10.1109/ACCESS.2020.2968492
http://dx.doi.org/10.1109/JIOT.2019.2958077
http://dx.doi.org/10.1016/j.comcom.2020.11.008
http://dx.doi.org/10.1109/MAES.2020.3015537
http://dx.doi.org/10.1016/j.future.2021.05.002
http://dx.doi.org/10.3390/s21082784
http://dx.doi.org/10.1007/s10623-019-00608-x
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1007/3-540-45708-9_30
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

	Introduction
	Motivation
	Challenges
	Capacity Requirement
	Consensus Requirement
	Data Privacy

	Contribution
	Capacity Requirement
	Consensus Requirement
	Data Privacy


	Related Work
	Background
	Hyperledger Fabric
	InterPlanetary File System
	Schnorr Signature
	Verifiable Random Function

	Architecture
	System Design
	Multilevel Blockchain
	IoT-Chain
	Monitoring-Chain
	Workflow

	Security Analysis
	STRIDE Threat Modeling
	IoT Device Zone Threats
	IoT Flied Gateway Zone Threats
	Cloud and Edge Computing Zone Threats

	Experiment
	IoT-Chain Size
	Consensus Algorithm
	Block Propagation Delay
	Schnorr Signature
	Export Latency
	IoT-Chain Transactions per Second

	Conclusions
	References

