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Abstract: Emotion recognition, or the ability of computers to interpret people’s emotional states,
is a very active research area with vast applications to improve people’s lives. However, most
image-based emotion recognition techniques are flawed, as humans can intentionally hide their
emotions by changing facial expressions. Consequently, brain signals are being used to detect human
emotions with improved accuracy, but most proposed systems demonstrate poor performance as
EEG signals are difficult to classify using standard machine learning and deep learning techniques.
This paper proposes two convolutional neural network (CNN) models (M1: heavily parameterized
CNN model and M2: lightly parameterized CNN model) coupled with elegant feature extraction
methods for effective recognition. In this study, the most popular EEG benchmark dataset, the DEAP,
is utilized with two of its labels, valence, and arousal, for binary classification. We use Fast Fourier
Transformation to extract the frequency domain features, convolutional layers for deep features,
and complementary features to represent the dataset. The M1 and M2 CNN models achieve nearly
perfect accuracy of 99.89% and 99.22%, respectively, which outperform every previous state-of-the-art
model. We empirically demonstrate that the M2 model requires only 2 seconds of EEG signal for
99.22% accuracy, and it can achieve over 96% accuracy with only 125 milliseconds of EEG data for
valence classification. Moreover, the proposed M2 model achieves 96.8% accuracy on valence using
only 10% of the training dataset, demonstrating our proposed system’s effectiveness. Documented
implementation codes for every experiment are published for reproducibility.

Keywords: emotion recognition; CNN; EEG; machine learning; sensor; deep learning

1. Introduction

Emotion is a complex, subjective experience characterized by physiological arousal,
expressive behaviors, and cognitive processes. In many cases, emotions are triggered by
specific events or stimuli and can be positive (e.g., joy, love, hope) or negative (e.g., anger,
fear, sadness). Playing a vital role in people’s physical and mental health, emotions can
influence one’s thoughts, feelings, and behavior.

Constantly processing information, the human brain uses emotions to make sense of its
environment. However, we heavily rely on technology to communicate in an increasingly
connected world. Emotion recognition is the ability of computer technology to identify and
respond to human emotions. An electroencephalogram (EEG) [1,2] is a test that detects
brain electrical activity using sensors (electrodes) attached to the scalp. EEG can be used to
help diagnose conditions including seizures [3,4], sleep disorders [5,6], and head injuries [7],
as well as for emotion recognition. This technology is still in its early stages, but it has the
potential to transform how we communicate with each other and with machines, as well as
improve our understanding of how the brain processes emotions.
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The DEAP multimodal dataset [8] contains EEG, peripheral physiological, and audio-
visual recordings from participants while they watched a series of videos for recognizing
emotion. This dataset has four interconnected labels arousal, valence, dominance, and
liking. The proposed model of this study uses the two labels of arousal and valence when
conducting experiments using EEG data.

Numerous authors have researched emotion recognition from EEG data with different
modeling, feature extraction, and preprocessing techniques [9,10]. However, a system’s
performance is not only measured by accuracy. In addition to recognition accuracy, the
performance of an optimal system can also consider such important measurements as
robustness, execution time, learning with limited data, and learning with limited parame-
terized models. This paper’s study is therefore designed with such best practices in mind.
The following specific research questions shape this paper:

1. Research question 1 (RQ1): Which deep learning model is more effective for EEG as a
form of time series signal recognition?

2. Research question 2 (RQ2): Can feature extraction improve the recognition accuracy
of a deep learning model? What is the most effective feature set?

3. Research question 3 (RQ3): What is the minimum EEG signal required for good
recognition? Can it be done in real-time?

4. Research question 4 (RQ4): How much data and time is required for training the
model to achieve a reasonable performance?

These four research questions form the basis of the research studies outlined in this
paper. The DEAP dataset [8] has four labels: arousal, valence, dominance, and liking.
Interestingly, only valence and arousal are responsible for basic emotions, such as happiness,
sadness, surprise, disgust, anger, etc. [11] This study begins by sending raw EEG data from
the DEAP dataset [8] through various deep learning models, including Long short-term
memory (LSTM), Bidirectional LSTM (bi-LSTM), and CNN to discover which deep learning
model performs best (RQ1). Through this methodology, the CNN model of this paper
demonstrated the best performance when compared to LSTM and Bidirectional LSTM. For
this reason, the CNN model is then selected and used for all subsequent experiments with
different model architectures of 1D-CNN. Furthermore, by utilizing Fast Fourier Transform
(FFT) for feature extraction, even better accuracy is attained (RQ2).

A total of five different 1D-CNN models are tested with residual connections to obtain
state-of-the-art accuracy. Of these five models, two are selected for further experimentation.
Of the two selected models, the first model, called M1, is heavy and consists of four
convolution layers and three dense layers. M1 performs better than any other tested model.
The second model, called M2, is lightweight and consists of two convolutional (Conv)
layers and one dense layer. M2 is selected because it maintained the parameter data ratio.
The remainder of the experiments is performed on this lightweight (M2) model (RQ1).

The methodology of this paper demonstrates better emotional recognition using
minimal EEG data through varying window sizes on the lightweight (M2) model (RQ3).
Subsequently, various combinations of train–test splits show that the lightweight (M2)
model also performs well on a smaller amount of training data, even showing very good
results on only fifty percent of training data (RQ4). Here, the model training time and
testing time are also recorded to evaluate the real-time usability of the system (RQ4).

Our Major Contributions

1. We propose a CNN model (M1) with residual connections, which achieved state-of-
the-art accuracy (average accuracy: 99.89%) over the previous models.

2. We introduce a light version of the CNN model (M2) with only 7.69% parameters
for the dataset size, which performs similarly (average accuracy: 99.22%) to the
M1 model.

3. FFT is used for frequency domain features, convolutional layers for deep features, and
complementary features to represent the dataset which proved to be very effective in
emotion recognition from EEG.
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4. Through experimentation, it is determined that only two seconds of EEG signal are
required to achieve a good recognition (valence accuracy: 99.22%).

5. We empirically demonstrate that our model can achieve good accuracy (valence
accuracy: 99.19%) by using only 50% of the dataset.

The rest of the paper is organized as follows: the literature review is organized by
feature extraction methods and model techniques, providing an overview of previous
studies and their limitations. The methodology section explains the dataset, preprocess-
ing techniques, feature extraction method, data preparation method, and deep learning
models. The experiment and results section demonstrates the experimental results based
on the stated research questions. The future research and implications section exposes
the limitations of this study and paves the way for future works, and then leads to the
paper’s conclusion.

2. Literature Review

Research with neurophysiological sensors [12,13] has begun to aid in monitoring
schizophrenia [14,15], Parkinson’s’ disease [16], traumatic brain injury [17], physiolog-
ical signals [18], cognitive function [19], epileptic seizures [20], alcoholism [21], brain
tumors [22], brain cancer [23], mental stability [24], personality [25], eye tracking [26],
and many other phenomena. Moreover, studies conducted on EEG data processing have
identified human emotions with exceptional accuracy [27–40]. These studies are the back-
bone of the growing number of emotional recognition applications, and because of their
far-reaching applications, the societal impact of enhancing their efficiency, accuracy, and
precision cannot be overstated.

While many emotion recognition studies have collected EEG data from human subjects,
the process of doing so can be both time-consuming and expensive due to the highly
sensitive equipment necessary to elicit EEG from participants. A popular alternative that
helps expand the diversity of research possible is the creation and use of public datasets.
Researchers generate these datasets and make them available for others to conduct further
studies. Public datasets available for emotion recognition include the DEAP [8], SEED [41],
LUMED [42], DREAMER [43], MAHNOB-HCI [44], and AMIGOS [45] datasets. Among
these, the DEAP dataset is the most popular and widely used for emotion recognition from
brain signals.

This study selected DEAP as the data source for EEG signals. The emotion labels in
the DEAP include valence, arousal, dominance, and liking. As shown in Table 1, prior
research with the DEAP has used a range of modeling frameworks, emotion labels, and
different numbers of classifications.

Table 1. Notable literature for the DEAP on binary classification of valence and arousal labels.

No Research Year Feature
Extraction Method Modeling Technique Average Test

Accuracy

1 Cui et al. [46] 2022 DE DE-CNN-BiLSTM 94%

2 Yin et al. [47] 2020 DE GCNN, LSTM 90%

3 Hasan et al. [48] 2021 FFT CNN 96%

4 Galvão et al. [49] 2021 Hjorth, Spectral Entropy, Wavelet-based
features, IMFP and IMFE KNN, RF 89.8%

5 Anubhav et al. [50] 2020 Common power LSTM 93.91%

6 Maeng et al. [51] 2020 PSD, Wavelet-based features, FFT LSTM 93%

7 Gao et al. [52] 2021 PSD, Hjorth, SE, DE CNN + SVM 77.87%

8 Asghar et al. [53] 2020 DFC SVM 81.30%

9 Alhalaseh et al. [54] 2020 Entropy and HFD CNN 95.20%

10 Garg et al. [55] 2019 Wavelet-based features and Stats LSTM 84%

11 Wang et al. [56] 2019 Time frequency domain P-GCNN 75.17%

12 Liu et al. [57] 2018 EMD, SBS KNN, SVM 85%
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2.1. Feature Extraction Methods

Generally, an important step for machine learning systems is to extract features from a
training dataset. Various distinct methodologies have been applied for feature extraction of
EEG data [1,2]. Among these methods, differential entropy (DE) [46,47], FFT [48], Wavelet-
based features [58], Hjorth [49], Sequence Backward Selection (SBS) [49], Band power [50],
power spectral density (PSD) [47,51], and sample entropy (SE) [52] are often employed to
obtain good accuracy when working on valence, arousal, and other emotion labels from
the DEAP dataset.

Some studies also include feature extraction techniques such as Deep Feature Clus-
tering (DFC) [53], Higuchi’s fractal dimension (HFD) [54], Entropy [54], CNN feature
extraction [59], Stats [55], raw [60], time frequency domain [56], Empirical Mode Decom-
position (EMD) [57], Intrinsic Mode Functions Power (IMFP) [49], and Intrinsic Mode
Functions Entropy (IMFE) [49].

Nevertheless, FFT [48] has been one of the most widely used methods for feature
extraction in recent decades. In this study, FFT feature extraction is employed for extracting
features from the DEAP dataset, as it has been proven in prior literature to be very effective
for classifying an expansive number of emotions, including highly complex ones [48].

2.2. Machine and Deep Learning Modeling

Machine Learning (ML) statistics improves software performance by iteratively learn-
ing from training datasets, and identifying patterns in the data that were not specifically
in the original computer program [61]. Closely related to statistical computation and
mathematical optimization, ML applies to features learned from a training dataset [62],
statistics such as classification or regression [63]. For this reason, ML traditionally requires
a preprocessing step to extract features for the model to train on a training dataset.

Deep Learning (DL) is a specific subclass of machine learning, where the mode is built
based on neural networks such as convolutional networks or long short-term memory
networks. The DL models allow the building of complex predictive functions from the
dataset. That is, an image of an entire person can be understood by the computer as corners
or edges when using deep learning [63]. With its automated feature learning [64], DL
models can achieve very good recognition accuracy training directly on raw datasets [62],
rather than requiring a separate feature extraction step. This means that DL can automate
the separation of discriminatory information from factors of variation for the learning
task [63,64]. For example, to build an ML model for classifying cats and dogs, features such
as height, weight, color, length, etc., need to be given as inputs to the model. However,
those same images of cats and dogs could be taken directly as input when the DL model can
automate the process of identifying their features. In the next section, numerous examples
of these kinds of modeling techniques being used for emotion recognition from EEG signals
with the DEAP dataset are evaluated.

2.2.1. Deep Learning Approaches with DEAP

DL has been used to train on the DEAP dataset in numerous studies and has achieved
notable recognition accuracy. Among the deep learning models, CNN and LSTM are most
frequently used in prior research. Using the CNN model, Gao et al. [52] achieved 75.78%
and 67.18% testing accuracy for arousal and valence, respectively. Their highest achieved
accuracy for arousal and valence was 80.52% and 75.22%, respectively, using time and
frequency features. Hasan et al. [48] used a 1D CNN with FFT in two and eight-class
classifications. They achieved 96.63% and 96.17% for two-class classifications and 93.83%
and 93.79% for eight-class classifications for valence and arousal. Alhalaseh et al. [54] used
CNN along with naïve Bayes, k-nearest neighbor (k-NN), and decision tree (DT) for a
two-class classification of emotion on valence and arousal from the DEAP dataset. They
achieved their best accuracy of 95.20% with CNN. They used the Sample entropy (SE) and
Higuchi’s fractal dimension (HFD) as feature extraction techniques.
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Through a fusion of graph convolution neural networks and LSTM, Yin et al. [47]
used differential entropy for extracting features to achieve 90.45% and 90.60% for va-
lence and arousal, respectively. Garg et al. [55] used a merged LSTM as a modeling
technique alongside wavelet-based features and statistical measures for extracting the
features. They achieved 84.89%, 83.85%, 84.37%, and 80.72% for valence, arousal, domi-
nance, and liking, respectively. In 2019, Ma et al. [60] used a multi-modal residual LSTM
(MMResLSTM) with raw EEG, achieving 92.87% and 92.30% for arousal and valence, re-
spectively. Anubhav et al. [50] used LSTM as well as K-nearest neighbor (KNN), support
vector machine (SVM), decision tree, and random forest (RF) as classifiers. They achieved
their best performance of 94.69% and 93.13% for arousal and valence, respectively, when
they used LSTM with band power as a feature. Maeng et al. [51] proposed a genetic al-
gorithm (GA) that used the LSTM deep learning model, where GA selected the effective
parameters for LSTM. They used three domain sets for features and a generic algorithm for
feature selection, achieving 91.3% and 94.8% for the valence and arousal labels, respectively.
Kim et al. [59] combined LSTM, attention, and CNN for valence and arousal models with
four-fold cross-validation. They achieved accuracies of 90.1% and 88.3% in the case of
two-level classification, and 86.9% and 84.1% in the case of three-level classification.

Luo et al. [65] employed three algorithms to extract the EEG signals: wavelet-based
features, variance, and FFT. The variance data processing method and spiking neural
networks (SNN) was used to attain good accuracies for arousal, valence, dominance, and
liking, which were 74%, 78%, 80%, and 86.27%, respectively. In 2019, Wang et al. [56] used
Time-Frequency Domain EEG features on the binary classifier. Here, they experimented
with three labels of the DEAP dataset, including arousal, valence, and dominance. They
compared graph convolution neural networks (GCNN), SVM, and deep belief network
(DBN) with their proposed phase-locking value (PLV) graph convolution neural networks
(P-GCNN) model to achieve accuracy of 77.03%, 73.31%, and 79.20%, respectively. The
DE-CNN-BiLSTM model, presented by Cui et al. [46], calculated differential entropy in
several time slices of various frequency bands. They extracted the EEG signal’s highly
complex attributes to produce 4D feature tensors based on their brain location. For the
DEAP dataset, their method obtained an average accuracy of 94% for arousal and valence.

2.2.2. Machine Learning Approaches with the DEAP

ML models have been alternatively more easily interpretable and lightweight [62].
Consequently, a number of research articles have used machine learning approaches to
train on the DEAP. In 2021, Fang et al. [66] worked on two labels (arousal and valence) of
the DEAP dataset with five classes of emotion (neutral, angry, sad, happy, and pleasant).
They compared the results of their proposed Multi-Feature Deep Forest (MFDF) model
with the different machine learning classifiers, including KNN, RF, and SVM. They used
PSD and DE as feature extraction techniques to obtain an average accuracy rate of 71.05%,
which was 3.40%, 8.54%, and 19.53% higher than RF, KNN, and SVM, respectively.

In 2020, Liu et al. [57] used an empirical mode decomposition (EMD) domain, com-
bined with an optimal feature selection technique based on sequence backward selection
(SBS) for feature extraction. They tested this method on two labels (valence and arousal)
of the DEAP dataset. They then classified these labels with K-nearest neighbor (KNN)
and support vector machine (SVM). With this methodology, they achieved an accuracy of
86.46% for valence and 84.90% for arousal.

In 2021, Cheng et al. [58] proposed a deep forest method for multi-channel EEG-based
emotion recognition. Their approach could eliminate the necessity for feature extraction
in traditional methods. They used binary class classification and attained an accuracy of
97.69% for valence and 97.53% for arousal on the DEAP dataset.

Shen et al. [67] employed the Multi-scale Frequency Bands Ensemble Learning (MSF-
BEL) modeling technique in 2021. These authors extracted features on two labels of the
DEAP dataset by using differential entropy (DE) for four-class classification. They achieved
an average accuracy of 74.22% under five-fold cross-validation.
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In 2020, Asghar et al. [53] implemented deep feature clustering (DFC), rather than con-
ventional feature selection techniques, to select high-quality characteristics. By eliminating
useless characteristics, DFC reduces the time needed to train the network. To extract deep
features, they employed four ready-trained deep neural networks (DNN). For SVM, KNN,
and RF classifiers, respectively, they achieved 81.30%, 78.90%, and 80.70% accuracy, using
the combined DNN model on valence and arousal labels of the DEAP dataset.

In 2021, Galvão et al. [49] proposed a model for predicting the exact values of valence
and arousal in a subject-independent scenario. They used three Hjorth parameters (H1,
H2, H3), spectral entropy, wavelet-based features, IMFP, and IMFE as feature extraction
methods. They obtained their best results by experimenting with two models, KNN and
RF. They classified the model into two and four classes and obtained an accuracy of 89.8%
and 84.4%, respectively.

3. Methodology

In our case, we incorporate the feature extraction step into the DL model. FFT is used
to extract frequency domain features, and then the extracted feature is fed into the CNN
model for training, which proved better than using raw EEG.

Our study proposes an end-to-end EEG-based emotion recognition system. A complete
workflow overview of the emotion recognition on the DEAP dataset is shown in Figure 1.
Firstly, the DEAP dataset is selected as the source of raw EEG data. Then, the raw EEG data
is pre-processed. To extract features from that preprocessed EEG data, FFT is used. Finally,
the EEG data is passed into the model, and the model classifies the emotion from it.
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3.1. The DEAP Dataset

Koelstra et al. [8] created the freely accessible DEAP multi-modal dataset for emotion
categorization, which includes physiological and EEG signals. It has a balanced male-to-
female ratio and was created from the recordings of 32 participants, who ranged in age
from 19 to 37. An overview of the DEAP is shown in Figure 2.
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Of 120 music videos collected from the website last.fm [68] using affective tags and
a manual process, 40 music videos were chosen, each one-minute long. A web-based
subjective emotional assessment was used in choosing videos. Participants independently
provided ratings of like/dislike, arousal, valence, and dominance. Among the 32 partici-
pants, 22 had frontal video of their faces recorded as well. Data was collected in Geneva for
participants 23–32, while participants 1–22 were logged in Twente.

EEG was recorded from each participant with the use of 32 active AgCl electrodes, in
a (.bdf) file captured with 48 channels at a 512 Hz sampling rate (placed according to the
international 10–20 system [69]). EEG recordings were down-sampled to 128 Hz, and the
blind signal separation was applied to it, which are available as two zip files in the DEAP.

The experimental procedure for collecting EEG data by the DEAP dataset team is
shown in Figure 3. In order to synchronize EEG with emotion data, a fixation cross is first
shown on the screen while each individual is instructed to relax for two minutes. Following
that, each participant watches 40 one-minute videos in the trials. Prior to each trial, a
two-second screen shows progress, and then a three-second fixation cross is shown to help
the participant relax.
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Galvanic Skin Response (GSR), an electrocardiogram, skin temperature, respiration
amplitude, the blood volume measured by electromyograms of the Zygomaticus and
Trapezius muscles, plethysmograph, and electrooculogram (EOG), among other peripheral
physiological signals, are also recorded.

For each participant, the DEAP dataset provides two arrays shown in Table 2. One is a
data array and another is a label array. In the data array, the array shape is 40 × 40 × 8064
and the contents are video/trial × channel × data. In the labels array, the array shape is
40 × 4 and the contents are video/trial × label (valence, arousal, dominance, liking). Each
trial’s data size is 8064. This number comes from multiplying each recorded trial time (total
63 s: 60 one-second trials and a 3-s pre-trial baseline) and sample rate (128 Hz).

Table 2. Array contents for all 32 participants together in the DEAP dataset.

Array Shape Contents

Data 32 × 40 × 40 × 8064 #Subjects × #Video × #Channel × EEG quantized signal
Label 32 × 40 × 4 #Subjects × #Video × Label (Valence, Arousal, Dominance, Liking)

As there are a total of 32 participants, and each of them watches 40 trials, the to-
tal number of trials is 1280 (32 × 40). The total array size including every trial for the
32 participants of the DEAP dataset is shown in Table 2.

3.2. Preprocessing

EEG signals are naturally very noisy because many artifacts, such as eye movement,
muscle movement, and head movement, are added when EEG data is recorded. Removing
this noise, therefore, becomes a crucial step in the analysis. While raw data contains much
noise and many artifacts, which can interfere with the analysis, the DEAP dataset team has
actually provided a pre-processed version of their raw EEG data. This makes it free from
any significant noise and easier to analyze.

This EEG data is downsized to 128 Hz from the original 512 Hz. The blind source
separation technique is used to eliminate eye artifacts. The range of 4.0 Hz to 45.0 Hz band
pass frequency filter is implemented. By following the commonly used references, the data
is averaged. As the EEG data is recorded in two places, the Geneva order is followed for
the EEG channels. A total of 63 s of trial data can be divided into each trial’s 60 s data and
3 s pre-trial baseline. Later, the 3 s of pre-trial baseline is removed. Finally, each video
presentation is reordered to coincide with its experimental ID.

3.3. Feature Extraction

Machine learning models require features as inputs, while deep learning models can
be trained on a raw dataset. Recent studies show that even deep learning models can
achieve better recognition accuracy if meaningful features are extracted. Among feature
extraction techniques, FFT has proven highly effective [70–80], including on the DEAP [48].
In this study, FFT was chosen to extract features from DEAP EEG signals.

A sequence’s Discrete Fourier Transform or inverse Discrete Fourier Transform (DFT)
can be determined using FFT. Equation (1) expresses the DFT as follows:

x[k] =
N−1

∑
n=0

x[n]e
−j2Πkn

N
(1)

Equation (1) calculates the series x[k] of N, a complex exponential number, given
another series of data x[n] of length N, according to the formula. In this case, n is the
domain size. DFT is obtained by multiplying each value of a discrete signal x[n] by an
e-power to a function of n. The results acquired for a given n should then be added together.
The calculated complexity of a signal’s DFT is O(N2). FFT is much faster than DFT, as its
name implies. Hence, the complexity can be reduced from O(N2) to O(NlogN) through FFT.
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A total of 14 EEG channels were chosen for this study. Fp1, AF3, F3, F7, FC1, P3,
PO3, Fp2, Fz, F4, F8, C4, P4, and PO4 are the electrodes used in the Emotive Epoc+ EEG
headset [81] and selected for this study. Five bands were chosen. These include Theta,
Alpha, Low Beta, High Beta, and Delta [48]. Their corresponding frequency is shown in
Table 3.

Table 3. Frequency range of used sub-bands.

Band Frequency Range

Theta 4–8 Hz

Alpha 8–12 Hz

Low Beta 12–16 Hz

High Beta 16–25 Hz

Gamma 25–45 Hz

The study explored various window sizes, shown in the experiments and results
section. For each of the experiments, the step size is 16, and the sample rate is 128 Hz. FFT
incorporates data based on the window size from the raw EEG data. After that, it moves
forward by 16 steps, and onward to the end until all of the data is finished. This working
procedure and the window size of 256 are shown in Figure 4.
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In Figure 5, the steps of FFT on each EEG channel are shown. In the first step, all
40 EEG channels’ raw data from the DEAP dataset are loaded for a single participant. In
the second step, the selected 14 channels of EEG data are shown together. In the third step,
each of the 14 channels of EEG data is plotted. Step four shows how FFT converts each
channel signal into a frequency domain by using five bands of power (Theta, Alpha, Low
Beta, High Beta, Gamma). The last step represents the frequency domain of all 14 channels
together. Here, each channel has five bands, and thus a total of 70 (14× 5) values are shown.
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Figure 5. Steps of FFT on selected 14 EEG channels and 5 sub-bands of DEAP dataset. A total of
14 channels [channel no: 1, 2, 3, 4, 6, 11, 13, 17, 19, 20, 21, 25, 29, and 31] are selected and 2 s of EEG
data is segmented which consists of 256 floating points. This goes into the FFT function and the FFT is
applied on every channel which is shown in the 2nd graph. In this final step, all the channel-wise FFT
output is merged together to form a single data point of the data. A single data point has 70 values
(14 channels × 5 FFT bands).

3.4. Data Preparation

Most natural data is not structured in a way suitable for model training. In this study,
the EEG signals are represented in tensors, a best practice for representing such data for
model training. Both raw and feature extracted data are used for experiments in this paper.
For the raw experiments, a 75/25 train–test split is used. All 40 channels are utilized for
the raw experiments and the array size for both train and test is shown in Table 4. For this
study, two labels (valence, arousal) of the DEAP datasets are used.

Table 4. Array size for train–test split of 75/25 ratio for raw EEG experiments.

Array Shape Contents

Train data 32 × 30 × 40 × 8064 #subject × 75% of videos × #Channel × EEG quantized signal

Train label 32 × 30 × 2 #subject × 75% of videos × Label (Valence, Arousal)

Test data 32 × 10 × 40 × 8064 #subject × 25% of videos × #Channel × EEG quantized signal

Test Label 32 × 10 × 2 #subject × 25% of videos × Label (Valence, Arousal)

For the feature extracted experiments, FFT is applied to each EEG file, and their
array size is shown in Table 5. After applying FFT, each EEG data file has 19,520 rows
and 70 columns. The 70 columns are a result of selecting 14 channels and 5 sub-bands
(14 × 5 = 70) when applying FFT. The output of the FFT is normalized using the Standard-
Scaler() function from the Python sklearn library. Each label EEG file contains 19,520 rows
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and 4 columns (valence, arousal, dominance, liking). For all 32 participants, the total
number of rows is 624,640 (19,520 × 32). For this experiment, only two columns of valence
and arousal are used. The information is then prepared to be fed into the CNN model.

Table 5. Individual array size of data and label arrays after applying FFT using 14 channels and
5 bands.

Array Shape Contents

Data 19,520 × 70 #windows × (14 channels × 5 bands)

Label 19,520 × 4 #windows × Label (Valence, Arousal, Dominance, Liking)

The valence and arousal labels are classified into two classes: 1–4.9 in class 0, and 5–9
in class 1. This follows the quadrants in subfigure c from Figure 6. This quadrant subfigure
consists of HAHV, HALA, LAHV, and LALV parts where H, L, A, and V denote high, low,
arousal, and valence, respectively. The quadrants include emotions shown in subfigure c
from Figure 6.
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With the use of categorical functions, the arousal and valence labels are categorized.
The 2D arrays of the DEAP dataset are converted into 3D using a reshape function because
the proposed model requires 3D data as input.

3.5. Model Architecture

Deep learning models are composed of an input layer, one or many hidden layers, and
an output layer for classification. Moreover, each layer can be customized with different
numbers of parameters, kernels, neurons, weights, biases, and activation functions. As a
result, the model architecture plays a very important role in achieving good performance.
As discussed in the literature review, LSTM [50,51] and Bi-LSTM [46] are frequently used
in the DEAP dataset. Thus, an LSTM model and a Bi-LSTM model are selected. However,
some studies [48,54] also achieve better results with CNN.

Text and 1D signals are two major applications of 1D Convolutional Neural Net-
works [82]. CNN has proven to be very effective in different fields of pattern recognition
from images [83,84]. Importantly, several studies utilized the pattern recognition power of
1D CNN, including smartphone sensor signal recognition [85–87], and ECG signal recogni-
tion [88]. Therefore, the current study continues to test its performance with CNN models
as well. To recognize emotion from the DEAP dataset, five different 1D CNN models are
used, with varying numbers of layers and parameters. A residual connection is used to
improve the performance of 1D CNN, except for the one with one convolution and two
dense layers. Residual connections give additional ways for data to reach later regions of
the neural network by skipping over some layers. To implement these residual connections,
the sequential model is converted into a functional model.
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4. Experiments and Results

In this section, each of the four research questions (RQ) mentioned in the introduction
to this paper is answered based on extensive experimentation and analysis. The experi-
ments and results section is broken into five subsections. First, through experimentation,
the best deep learning model to classify emotions from raw EEG signals is selected. After
selecting the deep learning model, parameter reduction experiments are performed to
obtain the optimal model with as few parameters as possible. Next, various experiments,
including experimentation with different EEG lengths, are conducted to find the effects
of adding feature extraction and complementary features. Lastly, various experiments
with different training–testing splits are conducted to identify the model’s performance on
alternative training sizes as well.

4.1. Deep Learning Model Selection

To answer research question RQ1, this experiment is conducted with multiple deep
learning models. As EEG signals are time series data, LSTM and CNN can be effective for
high-quality recognition. CNN [52,60], LSTM [50,51,55], and Bi-LSTM [55] are the most
common models used with the DEAP dataset. For this reason, the LSTM, Bi-LSTM, and
CNN models shown in Table 6 are selected for recognizing emotion from brain signals.
With the models established, it becomes possible for us to implement the experimental
procedure and identify results.

Table 6. Results summary of two-class classifications of valence and arousal from DEAP dataset and
two-class classifications from confused student dataset with LSTM, BiLSTM, and CNN models using
raw EEG data.

Model Architecture
Test Accuracy for DEAP Dataset Test Accuracy for

Confused Student
DatasetValence Class Arousal Class

LSTM 2 LSTM layers + 2 dense layers 48% 46% 53.14%

Bi-LSTM 2 Bi-LSTM layers + 2 dense layers 35% 28% 47.26%

CNN 4 Conv layers + 3 dense layers 61.56% 66.25% 56.65%

To find out which one is more effective to recognize emotions, the raw EEG from the
DEAP dataset is given as input without any kind of preprocessing or feature extraction.
All three models are trained on two-class classifications of the valence and arousal labels
from the DEAP dataset. To further verify the claim, these models are also trained on the
binary classification of EEG data from the Confused Student dataset [89]. The test accuracy
of these models is shown in Table 6.

In the DEAP dataset, the LSTM model achieves an average train accuracy of 87.5%
and average test accuracy of 47%. The Bi-LSTM model obtains an average train accuracy
of 72.5% and an average test accuracy of 31.5%. The difference between the train and test
accuracy of both LSTM and Bi-LSTM is very high. It shows that both of these models
have overfitting issues, as they have achieved high train accuracy while achieving low test
accuracy. All of the deep learning models’ performances reported in Table 6 are lower, as
we are using the raw dataset. The raw EEG signals of the DEAP are highly complex, even
for deep learning techniques. The Bi-LSTM model is very low compared to the LSTM and
CNN, because Bi-LSTM attempts to learn time series data, using forward and backward
passes. For most of the language data, the backward pass makes sense. However, for
EEG, the backward scan does not introduce any meaningful information. As a result, the
backward scan of EEG data creates a negative impact on EEG learning.

On the other hand, the 1D CNN model achieves an average train accuracy of 72.13%
and average test accuracy of 63.9%. The CNN model achieves better test accuracy and
handles the overfit issue much better when compared to the LSTM and Bi-LSTM models.
To further verify the result, the LSTM, Bi-LSTM, and CNN models with the same number
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of layers are trained on another EEG dataset called the Confused Student dataset. Similar
trends were observed, where the CNN model performed best with 56.65% test accuracy.
LSTM and Bi-LSTM achieved 53.14% and 47.26% test accuracy, respectively.

The CNN model is selected for the remaining experiments as it outperforms LSTM
and Bi-LSTM models in both EEG datasets.

4.2. Parameter Reduction

Further delving into RQ1, this particular experiment is designed to obtain a minimum
parameterized model with high recognition accuracy. Because CNN performs best in
recognizing emotion from brain signals, as shown in Table 6, it is desired to find the most
lightweight CNN model that would perform similarly but without losing the significant
performance achieved, as shown in Table 7.

Table 7. Selecting the most optimal 1D CNN model.

#Layers #Parameters Parameter–Data Ratio:
(Parameters/#Data Size × 100%)

Test Accuracy
(Valence Class)

4 Conv + 3 Dense (M1) 4,381,410 1140.99 99.89%

3 Conv + 2 Dense 70,130 18.26 99.60%

2 Conv + 2 Dense 59,298 15.44 99.44%

2 Conv + 1 Dense (M2) 29,538 7.69 99.22%

1 Conv + 2 Dense 18,706 4.87 96.92%

The experiment starts with the 1D CNN as shown in Figure 7. It has four convolution
layers and three dense layers. Using FFT as feature extraction, the 1D CNN model is trained
on two-class classifications for the valence label.

For this experiment, the ratings of arousal, dominance, and liking are also used as
feature extensions to further improve the performance of recognition as all of the four
labels of the DEAP dataset are correlated. The 1D CNN model with four convolution layers
and three dense layers achieved 99.89% test accuracy on the valence label after 63 epochs.
However, this model is not light, since it has over 4,381,410 total parameters.

Thus, one convolution layer and one dense layer are then reduced from this to create
a 1D CNN model with three convolution and two dense layers. This model is relatively
lighter with a total of 70,130 parameters and it achieves 99.60% test accuracy after 30 epochs.
This model is 62 times lighter than the first model in terms of the number of parameters
while achieving similar performance.

Thus, one more convolution layer is reduced to achieve 99.44% testing accuracy after
thirty epochs, while making the model 73 times lighter than the first model and 1.18 times
lighter than the second model.

As the performance is still good, another dense layer is reduced to create a 1D CNN
model with only two convolution layers and one dense layer, as shown in Figure 8. This
model has only 29,538 parameters. It is 148 times lighter than the first model, 2.37 times
lighter than the second model, and twice as light as the third model. While being light,
this 1D CNN model achieves 99.22% testing accuracy on the valence label for two-class
classification after 100 epochs.

Next, another CNN model with 1 convolution and 2 dense layers is tested. Though this
was the lightest model, with 18,706 parameters, it only achieved 96.92% testing accuracy
after 30 epochs. It loses performance greatly as compared to the other models.
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Among the five models referred to in Table 7, the 1D CNN model with four convolution
and three dense layers is the best in terms of testing accuracy. It is selected as the heaviest
model (M1) for the remainder of the experiments since it is the heaviest model overall. On
the other hand, the 1D CNN model with two convolution layers and one dense layer is
selected as the light model (M2) for further experiments, as it is very light in comparison to
the others, while not significantly losing performance. The validation accuracy graph of
the light model is shown in Figure 9.
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To keep the model from overfitting the training data, heavy regularizers are used by
adding drop-out. The curves in Figure 9 represent how the model can generalize over the
unseen test dataset. Thus, the validation accuracy is better than the training accuracy, which
serves as evidence of good generalization over the unseen test data. The hyper-parameters
used for these experiments are epochs = 100; batch size = 100; optimizer = Adam; loss
function = categorical cross-entropy; activation function = relu (hidden layers) and soft-max
(output layer).

4.3. Testing with Complementary Features

This experiment answers the research question RQ2. Two CNN models were selected
(heavy and light) from the parameter reduction experiment. At this point, CNN models
with and without feature extension or complementary features are tested.

In Table 8, the results of the heavy and light 1D CNN model with feature extraction and
feature extension (other ratings) are shown. The following are applicable when referring
to Table 8: M1 = heavy; M2 = light; FFT = extracted features using FFT; FE = feature
extension or complementary features (other scores like dominance, liking, etc.); L = liking,
D = dominance; FE-3 = three different scores (dominance, liking, arousal/valence).

While using raw EEG with the M1 model, a 61.56% and 66.25% testing accuracy
was achieved for valence and arousal, respectively. However, by using FFT as feature
extraction, the M1 model achieved 96.22% and 96.27% testing accuracy on valence and
arousal, respectively. This is a very significant improvement over the raw EEG.

To test the effect of feature extension, liking was used as the feature extension on the
M1 + FFT + FE-L experiment. This results in 98.79% and 98.6% testing accuracy for valence
and arousal, respectively. Adding the dominance rating along with liking further increases
the performance shown in the M1 + FFT + FE-L-D experiment. This experiment achieves
99.67% and 99.52% testing accuracy for valence and arousal, respectively.

Three other ratings were added as feature extensions with respect to valence and
arousal for improved accuracy. For training valence, these other three ratings (arousal,
dominance, and liking) were used as feature extensions and this results in the model
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achieving 99.89% testing accuracy. For arousal, the M1 model was trained with FFT as
feature extraction and the other three ratings (valence, arousal, and liking) as feature
extension and this achieved 96.27% testing accuracy. The confusion matrix of valence and
arousal for this experiment is shown in Figure 10a,b.

Table 8. Results summary of heavy (M1) and light (M2) 1D CNN models with feature extraction and
feature extension.

Experiments Test Accuracy of Valence Class Test Accuracy of Arousal Class

M1 + FFT 96.22% 96.27%

M1 + FFT + FE-L 98.79% 98.6%

M1 + FFT + FE-L-D 99.67% 99.52%

M1 + FFT + FE-3 99.89% 99.83%

M2 + FFT 78.61% 80.22%

M2 + FFT + FE-L 91.27% 89.42%

M2 + FFT + FE-L-D 97.83% 96.00%

M2 + FFT + FE-3 99.22% 97.80%
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Figure 10. Confusion matrix of valence and arousal label for M1 + FFT + FE-3 and M2 + FFT + FE-3
experiment. (a) M1 + FFT + FE-3 experiment on Valence; (b) M1 + FFT + FE-3 experiment on Arousal;
(c) M2 + FFT + FE-3 experiment on Valence; (d) M2 + FFT + FE-3 experiment on Arousal.

The M2 model achieved 42% and 55% testing accuracy on raw EEG for valence and
arousal, respectively. However, the M2 model with FFT as feature extraction achieved
78.61% and 80.22% accuracy for valence and arousal, respectively. This is a marked im-
provement over only the raw EEG, but as the M2 model is lightweight, its lack of feature
extension becomes noticeable in its performance. In the M2 + FFT + FE-L experiment, only
“liking” was used as a feature extension rating and the M2 model achieved 91.27% and
89.42% accuracy for valence and arousal, respectively. This demonstrates the importance of
feature extension and how it improves the model performance significantly.

Surprisingly, in the M2 + FFT + FE-L-D experiment, using both liking and dominance
ratings as a feature extension increases the M2 model’s performance for valence and arousal,
which was 97.83% and 96%, respectively. This shows that adding more ratings can lead to
an increase in the model’s performance.

In the M2 + FFT + FE-3 experiment, all three ratings were used, achieving 99.22% and
97.80% testing accuracy for valence and arousal, respectively. The confusion matrix for the
M2 + FFT + FE-3 experiment on the valence and arousal labels is shown in Figure 10c,d. In
Table 8, it is observed that for both M1 and M2 models, the emotion recognition performance
increases significantly when applying both feature extraction (FFT) and feature extension
(other ratings) together.

Accuracy is a good way to measure a model’s performance. However, accuracy alone
without precision can make the model’s actual performance misleading. Accuracy can be
calculated using Equation (2). When the classes are severely unbalanced, precision–recall
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is a helpful indicator of prediction success. Precision in information retrieval refers to
how relevant the results are, whereas recall measures the number of outcomes that are
relevant. Precision and recall can be calculated using Equations (3) and (4), respectively.
The average value of precision and recall is the F1 Score. Therefore, both false positives and
false negatives are considered while calculating this score. The F1 score can be calculated
using Equation (5).

Accuracy =
TruePositives + TrueNegatives

TruePositives + FalsePositives + TrueNegatives + FalseNegatives
(2)

Precision =
TruePositives

TruePositives + FalsePositives′
(3)

Recall =
TruePositives

FalseNegative + TruePositives′
(4)

F1 Score =
2× Precision× Recall

Precision + Recall
(5)

In Table 9, the performance report for the M1 and M2 models is shown. The results of
Table 9 indicate that the classes are well balanced and, in all cases, the M1 model achieves
almost perfect accuracy. The M2 model also performs very well.

Table 9. Performance report for M1 and M2 models with binary classification for 75/25 train–test split.

Model Name Label Classes Precision Recall F1-Score Support

M1

Valence
0.00 1.00 1.00 1.00 67,832

1.00 1.00 1.00 1.00 88,328

Arousal
0.00 1.00 1.00 1.00 64,172

1.00 1.00 1.00 1.00 91,988

M2

Valence
0.00 0.99 1.00 0.99 67,832

1.00 1.00 0.99 0.99 88,328

Arousal
0.00 0.98 0.97 0.98 64,172

1.00 0.98 0.99 0.98 91,988

In Table 10, the results of previous state-of-the-art works are compared to the proposed
M1 and M2 CNN models of this experiment. To obtain these results, FFT-produced
frequencies, dominance, and liking ratings were used as features. We report the test
accuracy of the valance and arousal classes and the average accuracy of these two labels to
compare them with the previous results. Hasan et al. [48] used a 1D CNN model with four
convolution layers and three dense layers, which may be considered a heavy model. They
also used FFT as a feature extraction technique to achieve 96.63% and 96.17% test accuracy
on valence and arousal, respectively, for two-class classification. On the other hand, the
proposed light M2 model with only the two convolutions and one dense layer outperforms
their accuracy on both valence and arousal labels. The proposed M1 model exceeds their
accuracy by an even greater margin.

As shown in Table 10, Yin et al. [47] used a fusion of graph convolution neural network,
LSTM, and differential entropy as feature extraction techniques, achieving only 90.45% and
90.60% test accuracy on valence and arousal, respectively. Both of the proposed M1 and M2
models exceed their accuracy by 8–9%. In the following row of Table 10, Ma et al. [60] used
multi-modal residual LSTM network without any feature extraction technique and only
achieved 92.30% and 92.87% accuracy for valence and arousal, respectively. The proposed
M1 and M2 models outperform their model by 7%. Next, Alhalaseh et al. [54] used a CNN
model and two feature extraction techniques called entropy and Higuchi’s fractal dimension
(HFD). They achieved 95.2% testing accuracy on two-class classification. The proposed light
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and heavy 1D CNN exceeds their accuracy by 4%. On the next line, Cui et al. [46] achieved
94.02% and 94.86% test accuracy on valence and arousal, respectively, by fusing both
CNN and BiLSTM. Their modeling technique is called DE-CNN-BiLSTM and they used
differential entropy as a feature extraction technique. Their fusion of CNN and BiLSTM
definitely made their model heavy. However, despite using a particularly heavy model,
their accuracy falls behind by 5% compared to both of the proposed M1 and M2 models.

Table 10. Comparison of our results with state-of-the-art results on binary classification on DEAP.

Research
Modeling
Technique

Feature
Extraction

Test Accuracy

Valence Arousal Average

Hasan et al. [48] CNN FFT 96.63% 96.17% 96.4%

Yin et al. [47] GCNN, LSTM DE 90.45% 90.60% 90.52%

Ma et al. [60] MMResLSTM Raw 92.30% 92.87% 92.58%

Alhalaseh et al. [54] CNN SE and HFD 95.2% 95.2% 95.2%

Cui et al. [46] DE-CNN-BiLSTM DE 94.02% 94.86% 94.43%

Ours 1D CNN (M2-Light) FFT and FE 99.22% 97.80% 98.51%

Ours 1D CNN (M1-Heavy) FFT and FE 99.89% 99.83% 99.86%

In the current study, both of the proposed CNN models use a residual connection, and
the features are extracted using FFT, while the other ratings are used as feature extensions.
The result, shown in Table 10 compared with the other aforementioned models, is plotted
in Figure 11 for visualizing the result. The proposed 1D CNN model with two convolution
layers and one dense layer (the light model) achieves 99.22% and 97.80% test accuracy on
valence and arousal, respectively, for binary classification. On the other hand, the 1D CNN
model with four convolution layers and three dense layers (heavy model) achieve 99.89%
and 99.83% testing accuracy on valence and arousal, respectively. This accuracy is highest
even when compared to the other state-of-the-art works shown in Table 10.
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4.4. The Effective EEG Length

In this section, we explain the solution for research question RQ3. Hasan et al. [48]
used an EEG length of 2 s (window size 256) and got 96.18% accuracy for arousal and 96.63%
accuracy for valence. In this paper, all the previous experiments have been conducted using
a 256-window size, corresponding to a two-second time slice of EEG data. However, to
recognize emotion from brain signals in real-time, it becomes necessary to reduce the EEG
length as much as possible.

To experiment with the effects of the window size of FFT on the accuracy, multiple
preprocessed files are generated by varying window sizes ranging from 4 to 1024. The
process of generating these is shown in Figure 12. First, EEG data with 14 channels are selected,
with different window sizes subsequently taken each time. Then, after applying FFT, the
preprocessed dataset is ultimately created for that particular window size or time slice.

1 
 

 

Figure 12. Generating preprocessed data with various window sizes/time slices using FFT.
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In Table 11, FFT is used for feature extraction with different window sizes. This is done
to test the accuracy of various time slices on DEAP EEG data. As the M1 model achieves
better accuracy than the M2 in each of the previous experiments, these experiments are
therefore tested using the M2 model (two convolutions + one dense). This is because, if
M2 can perform with an accuracy of more than 90%, then M1 will be able to exceed that
level of accuracy. Hence, the lighter model is tested, rather than the heavier M1 model, to
make the experiment more challenging and reliable. In the DEAP dataset, the sample rate
is 128 Hz; thus, using the 128-window size can be considered equal to one second. The
window size is changed from 4 to 1024 to conduct the experiments.

Table 11. Varying window size with respective time slice using FFT on M2 + FFT + FE-3 for valence.

Window Size Time Slice Training Size Test Size Test Accuracy

4 0.03125 s 483,840 161,280 93.53%

8 0.0625 s 483,840 161,280 94.46%

16 0.125 s 482,880 160,960 96.04%

32 0.25 s 481,920 160,640 97%

64 0.5 s 480,000 160,000 97.92%

128 1 s 476,160 158,720 98.72%

256 2 s 468,480 156,160 99.22%

512 4 s 453,120 151,040 99.79%

1024 8 s 422,400 140,800 99.88%

To visualize the results clearly, a bar plot is shown in Figure 13. The time slice is
directly proportional to the testing accuracy. The light model with two convolutions and
one dense layer achieves a respectable 93.53% accuracy with a 0.03-s time slice of EEG data.
It shows the possibility of using EEG data to recognize emotions in real-time. For the rest of
the experiments, a window size of 256, or two-second time slice, is selected as it provides a
balance between lower time slices without losing accuracy significantly.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 28 
 

 

128 1 s 476,160 158,720 98.72% 
256 2 s 468,480 156,160 99.22% 
512 4 s 453,120 151,040 99.79% 
1024 8 s 422,400 140,800 99.88% 

To visualize the results clearly, a bar plot is shown in Figure 13. The time slice is 
directly proportional to the testing accuracy. The light model with two convolutions and 
one dense layer achieves a respectable 93.53% accuracy with a 0.03-s time slice of EEG 
data. It shows the possibility of using EEG data to recognize emotions in real-time. For the 
rest of the experiments, a window size of 256, or two-second time slice, is selected as it 
provides a balance between lower time slices without losing accuracy significantly. 

 
Figure 13. Visualization of the effect of changing time slice on test accuracy using FFT. 

4.5. Training Size Requirement 
Finally, solutions for RQ4 are explored in this experiment. Though the proposed 

models achieved state-of-the-art accuracy, it is possible that using a higher training size 
may affect the model’s performance. Hence, it is important to understand how effectively 
the model will perform with different training sizes. 

Thus, as shown in Table 12, a different combination of the train–test split set was 
tested. Each of the experiments was executed in Google Colab using the M2 model for 100 
epochs. The required training and testing time is noted for each split. Wall time is the 
amount of time that a wall clock (or a stopwatch held in the hand) would indicate has 
passed between the beginning and end of the process. The amount of time spent in user 
code and the amount of time spent in kernel code are referred to as user-CPU time and 
system-CPU time, respectively. Among the options available for the train–test split, a 
75/25 split attained the best test accuracy of 99.26%. 

Google Colab Pro Configuration:  
1. CPU = Intel(R) Xeon(R) CPU @ 2.00 GHz 
2. GPU = Tesla P100-PCIE 
3. GPU Memory = 16 GB 

Figure 13. Visualization of the effect of changing time slice on test accuracy using FFT.



Sensors 2022, 22, 8467 21 of 27

4.5. Training Size Requirement

Finally, solutions for RQ4 are explored in this experiment. Though the proposed
models achieved state-of-the-art accuracy, it is possible that using a higher training size
may affect the model’s performance. Hence, it is important to understand how effectively
the model will perform with different training sizes.

Thus, as shown in Table 12, a different combination of the train–test split set was
tested. Each of the experiments was executed in Google Colab using the M2 model for
100 epochs. The required training and testing time is noted for each split. Wall time is
the amount of time that a wall clock (or a stopwatch held in the hand) would indicate has
passed between the beginning and end of the process. The amount of time spent in user
code and the amount of time spent in kernel code are referred to as user-CPU time and
system-CPU time, respectively. Among the options available for the train–test split, a 75/25
split attained the best test accuracy of 99.26%.

Table 12. Accuracy with different train/test splits and their effect on time.

Train/Test
Split

Sample Size
Train

Sample Size
Test

Training Time Train
Accuracy

Testing Time Test
AccuracyClass 0 Class 1 User Sys Wall Class 0 Class 1 User Sys Wall

80%/20% 217,077 282,635 1 h 5 min 52 s 9 min 58 s 1 h 4 min 97.86% 54,251 70,677 15.3 s 2.52 s 15.3 s 99.02%

75%/25% 203,496 264,984 47 min 22 s 4 min 38 s 43 min 48 s 98.06% 67,832 88,328 14.2 s 1.66 s 20.8 s 99.26%

50%/50% 135,664 176,656 54 min 40 s 7 min 42 s 52 min 24 s 97.76% 135,664 176,656 38.2 s 6.05 s 37.6 s 99.19%

20%/80% 54,251 70,677 34 min 7 s 3 min 37 s 43 min 22 s 97.39% 217,077 282,635 47 s 4.71 s 44s 98.35%

10%/90% 27,119 35,345 38 min 13 s 6 min 33 s 38 min 23 s 96.34% 244,209 317,967 1 min 8 s 11.4 s 1 min 22 s 96.84%

Google Colab Pro Configuration:

1. CPU = Intel(R) Xeon(R) CPU @ 2.00 GHz
2. GPU = Tesla P100-PCIE
3. GPU Memory = 16 GB
4. GPU Memory Clock = 1.32 GHz

In Table 13, the test accuracy of the M2-CNN model is compared with that of Alhalaseh
et al. [54] for different training dataset size splits. Alhalaseh et al. [54] used CNN, K-Nearest
Neighbour (KNN), Naïve Bayes (NB), and Decision tree (DT). The common train/test splits
between both of the studies were 80/20 and 50/50. In both cases, this paper’s M2-CNN
model outperforms the previous study by a sizable margin.

Table 13. Comparison of performance based on required training dataset size.

Paper Train/Test (%) Model Avg. Test Accuracy

Alhalaseh et al. [54] 80/20

CNN 94.93%

KNN 94.03%

NB 92.27%

DT 88.50%

Our Proposed 80/20 M2-CNN 99.02%

Alhalaseh et al. [54] 50/50

CNN 94.26%

KNN 90.45

NB 91.91

DT 90.15

Our Proposed 50/50 M2-CNN 99.19%

Our Proposed 90/10 M2-CNN 96.84%
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Based on these experiments, all of the stated research questions are restated below and
are now answered empirically.

RQ1: Which deep learning model is more effective for EEG as a form of time series signal recognition?

Among CNN, LSTM, and Bi-LSTM deep learning models, CNN performs the best on
the raw EEG signals. The M1 CNN model contains 4381 K parameters, while the M2 model
has only 29.5 K parameters, with similar recognition accuracy. Tables 6 and 7 represent the
corresponding experiment results.

RQ2: Can feature extraction improve the recognition accuracy of a deep learning model? What is
the most effective feature set?

Features extracted by FFT can boost recognition accuracy of CNN by at least 30% (raw
EEG accuracy 66% and FFT feature-based model accuracy 96%). The most effective feature
set is a combination of frequency domain features extracted by FFT, with deep features ex-
tracted by Conv layers of CNN, and complementary features using additional information
such as dominance and liking. Table 8 represents the corresponding experiment results.

RQ3: What is the minimum EEG signal required for good recognition? Can it be done in real-time?

Only two seconds of EEG signal are required to attain over 99% accuracy. Even
125 milliseconds of EEG data can achieve more than 96% accuracy for valence. Table 11
and Figure 13 represent the corresponding results.

RQ4: How much data and time are required for training the model to achieve a reasonable performance?

Only 50% of the EEG dataset can achieve over 99% accuracy on valence, and only
10% of the dataset can achieve a valence accuracy of 96.84%. The model training time with
100 epochs is approximately 1 h (50% dataset), while the model can predict 176 K data
points in under 40 s. Tables 12 and 13 represent the corresponding results.

5. Further Research and Implications

This study holds a myriad of opportunities for further research, in both technical and
applied areas. Firstly, the study is performed on subject-dependent emotional recognition
from the DEAP dataset. One important subsequent project would be determining if these
results could be replicated for subject-independent emotional recognition. For this, instead
of the test set being inclusive of each participant’s EEG that is already in the training set,
the study would be done with the test set being completely unfamiliar with the subjects’
EEG readings.

This limitation of our study leads to the next potential opportunity for further re-
search, which is the use of additional datasets besides the DEAP. While the DEAP is an
outstanding dataset for this kind of research, another limitation of this study is that it is
only performed on the DEAP. For further research, therefore, it would be important to
study the generalizability of these results with additional datasets, or even completely
original participants.

In addition to technological advancements for further research, there are innumerable
important applications of sound emotion recognition algorithms. The implications and
applications for this work are vast, including as disparate fields as medicine and marketing.
It is not only a potential but a current reality that big data is evolving to include emotional
data. This may revolutionize how we interact with each other and our environment—an
environment that may be able to digitally know our emotions perhaps even before we
know them ourselves.

In medicine, emotional recognition can allow for major advances in mental health,
as well as tremendous increases in the ability of physicians and nurses alike to utilize
empathy and compassion in care. Can mental health counseling ever become equally
effective when performed by software, or does a human being need to be involved? Soft
robotics promises a future where machines can interact side-by-side with people, safely
and humanely collaborating, but how would this be possible without machines having the
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ability to interpret and respond appropriately to people’s emotions of happiness, sadness,
excitement, or fear?

All of these current and future implications offer great benefits to humanity, but also
raise ethical concerns. The current paper lays out an increasingly effective method of
recognizing emotions from digital data elicited via neural sensors. This paper may be
utilized to develop even more effective methods in the future. At some point, emotional
recognition will be seamlessly elicited from people’s digital devices everywhere. When that
point is reached, data privacy and public policy can become pivotal concerns for everyday
people. Often, laws governing people’s private information do not keep up with the advent
of new technology, and in this case, people’s most private feelings need consideration on
whether and under what circumstances they should be available to others.

6. Conclusions

Emotional recognition plays an essential role in human social interaction, mental
health, education, and medical practice. It is so crucial to people’s lives that it would be
impossible to imagine humanity without considering emotional states such as happiness,
sadness, fear, and love. Incredibly, these very emotions, which can be said to make people
truly human, can be precisely recognized from brain signals elicited via EEG readings. This
paper has worked to elucidate more effectively the translation of EEG brain waves to real
human emotions than has been done by previous works.

This study achieves state-of-the-art accuracy using a 1D CNN model with residual
connections on the DEAP EEG dataset. FFT is used for frequency domain features and
convolution layers when extracting deep features. The study is done on the binary clas-
sification of valence and arousal labels of the DEAP dataset. By using complementary
features (other ratings of the dataset), the performance is even further enhanced. Two CNN
models are proposed: one light model with 7.69% parameters for the dataset size and a
second model that is heavy compared to the light model. Among the 40 EEG channels
of the DEAP dataset, only 14 channels are used in this study. The light 1D CNN model
achieved an average accuracy of 99.22% with only a two-second time slice. With the same
time slice, the heavy 1D CNN model achieved an average accuracy of 99.89%. Different
EEG lengths were also tested, ranging from 0.03 s to eight seconds, using various window
sizes of FFT. Only two seconds of EEG signals are sufficient to achieve good emotion
recognition performance. The mentioned accuracy was determined on a 75/25 train–test
split. Experiments with an alternative train–test split demonstrated that these proposed
models performed exceptionally well even when using only 50% of the dataset.

This study has achieved state-of-the-art accuracy using a 1D CNN model with residual
connection on the DEAP EEG dataset. FFT is used for frequency domain features and a
convolutional layer for extracting deep features. The study was carried out on the binary
classification of valence and arousal labels of the DEAP dataset. The authors also showed
that by using complementary features (other ratings of the dataset), the performance can be
greatly enhanced. The authors proposed two CNN models, one light with 7.69% parameters
for the dataset size and the other one heavy compared to the light model. Among the
40 EEG channels of the DEAP dataset, the authors used only 14 channels for this study.
The light 1D CNN model achieved an average accuracy of 99.22% with only a 2 s time slice.
With the same time slice, the heavy 1D CNN model achieved an average accuracy of 99.89%.
The authors also experimented with different EEG lengths ranging from 0.03 s to 8 s using
various window sizes of FFT. The authors showed that only 2 s of EEG signal is enough
to achieve good emotion recognition performance. The mentioned accuracy is on a 75/25
train–test split. The authors further experimented with other train–test split and showed
that the proposed models can also perform very well using only 50% of the dataset.
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