
����������
�������

Citation: Çetin, E.; Barrado, C.;

Pastor, E. Countering a Drone in

a 3D Space: Analyzing Deep

Reinforcement Learning Methods.

Sensors 2022, 22, 8863. https://

doi.org/10.3390/s22228863

Academic Editors: Francisco Javier

Mesas Carrascosa and José Emilio

Meroño de Larriva

Received: 14 October 2022

Accepted: 12 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Countering a Drone in a 3D Space: Analyzing Deep
Reinforcement Learning Methods
Ender Çetin * , Cristina Barrado and Enric Pastor

Computer Architecture Department, UPC BarcelonaTECH, Esteve Terrades 7, 08860 Castelldefels, Spain
* Correspondence: ender.cetin@upc.edu

Abstract: Unmanned aerial vehicles (UAV), also known as drones have been used for a variety of
reasons and the commercial drone market growth is expected to reach remarkable levels in the near
future. However, some drone users can mistakenly or intentionally fly into flight paths at major
airports, flying too close to commercial aircraft or invading people’s privacy. In order to prevent these
unwanted events, counter-drone technology is needed to eliminate threats from drones and hopefully
they can be integrated into the skies safely. There are various counter-drone methods available in
the industry. However, a counter-drone system supported by an artificial intelligence (AI) method
can be an efficient way to fight against drones instead of human intervention. In this paper, a deep
reinforcement learning (DRL) method has been proposed to counter a drone in a 3D space by using
another drone. In a 2D space it is already shown that the deep reinforcement learning method is an
effective way to counter a drone. However, countering a drone in a 3D space with another drone is a
very challenging task considering the time required to train and avoid obstacles at the same time.
A Deep Q-Network (DQN) algorithm with dueling network architecture and prioritized experience
replay is presented to catch another drone in the environment provided by an Airsim simulator. The
models have been trained and tested with different scenarios to analyze the learning progress of
the drone. Experiences from previous training are also transferred before starting a new training by
pre-processing the previous experiences and eliminating those considered as bad experiences. The
results show that the best models are obtained with transfer learning and the drone learning progress
has been increased dramatically. Additionally, an algorithm which combines imitation learning
and reinforcement learning is implemented to catch the target drone. In this algorithm, called deep
q-learning from demonstrations (DQfD), expert demonstrations data and self-generated data by the
agent are sampled and the agent continues learning without overwriting the demonstration data.
The main advantage of this algorithm is to accelerate the learning process even if there is a small
amount of demonstration data.

Keywords: counter drones; UAV; deep reinforcement learning; DQN; dueling DDQN; DQfD; priori-
tized experience replay; transfer learning; object detection; Yolo

1. Introduction

The drone industry improved itself over the years and the drone market is growing
dramatically. According to Bloomberg [1], commercial drone market is estimated to be
worth United States Dollar (USD) 6.5 Billion in 2022 and is forecast to a readjusted size
of USD 34.5 Billion by 2028 with a Compound Annual Growth Rate (CAGR) of 32.0%
during the review period. Drones are used by professionals and hobbyists for different
purposes such as delivery, wildlife monitoring, reconnaissance, inspection and surveillance.
The United States Federal Aviation Administration (FAA) published a report [2] indicating
that 865,505 drones are registered. In this report it is stated that 314,689 are commercial
drones and 538,172 are recreational drones or for hobby use. These numbers are quickly
increasing all over the world.

Sensors 2022, 22, 8863. https://doi.org/10.3390/s22228863 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228863
https://doi.org/10.3390/s22228863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9258-1919
https://orcid.org/0000-0003-0100-724X
https://orcid.org/0000-0002-7587-8702
https://doi.org/10.3390/s22228863
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228863?type=check_update&version=1

Sensors 2022, 22, 8863 2 of 26

Artificial intelligence (AI) has been utilized in different purposes to support Unmanned
air vehicles (UAV). For example, a drone supported with AI can navigate in an unknown
environment by detecting and avoiding the obstacles by using object detection algorithms.
Moreover, a drone can deliver medicine or any kind of materials by operating autonomously
using an AI method. Reinforcement learning (RL) which is an AI method based on trial
and error experiences, is also used in drones in different scenarios. Drones supported with
RL can operate autonomously to deliver goods, navigate in an environment, or even in
drone racing tournaments where drones race against human pilots. Reinforcement learning
methods showed promising results in many areas such as gaming which requires a lot of
experiences to achieve successful results. This shows that a drone supported with RL can
be used to counter drones in an effective way. Fighting against unknown and malicious
drones can be very accurate and efficient by implementing an AI method in counter-drone
technology. AI methods can speed up the time to engage with the target compared to
other methods based on human intervention. A drone with AI can identify and classify
the target with a high precision. It is also possible to prevent a false interdiction with
the targeted object by using an AI. Countering a drone in 2D space can be an easy way
since the drone and the target move without changing altitude. However, if the target
changes an altitude and moves in 3D space, which is highly expected in real world, an AI
method such as reinforcement learning can be an efficient method thanks to perception and
interpretation of environment by RL agent drone since RL models can learn by interacting
in an environment by trial and error experiences. This is an important advantage to be
used against drones in 3D space.

2. Contributions and Related Work
2.1. Counter-Drone Systems

The increasing use of commercially available drones and their growing capabilities are
posing a threat to the safety of the skies if they are misused. In order to eliminate threats
to public security and privacy because of these misused drones, counter-drone solutions
have been proposed by research using different methods and tools. Security professionals
have also used different techniques to eliminate unwanted drones by using a laser gun,
jamming, throwing a net to capture a drone, a water projector, and an animal such as an
eagle to hunt down a drone.

In this paper, detecting the target location is not considered and the related data are
already available thanks to the flight simulation used to train and test the DRL methods.
More details on detecting drones can be seen in a survey by Chiper et al. [3]. In this survey,
the different drone detection and defense systems based on different types of methods
which were proposed in the literature are presented. In the real world, the target position
can be detected in many different sensing technologies such as radar [4,5], acoustical [6,7],
radio frequency (RF) [8], optical [9], lidar [10], or a deep learning-based solution [11,12].

Although there are many counter-drone solutions available in the literature, each
solution targets special cases. In a survey [13], the limitations of available counter-drone
technologies and the advantages of using them are explained in detail. In this study,
it is stated that the threats coming from drones in airports are not easy to deal with.
However, methods such as geofencing, multiple radars with different detection ranges and
a combination of radio-frequency sensors with visual detection sensors can be implemented
to defend airports against unwanted drones. It is also highlighted that airfield operators
must remain within the law when using disruptive technologies, and the risks to the wider
community should be fully assessed and understood.

Researchers Watkins et al. proposed a blueprint [14] which offers a design for a
novel autonomous counter drone tool based on the weaponization of “hard-to-patch”
vulnerabilities. The paper highlights the problem of privacy violation due to drones and
presents a counter-drone tool which breaks the drone’s autonomy code.

In another study [15], it is presented that the system developed can extract target
UAV trajectory which is enough to intercept an intruder drone. The research states that

Sensors 2022, 22, 8863 3 of 26

with a priori knowledge of the shape of the target trajectory, they managed to track and
intercept an intruding drone 30% faster than their sentry vehicle in more than half of the
software in the loop (SITL) experiments conducted. The system is also tested in an outdoor
unstructured environment and the drone successfully intercepts in 9 out of 12 experiments.

2.2. Reinforcement Learning

AI methods such as reinforcement learning (RL) have been used in drones for a va-
riety of reasons. Reinforcement learning is an approach to AI based on trial-and-error
experiences. Drones equipped with RL can navigate in an environment with obstacles
without crashing on them. Researchers have been proposing their studies in the area of
reinforcement learning, and drones and their main focus is on navigating drones in an
unknown environment, avoiding obstacles, and chasing drones. Reinforcement learning is
also used in [16] to focus on automated anti-collision systems. In this study, it is stated that
training Reinforcement Learning agents can deflect a drone equipped with an automated
anti-collision system. The effectiveness of reinforcement learning in finding security holes
for the autonomous systems is also highlighted. More3over, in a study by Lee H. [17], track-
ing and capturing an invading drone using a vision-based drone to defend it is presented.
Firstly, researchers developed a deep learning-based detection algorithm which applied to
detect a drone and estimate its position. Secondly, a deep reinforcement learning algorithm
is introduced to find the optimal behavior to track a drone. Moreover, Akhloufi et al. [18]
proposed deep reinforcement learning to predict the actions to be applied to the follower
UAV to keep track of the target UAV. Furthermore, supervised learning is applied by using
a large dataset of drone images. Another example is to predict the position of the target
drone using a deep object detector and a search area proposal. Reinforcement learning
can be combined with another deep learning method called imitation learning. For ex-
ample, a deep reinforcement learning method is proposed in [19] to navigate an UAV in
an unknown environment using demonstration data. Researchers presented that expert
demonstrations can speed up the training process and both the policy and Q-value net-
work are pre-trained in the imitation phase. Simulation results show that UAV can avoid
obstacles in an unknown 3D environment.

The first and more significant contribution is the novel filtering algorithm applied
during transfer learning. This consists of pre-processing the previous experiences and
eliminating those considered as bad experiences. Previously, we presented a counter-drone
solution [20], a drone equipped with an AI method deep reinforcement learning double
deep Q-network (DDQN) to counter a drone in a 2D space. The drone learns to navigate in a
geo-fenced environment and heads towards the target drone. However, the actions are only
in a 2D space such as moving forward and yawing left and right. In other words, the target
drone is assumed to be at the same altitude as the learner drone which is trying to catch
the target. However, in this research, a deep reinforcement learning method with dueling
network and prioritized experience replay have been proposed to counter a drone in a 3D
space and the experiences are loaded from the previous training by filtering the experiences.
The second important contribution is that a DRL model deals with the counter-drone
challenge in a 3D space. In this paper, a future work from our previous research, a very
challenging 3D space, is addressed and a deep reinforcement learning method supported by
a state-of-the-art object detection algorithm [21], with a drone detection model proposed so
that the drone can catch the target drone in a 3D space. The learner drone is not only moving
in a 2D space but also changing altitudes to eliminate the target drone. Critical part of the
counter-drone systems to eliminate the target such as the time to interact with the target and
the actions which the drone can use are considered carefully. A detailed explanation of the
drone detection model used in this paper is provided in our previous research [11] which
proposes a drone detection model trained by using different kinds of images of drones to
obtain a more robust drone detector. The last and relevant contribution is the explainability
of deep reinforcement learning. The figures which represent the rewards, drone locations,
crash positions and the action distribution during training and testing are analyzed and

Sensors 2022, 22, 8863 4 of 26

compared with different scenarios and parameters. In other words, the agent behavior is
observed and the modifications are done accordingly in training and testing sessions.

3. Materials and Methods

In this section, the tools used to train and test deep reinforcement learning algorithms
are explained.

3.1. Tools

Python is used to train and test DRL algorithms. OpenAI-Gym [22] is a toolkit to simu-
late reinforcement learning algorithms. It is an open-source interface and is compatible with
neural network tools such as Tensorflow [23]. Keras-RL [24], which includes state-of-the
art deep reinforcement learning algorithms, is used for integrating the deep learning Keras
library. Keras-RL can work with OpenAI-Gym and it is easy to define the developer’s own
callbacks. In this paper, Keras-RL callbacks and the functions are edited to use a prioritized
experience replay. To train and test the reinforcement learning algorithms, an Airsim [25]
simulator is used. Airsim has many capabilities for AI research and development such as
deep learning, computer vision and reinforcement learning.

3.2. DQN, Double-DQN and Dueling Network Architecture

Reinforcement learning is explained in Section 2.2. RL is an approach to AI inspired by
a human’s way of learning, similar to what a baby experiences when learning how to walk.
In RL, agent makes a decision and takes an action. The agent interacts with the environment.
The environment provides states, which is information about the current status of the agent.
Each action updates the environment and its state. Finally, a reward is submitted by the
environment informing about the benefit of using the action in that moment. The objective
of the agent is to maximize the final reward value. The interaction between the agent and
the environment is shown in Figure 1. State is represented as St and the State Space is
represented as S. The interaction between the agent and the environment is in discrete time
steps t. Action and Action Space are represented as At and A(St) respectively. Reward
values are updated in each time, Rt+1, and a new state becomes St+1.

Figure 1. The agent-environment interaction in reinforcement learning.

In RL, states are mapped to the probability of the possible actions in each time step
t and this is called policy. The policy is chosen to maximize the cumulative reward over
time shown in Equation (1). This means maximizing not the immediate rewards Rt+1,

Sensors 2022, 22, 8863 5 of 26

but the cumulative reward over time, called return Gt. The fundamental concepts for RL
are explained in detail in [26].

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞

∑
k=0

γkRt+k+1, (1)

where γ ∈ [0, 1] is the discount factor. The discount factor γ determines the importance of
future rewards. A factor of 0 will make the agent short-sighted by only considering current
rewards, while a factor approaching 1 will make it strive for a long-term high reward.

The DQN method is published by DeepMind [27] and the main goal of DQN is to use
a deep convolutional neural network to approximate the optimal action-value function.
DQN provides updated action values and target values iteratively. Moreover, it offers
an experience replay which randomizes the data and improves the data distribution.
Researchers Mnih et al. [27] presented that DRL algorithms can beat a human performance
level in video and board games by implementing a double deep Q-network (DDQN)
[28], an extension of the deep Q-network (DQN) implementation [29]. The double-DQN
(DDQN) algorithm remains the same as the original DQN, except replacing the target of
the estimated return as defined as the DQN target. In DDQN, only one estimate is updated
per step in a random selection, but two estimates are learned. The memory requirements
are doubled but the computational effort made at each step remains the same. The DDQN
algorithm is used previously in [20] and it shows promising results in a 2D space when
countering a drone. The overall goal of DQN is to use a deep convolutional neural network
to approximate the optimal action-value function, defined as:

θπ(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + · · · | st = s, at = a, π] (2)

The standard Q-learning update for network parameters θ after taking action At in
state St and observing the immediate reward Rt+1 and resulting state St+1 is:

θ = θt + α[yQ
t −Q(St, At; θt)]∇θt Q(St, At; θt), (3)

where the estimated return as defined as Q-target yQ
t :

yQ
t = Rt+1 + γ max

a
Q(St+1, a; θ) (4)

This update resembles a stochastic gradient descent, updating the current value
Q(St, At; θt) over the Temporal Difference (TD) error towards a target value yQ

t .
However, in the dueling network architecture presented in [30] there is no need to

estimate the value of each action choice as it is calculated in DQN and Double-DQN.
Instead of following the convolutional layers with a single sequence of fully connected
layers, the dueling network has two new streams. One of the streams estimates state-value
V(s; θ, β) and the other stream estimates the advantage for each action and output an |A|
dimensional vector A(s, a; θ, α). θ is the parameters of the convolutional layers, while α
and β are the parameters of the two streams of fully-connected layers. The lower layers
of the dueling network are as in the original DQN. Finally, the two streams are combined
to produce a single output Q function shown in Equation (5) as it is done in DQN [27].
The agent dueling architecture can be seen in Figure 2.

θ(s, a; θ, α, β) = V(s; θ, β) + A(s, a; θ, α) (5)

The advantage of using dueling architecture is that the agent can learn which states
are more valuable without learning each action at each state. In other words, there is no
need to calculate the value of each action at that state value if the state is not good.

Sensors 2022, 22, 8863 6 of 26

Figure 2. Agent Dueling Architecture.

3.3. Prioritized Experience Replay

Prioritized Experience Replay (PER) is introduced by Schaul, T. et al. in [31] to make
the agent learn faster. Previously, experiences are sampled uniformly from a replay mem-
ory. In other words, the transitions are replayed without considering their significance.
However, PER prioritized the experiences and important transitions are replayed more
frequently. In this way, the agent learns efficiently.

3.4. Drone Detection by State-of-the-Art Object Detection Model—EfficientNet

In this paper, EfficientNet-B0, a sub version of EfficientNet [21], is used to detect drones.
EfficientNet is a popular state-of-the-art object detection model thanks to its accuracy and
efficiency. EfficientNet-B0 is adapted for small-size objects. A detailed explanation of our
drone detection model is provided in our previous research [11].

3.5. DRL Model

The deep reinforcement learning model in this study was constructed by using dueling
network architecture and trained with DDQN including prioritized experience replay.
The DRL model is constructed by concatenating an image state and scalar inputs such as
distances to the target. The image is an input of a convolutional neural network (CNN),
followed by a flatten layer and then a concatenation layer joints the flatten output of the
CNN with scalar inputs. Figure 2 shows the neural network model representation including
dueling architecture. Details on the environment, states, actions and rewards are presented
in the following sections.

3.5.1. Environment

Airsim simulation provides many environments available in Unreal Engine [32] for AI
research and development. The urban neighborhood is chosen to counter a drone because
of the similarity in real-life experiences such as a high number of drones in urban areas.

Sensors 2022, 22, 8863 7 of 26

3.5.2. States

Agent states consist of images and scalar input values which are concatenated later.
However, different image states are used in two different DRL models:

• Image State with Drone Detection
Depth image, 84 × 84 pixels, and scene image, 256 × 144 pixels, are captured by using
a drone onboard camera. The predicted image seen in Figure 3b is processed by a
drone detection model to create bounding boxes when the target drone is detected on
the image.
The depth image seen in Figure 3a is used in the DRL model for detecting obstacles.
After processing the images, the bounding box region in the depth image is filled with
the color white and circles like a target in a game of darts are created inside the white
bounding box region. The final image can be seen in Figure 3d.

(a) Depth Image (b) Prediction (c) Image Masked (d) Final State

Figure 3. Drone Detection and Image Processing.

• Image State without Drone Detection
The depth image seen in Figure 4, with 256 × 144 pixels captured continuously. This
image is the default size that Airsim can output.

Figure 4. Depth Image.

In addition, the grid is drawn on the image if the drone comes closer to the geo-fence
limits in all directions. The grids start to be drawn on the image when the distance
between the drone and the geo-fence limits lower than or equal to 1 m. The thickness
of the grid increases as the drone moves towards the geo-fence limits. An example
of the grid image is shown in Figure 5. In Figure 5a, the grid is drawn if the agent is
closer to the geo-fences on TOP. On the other hand, in Figure 5b, the grid is drawn on
the bottom of the image if the agent is closer to the ground.

(a) (b)

Figure 5. Fences in Image State. (a) Grid on Top of the Image. (b) Grid on the Bottom of the Image.

• Scalar Inputs
Scalar inputs contain the agent’s distances to the goal in x, y and z directions and the
Euclidean distance dxdydzdt.

Sensors 2022, 22, 8863 8 of 26

3.5.3. Actions

The agent can take five different actions such as moving forward, yawing left and
right, and going up and down. The actions are represented in detail in Table 1 and in
Figure 6.

Table 1. Actions.

Action Movement

0 2 m/s in +x direction
1 30 deg yaw left
2 25 deg yaw right
3 0.25 m/s in +z direction
4 0.25 m/s in −z direction

Figure 6. Agent Actions.

3.5.4. Rewards

The reward function includes incremental rewards which penalize the agent during
the episode and the reward giving a successful episode. In addition, an intermediate step
reward is added: ∆Distance which represents the change of distance to the target between
the current step and the previous step. In this paper, collision penalization for colliding
with any obstacle in the environment is not implemented. The reward function is shown in
Table 2.

Table 2. Rewards.

Reward The Reason

+100 Target Caught
−1 + ∆Distance Episode steps between 0–50
−2 + ∆Distance Episode steps between 50–100
−3 + ∆Distance Episode steps between 100–150
−4 + ∆Distance Episode steps between 150–200

4. Training and Test Results

In this section training and test results are presented. Models are trained on a desktop
PC with NVIDIA GeForce RTX 3060 Ti with 8 GB VRAM graphics co-processor. In Figure 7,
core components of the experimental setup and the interactions between the DRL tools
such as Tensorflow, Keras and OpenAI Gym, drone detection model via python pipe which
accomplishes the parallel processing and the simulation. The linear Epsilon-greedy policy
is applied during the training. Different training steps and the annealed part of the training
section are implemented to train DRL models. In addition, the models are also trained by
loading experiences from another training. In other words, time to train can be different in
different models. In general, full training with 75,000 steps can take approximately 48 h.

Sensors 2022, 22, 8863 9 of 26

A summary of the models is presented in Table 3 and Hyperparameters of the training
and tests are presented in Table A1. The models are trained by implementing different
scenarios such as different target drone locations, teleportation and random heading at the
beginning of each episode during training. In addition, some models have been trained by
implementing transfer learning and using different network architectures such as a dueling
network. Different annealing sections and the total training times are also investigated and
shown in Table 3.

Figure 7. Experimental Setup.

Table 3. Setup DRL Models.

Models
Target
Location in
X Direction

Target
Location in
Z Direction

Teleportation
and Random
Heading

Transfer
Learning

Dueling
Network
Architecture

Image
State

Scalar
States

Annealed
Steps

Training
Steps

Drone
Detection

Model-1 8 −5 NO NO YES (256,144) dxdydzdt 15,000 <50,000 NO

Model-2 10 −5 NO YES YES (84,84) dxdydzdt 20,000 >50,000 YES

Model-3 8 −5 NO NO YES (84,84) dxdydzdt 15,000 <50,000 YES

Model-4 8 −5 NO NO YES (84,84) dxdydzdt 20,000 >50,000 YES

Model-5 10 −5 NO NO YES (84,84) dxdydzdt 15,000 <50,000 YES

Model-6 8 −5 NO NO NO (84,84) dxdydzdt 15,000 <50,000 YES

Model-7 8 −5 YES NO NO (84,84) dxdydzdt 100,000 <50,000 YES

Model-8 8 −5 YES (Random
Heading) NO NO (84,84) dxdydzdt 50,000 >50,000 YES

Model-9 8 −5 NO NO NO (84,84) dxdydzdt 15,000 <50,000 YES

Mean rewards of DRL models are presented together in Figure 8. It is seen that only
model-2 has positive mean rewards at the beginning and the rest of the training thanks to
transfer learning by loading experiences from one of the previous trainings. On the other
hand, it can be seen in this figure that one of the models is very slow and does not reach a
positive mean reward in training while the other models reach positive mean rewards after
some time in training.

In Table 4 maximum, minimum and average cumulative rewards of DRL models
are presented. Success rates during training are also shown. Model-1 and model-2 have
the maximum success rates and maximum average cumulative results. Model-3 has the
minimum success rate with one of the lowest total episode numbers.

Sensors 2022, 22, 8863 10 of 26

Figure 8. Training Results ALL Models.

Table 4. DRL Models Training Rewards Statistics.

Models Average Cumulative
Reward

Max. Cumulative
Reward

Min. Cumulative
Reward Success Rates

Model-1 83.11 94.48 −429.27 95%
Model-2 83.82 94.12 −420.99 98%
Model-3 −3.73 97.33 −426.16 47%
Model-4 65.91 98.09 −427.04 88%
Model-5 65.24 96.16 −424.30 88%
Model-6 64.49 98.21 −416.40 83%
Model-7 −29.40 96.25 −252.38 5%
Model-8 71.80 97.16 −421.06 86%
Model-9 72.08 97.14 −418.69 85%

4.1. Best Models

Best models are chosen according to training and test performances. If the training has
more successful episodes with less crashes and it is stable during the training, the model is
considered to be a good model. All models are presented in detail in Figure A1. Model-1
and Model-2 are selected as best models and the mean rewards are compared and presented
in Figure 9. In Table 3, model-1 and model-2 are already described in detail. Although both
models have dueling network architecture and prioritized experience replay, model-1 has
no drone detection model and no transfer learning. On the other hand, model-2 includes a
drone detection model running and the experiences from previous training are transferred.
As is seen in Figure 9, model-2 starts the training with positive rewards and reaches its
maximum levels in a short time. It is seen that transferring experiences from a previous
training speeds up the learning process. However, model-1 starts the training from scratch
but can reach the high rewards like model-2, whereas model-1 has more crashes at the
beginning of the training.

Sensors 2022, 22, 8863 11 of 26

Figure 9. Best Models.

4.2. Analysis of Models

In this section, the training results of best models are compared with models which
were not successful in training. Worst models such as model-7 and model-8 are compared
with the best models described in Section 4.1. Model-8 has trained without using transfer
learning and has a longer annealing part. Model-8’s training result is shown in Figure 10d.
In this figure, the red, blue and cyan colors represent an episode in which the learner
drone crashed in the environment, an episode in which the target is caught and the time
limit respectively. It is seen that model-7 and model-8 are outperformed by model-1
and model-2. Model-8 is created by starting each episode with random heading without
teleportation during training and has more crashes during the training than model-1
an model-2. The training results for model-1 and model-2 are shown in Figure 10a,b
respectively. The maximum reward that model-8 can achieve is similar to the other models,
but it has many crashes even after the annealing section which ends after 50,000 steps.
However, model-7 is the worst model which failed to catch the target during the training,
and the training result is presented in Figure 10c. This model is trained with a different
scenario such as teleportation and random heading starting at the beginning of each episode,
and it has a very long annealing part. The main purpose was to increase exploration by
teleporting around the environment, but it was not sufficient for the drone to learn to catch
the target. Training results for all DRL models can be seen in Figures A1 and A3.

Additionally, the crashed episodes are analyzed by checking the drone crash locations
in the environment. Figure 11 shows crash positions in the environment in x-y directions
for four different models. Red rectangle lines represent the geofences in the environment in
x-y directions. It is clearly seen that model-7 and model-8 crash a lot of times on the right
side of the geofenced location in × direction. However, among all the models, model-2
has minimum crashes. This can also be seen in Figure A4. Model-1 performs better than
model-7 and model-8 but not as well as model-2. Moreover, model-7 crashes on each side
of the geofenced area. The long annealing part also contributes to this situation because the
random behavior is high in the annealing part and the learner drone tries to explore more
in the environment, but even after a long time, there are no improvements in this model.

Sensors 2022, 22, 8863 12 of 26

(a) Model-1 (b) Model-2

(c) Model-7 (d) Model-8

Figure 10. Training Results.

(a) Model-1 (b) Model-2

(c) Model-7 (d) Model-8

Figure 11. Crash positions.

Actions for these four models are also presented in Figure 12. Expected behavior is
that the drone should go up and move forward since the target is in front of the learner
drone and the vertical distance is 1 m. Model-1 and model-2 perform as expected but
model-1 spends more time on turning left and right. Model-2’s performance shows a better
result and it spends less time on turning but focuses on going up and moving forward.
Model-8 fails to do the expected behavior and sometimes spends a lot of time finding the
target. However, model-7’s actions show no learning at all. The actions the drone uses
in this model are almost distributed equally among the five actions and the drone has no

Sensors 2022, 22, 8863 13 of 26

idea where the target is and where it should move to catch it. All the actions that the DRL
models used can be seen in Figure A5.

(a) Model-1 (b) Model-2

(c) Model-7 (d) Model-8

Figure 12. Action Frequencies.

4.3. Test Results

After training the DRL models described in Table 3, the models are tested in the
environment with the best checkpoint weights obtained during the training. The models
presented in Figure 10 which includes best and worst models are tested and presented in
Figure 13. The test results are shown in Table 5. In this table, average cumulative rewards,
minimum and maximum rewards are compared. The success rates represent on how many
episodes the learner drone catches the target drone in a test out of 100 episodes. In addition,
the average steps in each episode in tests are also presented. Model-1 and model-2 show
the best performance as expected since they are selected as the best models and shown in
Section 4.1. Average cumulative rewards are 90.86 and 89.38, the highest for model-1 and
model-2 respectively. The highest minimum cumulative rewards show the precision of
these models. Model-1 and model-2 spend less time to catch the target with average time
steps 8.98 and 11.92 respectively. However, model-7 and model-8 are not as successful as
expected. Although model-8 has a better success rate (92%), it has higher average steps
compared to the best models, and model-7 fails to catch the target drone.

Table 5. DRL Models Test Statistics.

Models Average Cumulative
Reward

Max. Cumulative
Reward

Min. Cumulative
Reward

Success
Rates

Average
Steps

Model-1 90.86 91.12 90.69 100% 8.98
Model-2 89.38 92.93 82.93 100% 11.92
Model-7 −87.55 73.78 −408.58 3% 56.97
Model-8 65.73 95.06 −220.29 92% 32.01

Sensors 2022, 22, 8863 14 of 26

(a) Model-1 (b) Model-2

(c) Model-7 (d) Model-8

Figure 13. Test Results.

5. Discussion

The position of the learner drone, the agent, in episodes during the training of DRL
models have shown different flight paths in order to catch the target in a 3D space.
Figures 14–16 present the positions during training in episodes 3560 for model-2, 2285
for model-1, and 2666 for model-8. Previously, model-1 and model-2 have been chosen as
the best models. It is found that the learner drone can use different actions to catch the
drone in different episodes and different models. For instance, model-2 takes 58 steps to
catch the target and the positions are shown in Figure 14. The learner drone moves up and
goes forward without changing position in the y-direction. Figure 15 shows that model-1
can use 102 action steps to catch the target. Firstly, the learner drone moves up and goes
forward. After the learner drone passes the target, it starts going up and down to search for
the target and finally it catches it. Moreover, model-1 has shown an interesting approach
in that the learner drone spends time in the y-direction such as going left and right and
going up and down at the same time. However, although model-8 is declared as one of
the worst models, there are also successful episodes in which the learner drone catches the
target. For example, the learner drone position is presented in Figure 16. In this figure, it is
seen that the learner drone spends a lot of time to find the target and uses different kinds
of actions including going forward and backwards. The episode in this approach takes 84
steps to catch the target. In counter-drone systems, catching the target as soon as possible
is expected. Otherwise, the target can be lost in a short time.

Sensors 2022, 22, 8863 15 of 26

Figure 14. Model-2 Training Episode 3560 Drone Position.

Figure 15. Model-1 Training Episode 2285 Drone Position.

Figure 16. Model-8 Training Episode 2666 Drone Position.

Deep Q-Learning from Demonstrations (DQfD)

As described earlier, reinforcement learning is an AI method in which the agent can
learn from trial-and-error experiences by interacting in an environment. However, learning
from scratch can be time consuming in some real-world applications such as counter-drone
systems in a 3D space. Experiences from an expert can be used to accelerate the learning

Sensors 2022, 22, 8863 16 of 26

speed and the agent can learn in an efficient way. For instance, an AI method called
imitation learning has been used to teach an agent to mimic the behavior of an expert.
In imitation learning, the labeled data are used as an input and the agent imitates the actions
from the recorded data. However, the data are limited to the expert data. On the other hand,
a deep reinforcement learning algorithm called Deep Q-learning from Demonstrations [33]
is introduced to combine imitation learning and reinforcement learning. In DQfD the
agent continues learning by sampling from both its self-generated data as well as the
demonstration data.

The main purpose of this algorithm is to remove the limitations of the applicability of
DRL to real-world tasks where the agent must learn in the environment. DQfD provides
the agent with data from previous control of the system. Thanks to a prioritized experience
replay mechanism, DQfD can access the demonstration data to accelerate the learning
process even if the agent has a small amount of demonstration data. Researchers showed
that DQfD can perform better and learn to out-perform the best demonstration given
in 14 of 42 games. In addition, DQfD has already achieved state-of-the-art results on
11 Atari games.

The DQfD algorithm has two phases of training. Firstly, DQfD pretrains on the expert
demonstration data using a combination of temporal difference (TD): 1-step TD, n-step
TD, supervised, and regularization losses. The TD loss enables the algorithm to learn a
self-consistent value function from which it can continue learning with RL. In addition,
the supervised loss is used to learn to imitate the demonstrator. After pre-training, the agent
starts interacting with the domain with its learned policy. The agent updates its network
with a mix of demonstration and self-generated data. The combination of demonstration
data and self-generated data is automatically controlled by a prioritized-replay mechanism.
The overall loss is presented in Equation (6). In this equation, in addition to TD losses,
a margin classification loss JE [34] and L2 regularization loss JL2 are implemented. λ pa-
rameter is added to control the weighting between the losses. L2 regularization loss is
applied to the weights and biases of the network to help prevent it from over-fitting on
the relatively small demonstration dataset. A margin classification loss is added to make
the greedy policy induced by the value function imitate the demonstrator by forcing the
values of the other actions to be at least a margin lower than the value of the demonstrator’s
action. After pre-training, the agent starts interacting with the environment, collecting
self-generated data and adding it to the replay buffer until it is full, but the demonstration
data are never over-written.

J(Q) = JDQ(Q) + λ1 Jn(Q) + λ2 JE(Q) + λ3 JL2(Q) (6)

JE(Q) = max
a∈A

[Q(s, a) + lQ(aE, a)−Q(s, aE)] (7)

where aE is the action the expert demonstrator took in state s and l(aE, a) is the margin
function.

In this study, a previously trained model, model-2, one of the best models presented
in Section 4.1, is used to demonstrate for the DQfD algorithm. After training, the model
obtained is tested in the environment. The results showed that the demonstration data help
with faster learning. However, there are limitations in some cases such as the complexity of
the environment with obstacles, geo/fences and learner drone crashes.

Training results for the DQfD model are shown in Figures 17–20. It is seen in Figure 17
that the DQfD model is trained with only 140 episodes. This is less than the other models
presented in this paper. However, the learning process is faster considering the time spent
for training. There are also few crashed episodes on geo-fences as shown in Figure 18.
Crashed positions can also be seen in Figure 19 where the learner drone position is pre-
sented. The learner drone focuses on the target and mostly spends time moving towards the
target drone position. Considering the action frequency plot shown in Figure 20, moving
forward (Action0) and going up (action4) are the expected actions in the environment.

Sensors 2022, 22, 8863 17 of 26

Figure 17. DQfD Train Results.

Figure 18. DQfD Crash Positions.

Figure 19. DQfD Drone Positions.

Sensors 2022, 22, 8863 18 of 26

Figure 20. DQfD Action Frequency.

Table 6 presents the training and test rewards, success rates and average steps during
training and tests. Training average cumulative rewards in the DQfD model is very low but
it is higher in test results. However, almost 20% of the episodes in the test crashed because
of geo-fences. The test results are presented in Figure 21. In general, the rewards in the
test remain between 90–100 and look stable. The episodes which are not successful have
rewards which are mostly around −50 and there is no time limit in this case. These results
show that DQfD can be utilized to train the drone in a short time to save time and resources
for countering a drone in a 3D space which is a challenging task compared to a 2D space
counter-drone solution. However, the DQfD algorithm for a counter-drone system needs
improvement to be used in real-world applications. To achieve the best results, a hyper
parameter search can be beneficial.

Figure 21. DQfD Model Test Results.

Table 6. DQfD Model Train and Test Statistics.

DQfD Models Average Cumulative
Reward

Max. Cumulative
Reward

Min. Cumulative
Reward

Success
Rates

Average
Steps

DQfD Model Train 7.95 93.67 −403.94 55% 35.21
DQfD Model Test 65.96 94.07 −79.29 81% 16.82

6. Conclusions

Counter-drone systems to fight against unknown drones can benefit from artificial
intelligence methods. In this paper, an artificial intelligence method called deep reinforce-
ment learning is demonstrated. Countering a drone in a 3D space is a very challenging task
compared to countering a drone in a 2D space, and it can be unstable even if it is trained
over a long time to catch a drone. The main contributions of this paper have been the usage
of a DQN algorithm with dueling network architecture and prioritized experience replay
to catch another drone in a 3D space in an environment provided by an Airsim simulator.

Sensors 2022, 22, 8863 19 of 26

In addition, experiences from previous training are also transferred before starting a new
training by pre-processing the previous experiences and eliminating those considered as
bad experiences. The results show that drone learning progress has increased dramatically.
Crashes on geo-fences and obstacles in the environment are reduced. The drone detection
model running in the background is also implemented in most of the models, and one of the
best models is obtained by using the drone detection model running in the background. The
neighborhood environment in the simulator requires more intelligent exploration because
of different kind of obstacles such as trees, cars, overhead cables in the street, houses, etc.
which the drone can crash on. For this reason, another deep reinforcement algorithm, deep
q-learning from demonstrations, is also implemented for a counter-drone solution and the
training and test results are compared with the other models presented in this study. In this
model, demonstration data play an important role to achieve higher rewards during train-
ing. The main advantage of this model is that even after pre-training, the DQfD algorithm
allows the demonstration data to be used during the training. However, the results are
slightly better in terms of the average steps the learner drone takes during the test, but the
average cumulative rewards are well below compared to the models presented. Thus,
the actions which the demonstrator has taken are not easy to classify, and therefore the
differences between the demonstrator and the agent data become more important. In future
work, the plan is to improve DQfD for the usage of a counter-drone system by using the
human demonstrator. Humans can use a different policy that a learner drone would learn
from training, and this information can be hidden in learner drone state representation.
Deep reinforcement learning algorithms are developing and there will be challenges in
the future. The identification of drones with the help of drone detection systems is a very
important part of counter-drone solutions since the state of the target drone is the main
part of the deep reinforcement learning algorithm. The correct actions to be taken by the
learner drone are also crucial for the counter-drone system since this directly affects the
time to interact with the unwanted drone.

Author Contributions: Conceptualization, E.Ç. and C.B.; methodology, E.Ç.; software, E.Ç. and C.B.;
validation, C.B. and E.P.; writing, E.Ç. and C.B.; funding acquisition, E.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded partially by the AGAUR under grant 2020PANDE00141, the Min-
istry of Science and Innovation of Spain under grant PID2020-116377RB-C21 and the SESAR Joint
Undertaking (JU) project CORUS-XUAM, under grant SESAR-VLD2 101017682. The JU receives
support from the European Union’s Horizon 2020 research and innovation program and SESAR JU
members other than the Union.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
AI Artificial Intelligence
DRL Deep Reinforcement Learning
RL Reinforcement Learning
TL Transfer Learning
NED North East Down
BVLOS Beyond Visual Line of Sight
DDQN Double Deep Q-network
PER Prioritized Experience Replay
DQfD Deep Q-learning from Demonstrations
CNN Convolutional Neural Network
TD Temporal Difference
API Application Programming Interface

Sensors 2022, 22, 8863 20 of 26

Appendix A. Results

Appendix A.1. Training Results

Table A1. Hyperparametres of the training.

Hyperparameter Value Observations

Training steps 75,000 Changes in different scenarios (50,000–75,000)

Annealing length 15,000 Changes in different scenarios (15,000–45,000)

Annealing interval ε [1–0.1] Linear Annealed Policy (can be [0.1–0.01])

Steps to warm-up 180 Number of random steps to take before learning begins

Prioritized experience replay, memory limit 100,000

Prioritized experience replay, alpha 0.6 Decides how much prioritization is used

Prioritized experience replay, beta Decides how much we should compensate for the non-uniform probabilities

Prioritized experience replay, start-beta 0.4

Prioritized experience replay, end-beta 0.4

Pretraining steps 1000 Length of ’pretraining’

Large margin 0.8 Constant value

Lam2 1 Imitation loss coefficient

Dueling type ’avg’ A type of dueling architecture

Target model update τ 0.001 Frequency of the target network update

Discount factor γ 0.99 The discount factor of future rewards in the Q function

Learning rate α 0.00025 Adam optimizer [35]

Sensors 2022, 22, 8863 21 of 26

(a) Model-1 (b) Model-2

(c) Model-3 (d) Model-4

(e) Model-5 (f) Model-6

(g) Model-7 (h) Model-8

(i) Model-9

Figure A1. Training Results.

Sensors 2022, 22, 8863 22 of 26

(a) Model-1 (b) Model-2

(c) Model-3 (d) Model-4

(e) Model-5 (f) Model-6

(g) Model-7 (h) Model-8

(i) Model-9

Figure A2. Drone Positions.

Sensors 2022, 22, 8863 23 of 26

(a) Model-3 (b) Model-4

(c) Model-5 (d) Model-6

(e) Model-9

Figure A3. Alternative Training Results.

Sensors 2022, 22, 8863 24 of 26

(a) Model-3 (b) Model-4

(c) Model-5 (d) Model-6

(e) Model-9

Figure A4. Crashed Episodes.

Sensors 2022, 22, 8863 25 of 26

(a) Model-3 (b) Model-4

(c) Model-5 (d) Model-6

(e) Model-9

Figure A5. Actions Frequency.

References
1. Anti-Drone Market “To Be Worth USD1.5 Billion” by 2023—New Report. Available online: https://www.unmannedairspace.info/

utm-and-c-uas-market-analysis/anti-drone-market-to-be-worth-usd1-5-billion-by-2023-new-report/ (accessed on 21 August
2019).

2. Drones by the Numbers. Available online: https://www.faa.gov/uas/resources/by_the_numbers/ (accessed on 4 August 2022).
3. Chiper, F.L.; Martian, A.; Vladeanu, C.; Marghescu, I.; Craciunescu, R.; Fratu, O. Drone Detection and Defense Systems: Survey

and a Software-Defined Radio-Based Solution. Sensors 2022, 22, 1453. [CrossRef] [PubMed]
4. Drozdowicz, J.; Wielgo, M.; Samczynski, P.; Kulpa, K.; Krzonkalla, J.; Mordzonek, M.; Bryl, M.; Jakielaszek, Z. 35 GHz FMCW

drone detection system. In Proceedings of the 2016 17th International Radar Symposium (IRS), Krakow, Poland, 10–12 May 2016;
pp. 1–4.

5. Semkin, V.; Yin, M.; Hu, Y.; Mezzavilla, M.; Rangan, S. Drone detection and classification based on radar cross section signatures.
In Proceedings of the 2020 International Symposium on Antennas and Propagation (ISAP), Osaka, Japan, 25–28 January 2021;
pp. 223–224.

6. Bernardini, A.; Mangiatordi, F.; Pallotti, E.; Capodiferro, L. Drone detection by acoustic signature identification. Electron. Imaging
2017, 2017, 60–64. [CrossRef]

7. Mezei, J.; Fiaska, V.; Molnár, A. Drone sound detection. In Proceedings of the 2015 16th IEEE International Symposium on
Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 19–21 November 2015; pp. 333–338.

8. Nguyen, P.; Ravindranatha, M.; Nguyen, A.; Han, R.; Vu, T. Investigating cost-effective RF-based detection of drones. In Proceed-
ings of the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, Singapore, 26 June 2016;
pp. 17–22.

9. Opromolla, R.; Fasano, G.; Accardo, D. A vision-based approach to UAV detection and tracking in cooperative applications.
Sensors 2018, 18, 3391. [CrossRef] [PubMed]

https://www.unmannedairspace.info/utm-and-c-uas-market-analysis/anti-drone-market-to-be-worth-usd1-5-billion-by-2023-new-report/
https://www.unmannedairspace.info/utm-and-c-uas-market-analysis/anti-drone-market-to-be-worth-usd1-5-billion-by-2023-new-report/
https://www.faa.gov/uas/resources/by_the_numbers/
http://doi.org/10.3390/s22041453
http://www.ncbi.nlm.nih.gov/pubmed/35214355
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-168
http://dx.doi.org/10.3390/s18103391
http://www.ncbi.nlm.nih.gov/pubmed/30309035

Sensors 2022, 22, 8863 26 of 26

10. de Haag, M.U.; Bartone, C.G.; Braasch, M.S. Flight-test evaluation of small form-factor LiDAR and radar sensors for sUAS
detect-and-avoid applications. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC),
Sacramento, CA, USA, 25–29 September 2016; pp. 1–11.

11. Çetin, E.; Barrado, C.; Pastor, E. Improving real-time drone detection for counter-drone systems. Aeronaut. J. 2021, 125, 1871–1896.
[CrossRef]

12. Aker, C.; Kalkan, S. Using deep networks for drone detection. In Proceedings of the 2017 14th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017; pp. 1–6.

13. Lykou, G.; Moustakas, D.; Gritzalis, D. Defending airports from UAS: A survey on cyber-attacks and counter-drone sensing
technologies. Sensors 2020, 20, 3537. [CrossRef] [PubMed]

14. Watkins, L.; Sartalamacchia, S.; Bradt, R.; Dhareshwar, K.; Bagga, H.; Robinson, W.H.; Rubin, A. Defending against consumer
drone privacy attacks: A blueprint for a counter autonomous drone tool. In Proceedings of the Decentralized IoT Systems and
Security (DISS) Workshop 2020, San Diego, CA, USA, 23–26 February 2020.

15. Barišic, A.; Petric, F.; Bogdan, S. Brain over Brawn: Using a Stereo Camera to Detect, Track, and Intercept a Faster UAV by
Reconstructing the Intruder’s Trajectory. arXiv 2022, arXiv:2107.00962.

16. Bertoin, D.; Gauffriau, A.; Grasset, D.; Gupta, J.S. Autonomous drone interception with Deep Reinforcement Learning. In Pro-
ceedings of the ATT’22: Workshop Agents in Traffic and Transportation, Vienna, Austria, 25 July 2022.

17. Shim, D.H. Development of an Anti-Drone System Using a Deep Reinforcement Learning Algorithm. Ph.D. Thesis, Korea
Advanced Institute of Science and Technology, Daejeon, Korea, 2021.

18. Akhloufi, M.A.; Arola, S.; Bonnet, A. Drones Chasing Drones: Reinforcement Learning and Deep Search Area Proposal. Drones
2019, 3, 58. [CrossRef]

19. He, L.; Aouf, N.; Whidborne, J.F.; Song, B. Deep reinforcement learning based local planner for UAV obstacle avoidance using
demonstration data. arXiv 2020, arXiv:2008.02521.

20. Çetin, E.; Barrado, C.; Pastor, E. Counter a Drone in a Complex Neighborhood Area by Deep Reinforcement Learning. Sensors
2020, 20, 2320. [CrossRef] [PubMed]

21. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

22. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540.

23. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467

24. Plappert, M. keras-rl. 2016. Available online: https://github.com/keras-rl/keras-rl (accessed on 10 October 2022).
25. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. arXiv

2017, arXiv:1705.05065.
26. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529. [CrossRef] [PubMed]
28. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. arXiv 2016, arXiv:1509.06461.
29. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
30. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement

learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY,
USA, 19–24 June 2016; pp. 1995–2003.

31. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
32. Unreal Engine 4. Available online: https://www.unrealengine.com/en-US/what-is-unreal-engine-4 (accessed on 29 Jan-

uary 2019).
33. Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul, T.; Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband, I.; et al. Deep

q-learning from demonstrations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32, pp. 3223–3230.

34. Piot, B.; Geist, M.; Pietquin, O. Boosted and reward-regularized classification for apprenticeship learning. In Proceedings of the
2014 International Conference on Autonomous Agents and Multi-Agent Systems, Paris, France, 5–9 May 2014; pp. 1249–1256.

35. Kingma, D.P.; Ba, J.L. Adam: Amethod for stochastic optimization. In Proceedings of the 3rd International Conference for
Learning Representations, San Diego, CA, USA, 7–9 May 2015.

http://dx.doi.org/10.1017/aer.2021.43
http://dx.doi.org/10.3390/s20123537
http://www.ncbi.nlm.nih.gov/pubmed/32580402
http://dx.doi.org/10.3390/drones3030058
http://dx.doi.org/10.3390/s20082320
http://www.ncbi.nlm.nih.gov/pubmed/32325689
https://github.com/keras-rl/keras-rl
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
https://www.unrealengine.com/en-US/what-is-unreal-engine-4

	Introduction
	Contributions and Related Work
	Counter-Drone Systems
	Reinforcement Learning

	Materials and Methods
	Tools
	DQN, Double-DQN and Dueling Network Architecture
	Prioritized Experience Replay
	Drone Detection by State-of-the-Art Object Detection Model—EfficientNet
	DRL Model
	Environment
	States
	Actions
	Rewards

	Training and Test Results
	Best Models
	Analysis of Models
	Test Results

	Discussion
	Conclusions
	Appendix A
	Appendix A.1

	References

