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Abstract: This paper studies the cooperative control of multiple unmanned aerial vehicles (UAVs)
with sensors and autonomous flight capabilities. In this paper, an architecture is proposed that takes a
small quadrotor as a mission UAV and a large six-rotor as a platform UAV to provide an aerial take-off
and landing platform and transport carrier for the mission UAV. The design of a tracking controller
for an autonomous docking and landing trajectory system is the focus of this research. To examine
the system’s overall design, a dual-machine trajectory-tracking control simulation platform is created
via MATLAB/Simulink. Then, an autonomous docking and landing trajectory-tracking controller
based on radial basis function proportional–integral–derivative control is designed, which fulfills the
trajectory-tracking control requirements of the autonomous docking and landing process by efficiently
suppressing the external airflow disturbance according to the simulation results. A YOLOv3-based
vision pilot system is designed to calibrate the rate of the aerial docking and landing position to
eight frames per second. The feasibility of the multi-rotor aerial autonomous docking and landing
technology is verified using prototype flight tests during the day and at night. It lays a technical
foundation for UAV transportation, autonomous take-off, landing in the air, and collaborative
networking. In addition, compared with the existing technologies, our research completes the closed
loop of the technical process through modeling, algorithm design and testing, virtual simulation
verification, prototype manufacturing, and flight test, which have better realizability.

Keywords: multi-UAV; autonomous transportation; RBF−PID; flight control; machine vision; image
processing; target identification; trajectory tracking; information fusion

1. Introduction

The helicarrier has appeared in science fiction films in recent years. The one in
S.H.I.E.L.D., for example, is a helicarrier in the form of a massive platform for sea, ground,
and air, powered by four large turbine engines [1]. The mothership carries a small aircraft
that can take off and land at the same time. The idea of an “aircraft carrier” is not new,
as the notion of releasing small planes from large ones has existed for a long time. Since
the advent of aircraft carriers, many researchers have explored “aircraft carriers” that can
fly in the sky. From the 1930s to the 1950s, the United States, Soviet Union, Germany,
and other aviation powers developed a “mother aircraft” one after another. The Soviet
Zveno-1 “mother plane”, which made its first flight in 1931, was a TB-1 aircraft carrying
two aircraft [2], as shown in Figure 1. In June 1932, Curtis converted the airships AKRON
and MACON into airships capable of carrying up to three aircraft [3].

At present, an “aircraft carrier” that can recover and release manned aircraft, as seen
in science fiction movies, is difficult to achieve, but the maturity of drone technology has
opened another avenue of research. With the rapid development of drone technology at
present, many researchers are actively developing “drone carriers” that can take drones
out of the air and return them.
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Figure 1. The Soviet Zveno-1 “mother plane” made its first flight in 1931. 

At present, an “aircraft carrier” that can recover and release manned aircraft, as seen 
in science fiction movies, is difficult to achieve, but the maturity of drone technology has 
opened another avenue of research. With the rapid development of drone technology at 
present, many researchers are actively developing “drone carriers” that can take drones 
out of the air and return them. 

On 15 December 2014, DARPA issued a request for information-seeking technology 
to use large aircraft as carriers to transport, launch, and recover small UAVs, each weigh-
ing up to 45 kg. Prior to the successful recovery, DARPA launched a series of test flights 
starting in October 2020, with nine attempts to retrieve three aircraft, all of which failed, 
but through which they gained a wealth of experience [4]. Subsequently, UAVs are the 
main force of the “air mother ship”, and with the help of platform UAVs’ longer aloft time 
and cruising range, the mission UAVs’ aloft time and cruising range will be greatly ex-
tended. They can not only conduct missions far away from the base but also deploy for-
ward with the help of the “air mother ship” and greatly shorten the reaction time of UAVs. 
The combination of large-platform UAVs and small-mission UAVs can further enhance 
the multi-purpose capability of UAVs. 

In this article, a cluster technical scheme is adopted to design a platform UAV that 
can carry a mission UAV. A small quadrotor is used as the mission UAV and a large hex-
acopter UAV is used as the mission UAV take-off and landing platform; the hexacopter is 
also the transport carrier of the mission UAV. Autonomous docking and landing technol-
ogy in the air was the technical difficulty of this project. Through a literature survey, we 
found some relevant research papers. Tao Liu et al. proposed a model-based distributed 
algorithm to minimize the energy consumption of the multi-UAV system, in which each 
UAV obtains its trajectory by solving the corresponding sub-problem, and the UAVs co-
ordinate their trajectories according to the master problem [5]. Due to the application-
specific nature of wireless sensor networks, Bhisham Sharma et al. proposed a reliable and 
congestion-based protocol, which provides both bidirectional reliability and rate-adjust-
ment-based congestion control [6]. Thien-Minh Nguyen et al. proposed a method combin-
ing an ultra-wideband (UWB) ranging sensor with vision-based techniques to achieve 
both autonomous approaching and landing capabilities in GPS-denied environments [7]. 
Chengbin Chen et al. proposed a deep learning-based energy optimization algorithm 
(DEO) to dynamically adjust the emission energy of the ED so that the received energy of 
the mobile relay UAV is, as much as possible, equal to the sensitivity of the receiver[8]. In 
this paper, the research of autonomous docking and landing trajectory-tracking control 
algorithms for mission UAVs and platform UAVs is presented. The trajectory tracking 
control simulation platform of dual multi-rotor UAVs is constructed by MATLAB/Sim-
ulink, and the parameters of the dynamic system are solved, with the expected aircraft 
trajectory being used to verify the control algorithm. The principle, design method, and 
implementation process of the RBF−PID control trajectory tracking controller are de-
scribed, and various response curves of the controller under the control of mission UAV 
trajectory-tracking control and airflow disturbance are obtained by simulation. The design 
process of the visual guidance system based on YOLOv3 is described, and the architecture 
of the aerial autonomous docking and landing control system is constructed. Through a 
large number of flight tests to continuously optimize the program, the calibration rate of 
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On 15 December 2014, DARPA issued a request for information-seeking technology to
use large aircraft as carriers to transport, launch, and recover small UAVs, each weighing up
to 45 kg. Prior to the successful recovery, DARPA launched a series of test flights starting in
October 2020, with nine attempts to retrieve three aircraft, all of which failed, but through
which they gained a wealth of experience [4]. Subsequently, UAVs are the main force of
the “air mother ship”, and with the help of platform UAVs’ longer aloft time and cruising
range, the mission UAVs’ aloft time and cruising range will be greatly extended. They can
not only conduct missions far away from the base but also deploy forward with the help
of the “air mother ship” and greatly shorten the reaction time of UAVs. The combination
of large-platform UAVs and small-mission UAVs can further enhance the multi-purpose
capability of UAVs.

In this article, a cluster technical scheme is adopted to design a platform UAV that can
carry a mission UAV. A small quadrotor is used as the mission UAV and a large hexacopter
UAV is used as the mission UAV take-off and landing platform; the hexacopter is also the
transport carrier of the mission UAV. Autonomous docking and landing technology in the
air was the technical difficulty of this project. Through a literature survey, we found some
relevant research papers. Tao Liu et al. proposed a model-based distributed algorithm to
minimize the energy consumption of the multi-UAV system, in which each UAV obtains
its trajectory by solving the corresponding sub-problem, and the UAVs coordinate their
trajectories according to the master problem [5]. Due to the application-specific nature
of wireless sensor networks, Bhisham Sharma et al. proposed a reliable and congestion-
based protocol, which provides both bidirectional reliability and rate-adjustment-based
congestion control [6]. Thien-Minh Nguyen et al. proposed a method combining an ultra-
wideband (UWB) ranging sensor with vision-based techniques to achieve both autonomous
approaching and landing capabilities in GPS-denied environments [7]. Chengbin Chen
et al. proposed a deep learning-based energy optimization algorithm (DEO) to dynamically
adjust the emission energy of the ED so that the received energy of the mobile relay UAV is,
as much as possible, equal to the sensitivity of the receiver [8]. In this paper, the research
of autonomous docking and landing trajectory-tracking control algorithms for mission
UAVs and platform UAVs is presented. The trajectory tracking control simulation platform
of dual multi-rotor UAVs is constructed by MATLAB/Simulink, and the parameters of
the dynamic system are solved, with the expected aircraft trajectory being used to verify
the control algorithm. The principle, design method, and implementation process of the
RBF-PID control trajectory tracking controller are described, and various response curves
of the controller under the control of mission UAV trajectory-tracking control and airflow
disturbance are obtained by simulation. The design process of the visual guidance system
based on YOLOv3 is described, and the architecture of the aerial autonomous docking
and landing control system is constructed. Through a large number of flight tests to
continuously optimize the program, the calibration rate of the aerial docking and landing
position reached 8FPS, which met the requirements of autonomous aerial docking and
landing and performed well in both daytime and nighttime flight tests.
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2. Modeling of Mission UAV and Platform UAV

By analyzing the mission requirements in detail, the mission UAV and the platform
UAV were designed. First, the mathematical models were derived and established by
analyzing the frame design, airborne equipment type selection, and power system match-
ing [9,10]. Based on this analysis, an experimental prototype was fabricated to verify the
aerial autonomous docking, take-off, and landing technology, as shown in Figures 2–5.
Figure 6 shows the designed flight simulation environment.
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The flight simulation environment based on MATLAB Simulink aims to verify the
dynamic performance of the aircraft and test the dual multi-rotor UAV trajectory tracking
and dynamic docking performance in the simulation environment, that is, the mission UAV
docking and landing on the platform UAV in flight. The simulation platform is divided into
three parts: The mission UAV simulation module, the platform UAV simulation module,
and the visualization module, as shown in Figure 6. The simulation part of the mission UAV
includes a path-generation module, a position controller module, an attitude controller
module, a quadrotor hybrid control module, a quadrotor dynamics module, feedback,
and output. The simulation part of the platform UAV includes a path-generation module,
a position controller module, an attitude controller module, a six-rotor hybrid control
module, a six-rotor dynamics module, feedback, and output.

3. Mathematical Modeling of the Mission UAV
3.1. Definition of the Coordinate Systems

A suitable coordinate system should be established to calculate and express the attitude
and position of the UAV (unmanned aerial vehicle) more accurately. It also contributes
to clarifying the relationship between the variables and deducing the state equation of
precisely describing the flight characteristics of the designed rotorcraft UAV [11]. Then,
design research is unfolded step by step by establishing a complete simulation platform for
the autonomous docking and landing of the two aircraft.

3.1.1. Geographical Coordinate System Ogxgygzg

The origin Ogxgygzg of the geographic coordinate system (denoted as Sg, the inertial
coordinate system) coincides with the centroid of the multi-rotor UAV (the centroid of
the multi-rotor UAV coincides with its geometric center upon the optimized layout of
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airborne equipment); the positive direction of the Ogxg and Ogyg axes in the horizontal
plane point to the north and the west, respectively; and the Ogzg axis is perpendicular to
the horizontal plane.

3.1.2. Airframe Coordinate System Obxbybzb

The origin Ob of the airframe coordinate system Obxbybzb (denoted as Sb) coincides
with the centroid of the multi-rotor UAV. Specifically, the Obxb axis coincides with the
longitudinal axis of the multi-rotor UAV with the positive direction pointing forward; the
Obzb axis is perpendicular to the horizontal plane of the multi-rotor UAV airframe with the
positive direction pointing right above; and Obxbybzb is perpendicular to the Obxbzb plane
with its positive direction determined by the right-hand rule. As shown in Figure 7.
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The following settings were applied before the establishment of the UAV’s mathemati-
cal model:

Setting 1: The Earth’s surface was assumed to be planar, with the influence of Earth’s
rotation and curvature ignored.

Setting 2: An UAV is regarded as a rigid body since elastic deformation in the flight
course does not occur during flight.

Setting 3: The load of the UAV does not change during flight.
Setting 4: The overall centroid coincides with the origin of the airframe coordinate

system, with the structure and mass distribution being symmetrical after the layout of
airborne equipment is optimized with the particle swarm algorithm.

The x-axis was set as the forward direction of the UAV motion. The direction of the
coordinate axis was set as below:

3.2. Matrix of Mass Moment of Inertia

The mass moment of inertia of the four-axis aircraft on the defined axis was described
using the inertia matrix, which is essential for the systemic analysis of flight dynamics.
With some approximations, the mass moment of inertia on the x-, y-, and z-axes can be
determined to improve the required inertia matrix.

With an “X” structure adopted as the rack, the inertia matrix can be expressed by
Equation (1):

Jb =

Jxx 0 0
0 Jyy 0
0 0 Jzz

 (1)

Jb is the inertia of the quadcopter relative to the airframe, where Jxx, Jyy, and Jzz
represent the inertia of the quadcopter on each axis, respectively.

3.3. Inertia Moment Calculation

The rotational inertia of the mission UAV was calculated in four parts, including the
rotational inertia of the motor, the rotational inertia of the electronic speed controller, the
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rotational inertia of the UAV central equipment board (containing airborne equipment),
and the rotational inertia of the manipulator.

a. Calculation of the inertia moment of the motor:

Jx,M = Jy,M = 2
[

1
4

mmotorr2 +
1
3

mmotorh2
]
+ 2
[

1
4

mmotorr2 +
1
3

mmotorh2 + mmotord2
motor

]
(2)

Jz,M = 4
[

1
2

mmotorr2 + mmotord2
motor

]
(3)

where mmotor is the mass of the motor; dmotor is the distance from the motor to the origin of
the airframe coordinate system; E is the motor height; and r is the motor radius.

b. Calculation of the inertia moment of the electronic speed controller (ESC):

Jx,S = Jy,S = 2
[

1
12

mESCa2
]
+ 2
[

1
12

mESCb2 + mESCd2
ESC

]
(4)

Jz,S = 4
[

1
12

mESC

(
a2 + b2

)
+ mESCd2

ESC

]
(5)

where mESC is the mass of the electronic speed controller; dESC is the distance from the
electronic speed controller to the origin of the airframe coordinate system; a is the width of
the electronic speed controller; and b is the length of the electronic speed controller.

c. Calculation of the inertia moment of the central equipment module (CEM) (including
airborne equipment):

Jx,H = Jy,H =

[
1
4

mCEMrCEM
2 +

1
12

mCEMH2
]

(6)

JZ,H =

[
1
2

mCEMrCEM
2
]

(7)

where mCEM is the mass of the central equipment module; E is the radius of the equivalent
cylinder of the central equipment module; and H is the height of the equivalent cylinder of
the central equipment module.

d. Calculation of the inertia moment of the arm:

Jx,A = Jy,A = 2
[

1
2

marmrarm
2
]
+ 2
[

1
4

marmrarm
2 +

1
3

marmL2 + marmd2
arm

]
(8)

JZ,H = 4
[

1
2

mrarm
2
]

(9)

where marm is the mass of the quadcopter arm; rarm is the radius of the quadcopter arm; L
is the length of the quadcopter arm; and darm is the distance from the end of the quadcopter
arm to the z-axis.

3.4. Thrust Coefficient

The thrust T provided by a single-motor system can be calculated as

T = CTρArr2v2 (10)

Cr is the thrust coefficient of a given motor; ρ is the air density; Ar is the cross-sectional
area of the propeller rotation; r is the rotor radius; and v is the angular velocity of the rotor.
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Additionally, the thrust provided by the motor provides forces perpendicular to the X–Y
plane of the airframe in the positive z direction.

3.5. Torque Coefficient

Q = cQv2 (11)

Q is the torque generated by the motor and cQ is the torque coefficient of the motor
system. It provides a force that deflects the system around the z-axis.

3.6. Initial Matrix Structure

A matrix was created to describe the thrust and moment on the system. d+ is the
distance between the motor and its axis of rotation. d+ is the length from the motor center
to the manipulator length of the motor in quadcopters. Additionally, dx can be replaced
by dx sin(45◦) if X is adopted for the configuration. Hence, the configuration adjustment
exerts no impact on cQ, while the effect of cT is distributed over the pitch and roll amounts
of all 4 motors. 

ΣT
τφ

τθ

τψ

 =


cT cT cT cT
−dxcT dxcT dxcT −dxcT
−dxcT −dxcT dxcT dxcT
−cQ cQ −cQ cQ




v2
1

v2
2

v2
3

v2
4

 (12)

3.7. Relationship between the Motor Control Signal and Output Speed Command

The coefficients of thrust and moment are crucial to achieving the control purpose. It
is the relationship with the motor speed that exerts control over, rather than directly being
determined by, the control system (such as the throttle command). In that case, the control
signal (PWM) command value should be converted into a rotational speed (RPM) value
using linear regression. The following equation is created.

vss = (Throttle%)cR + vb (13)

vss is the expected steady motor speed and throttle valve percentage command; cR is
the conversion coefficient of throttle percentage and RPM; and vb is the y-axis intercept of
the linear regression relationship.

3.8. Gyroscopic Moment

The gyroscope force generated on the airframe is controlled by the inertia Jm, rolling
rate P, and pitch rate Q of the rotating parts of each motor, as well as the speed wi of
each motor system. The pitch and roll moments generated by the motors are expressed by
Equation (14):

τφgyro = JmQ
(

π
30
)
(w1 −v2 + v3 −v4)

τθgyro = JmP
(

π
30
)
(−v1 + v2 −v3 + v4)

(14)

3.9. Final Matrix Structure

By adding all the motor-propeller forces to the equations, the equations can be orga-
nized into a matrix form for simulation. The relational expressions of the aerodynamic
moment, gyroscope moment, and thrust moment are

Mb
A,T =

 d+cTv2
2 − d+cTv2

4 + JmQ
(

π
30
)
(v1 −v2 + v3 −v4)

−d+cTv2
1 + d+cTv2

3 + JmP
(

π
30
)
(−v1 + w2 −v3 + w4)

−cQv2
1 + cQv2

2 − cQv2
3 + cQv2

4

 (15)

where Mb
A,T is the framed moment due to the aerodynamics, thrust, and system moments.
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The body of the quadcopter is also affected by gravity and rotor lift. The lift force can
be expressed as

Fb
A,T =

 0
0

cT
(
v2

1 + v2
2 + v2

3 + v2
4
)
 (16)

Fb
A,T refers to the force of aerodynamic forces and thrust (assumed to be strictly positive

in the z-direction) acting on the airframe of the quadcopter.

3.10. Equation of State

The equation of the state of angular velocity is

b .
ω

b
b|i =

(
Jb
)−1[

Mb
A,T −Ωb

b|j J
bωb

b|i

]
=


.
P
.

Q
.
R

 (17)

Changes in the roll (P), pitch (Q), and yaw (R) rates of the quadcopter are described in
Equation (17) with considerations of the inertia, angular velocity, and moment applied by
the motor-propeller system. b .

ω
b
b|i is the angular acceleration of each axis in the airframe

coordinate system relative to the inertial coordinate system. P, Q and R are the speeds of
rotation around the X, Y, and Z axes, respectively.

The Euler equation of kinematics (18) is the equation of state to determine the rate of
change of Euler angles in the inertial frame.

.
Φ = H(Φ)ωb

b|i =


.
φ
.
θ
.
ψ

 (18)

The angular velocity of the aircraft in the airframe can be associated with the change in
angular rotation using the aerospace sequential rotation matrix, as shown in Equation (19):

ωb
b|i =

 .
φ
0
0

+ Cφ


 0

.
θ
0

+ Cθ

 0
0
.
ψ


 (19)

The Euler equation of kinematics can be detected by derivation upon performing
matrix multiplication and addition:

.
Φ =


.
φ
.
θ
.
ψ

 =

1 t(θ)s(φ) t(θ)c(φ)
0 c(φ) −s(φ)
0 s(φ)/c(θ) c(φ)/c(θ)

P
Q
R

 = H(Φ)ωb
b|i (20)

The equation of the velocity state is shown in Equation (21):

b .
V

b
CM|i =

(
1
m

)
Fb

A,T + gb −Ωb
b|iω

b
CM|i =


.

U
.

V
.

W

 (21)

b .
V

b
CM|i is the linear acceleration of the center of mass relative to the inertial coordinate

system in the airframe coordinate system. The variable m is the total mass of the quadcopter
and gb is the gravitational acceleration of the rotation matrix Cb|i acting on the airframe.

gb = Cb|ig
i (22)
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The equation of position state is

i
.
P

i
CM|i = Ci|bvb

CM|i =


.

X
.

Y
.
Z

 (23)

where vb
CM|i is rotated to the inertial coordinate system via the transposed Cb|i by the speed

of the quadcopter in the airframe coordinate system, which is Cb|i.

4. Architectural Design of Aerial Autonomous Docking and Landing Control System

Figure 8 shows the architectural design of the aerial autonomous docking and landing
control system. First, the video information stream is sent to the image processing module
by image acquisition to identify, locate, and track the landing area of the platform UAV. The
data obtained from positioning after calculating the vertical and horizontal displacements
are sent to the single-chip microcomputer module to generate the expected trajectory control
signal of the vertical and horizontal displacements of the mission UAV. Next, the control
signal obtained is input into the obstacle avoidance system to safeguard the UAV flight
environment; the signal is also input into the underlying flight control system to control
the mission UAV for the expected trajectory-tracking movement. The visual feedback is
conducive to quickly updating the location of the platform UAV and updating the rate
in real-time, which is the loop execution rate for the autonomous docking and landing
control system.
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5. Eight-Frames-per-Second Trajectory-Tracking Controller

The network of the radial basis function (RBF), as a high-performance artificial neural
network, was established for abstracting the mechanism of biological local regulation,
which can satisfy the requirements of detection and recognition in specific fields well.
Moreover, RBF, seen as a two-layer forward network, can simulate the local adjustment of
the nervous system [12]. Additionally, it has obvious advantages in the local approximation,
such as the accurate approximation of nonlinear functions according to requirements.

The signal source node can identify the appropriate number of hidden layer elements
and related node parameters as the input of this network, according to the target prob-
lem [13]. The composition of a three-layer RBF network is shown in the following Figure 9.
Evidently, N input nodes, P implicit nodes, and an input node are included in this system,
entered as X = [x1, x2, . . . , xN ]

T .
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As can be seen from Figure 9, the RBF network is composed of the following:
Hidden layer: For nonlinear mapping,

X → hj(x) = f j

(
‖X− Cj‖

bj

)
(24)

Basis function:

hj(x) = f j

(
‖X− Cj‖

bj

)
, j = 1, 2, · · · , P (25)

where Cj =
[
cj1, cj2, · · · , cji, · · · , cjN

]T
(i = 1, 2, · · · , N) is a specific j node of the center

vector; bj is the width vector of the j node, which is a positive number and can be selected

as per the width requirements; B =
[
b1, b2, · · · , bj, · · · , · · · , bm

]T is the width vector of the
entire network; ‖X− Cj‖ is the norm of X − Cj, which is used to measure the distance
between the two; fj can be regarded as a function of radial symmetry, with its value being
negatively correlated with ‖X− Cj‖. For the given input X, a few units near the center are
activated [12].

Output layer: For the nonlinear mapping of hj(x)→ ym ,

ym(k) = w1h1 + w2h2 + · · ·+ wmhm (26)

where w = [w1, w2, · · · , wm]
T corresponds to the network output weight vector in the

above equation.
The Gaussian function is the most used:

hj(x) = f j

(
‖X− Cj‖

bj

)
= exp

(
−
‖X− Cj‖2

b2
j

)
, j = 1, 2 . . . m (27)

A detailed analysis of the above equation shows that the output value of the node is
limited to (0, 1). The small distance between the input value and the center results in a
large output with the C value closely related to its influence under the circumstance of this
network processing. Moreover, the network smoothness is improved with the increase in its
value, while the shape of the function is narrow in the opposite case. Hence, the comparative
analysis shows that the output tends to be 1 only if the input is quite close to the weight
vector. Furthermore, the advantages of the Gaussian basis function are shown in several
aspects, such as the simple form, convenient analysis and processing, the moderate increase
in the system difficulty under the condition of multivariate input, and good smoothness and
certain symmetry [14]. On this basis, the corresponding application difficulty is significantly
reduced, and each derivative can be easily determined in processing. In addition, this
function is also convenient for theoretical analysis. However, it is also defective in some
respects, such as a lack of compactness. As a result, the weights cannot be adjusted locally
in the application. The hj(x) value is at a very low level and can be approximated to
0 when it is far away, according to the application results. Conversely, the weight wij
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should be modified when hj(x) reaches certain conditions. Hence, it is expected that the
network performance can be improved to a certain extent after optimization, with better
approximation and improved learning function [15].

Additionally, the following nonlinear radial functions can also be selected:
Thin plate spline f (x) = x2 log2 x (1)
Cubic function f (x) = x3 (2)
Multiple quadratic function f (x) =

(
x2 + c2)k, 0 < k < 1 (3)

Inverse multiple quadratic
function f (x) =

(
x2 + c2)−k, 0 < k < 1 (4)

The characteristics of the target problem in the application process were necessarily
analyzed and a specific radial basis function was selected because of obvious differences
existing in the performance of the RBF network. The Gaussian function was selected for
comparative analysis, so as to better satisfy the application requirements and improve the
learning performance of the network. Furthermore, it can also improve the applicability
of the system. Additionally, any continuous nonlinear function can be approximated in
the application process. Additionally, it differs from simple neural networks in that the
functions are used differently. The weighting coefficients of the RBF network should be
adjusted during processing, causing the processing speed to be significantly reduced [16].
This is also true in real-time. Therefore, its further application and promotion should be
supported with the appropriate improvement. The comparative analysis shows that there is
no such defect in the RBF network. Small weight values are required for various input and
output data pairs. In that case, the learning and training speed can be enhanced markedly.

The center value, width, and output weight of the Gaussian function are parameters
that should be adjusted in the application of the RBF network.

The output of the radial basis vector H = [h1, h2, . . . hP]
T of the identification network

was set.
The performance indicator function of the RBF neural network is

JO(k) =
1
2
[y(k)− ym(k)]

2 (28)

Since identification results are determined directly by the target Jacobian function,
an inertia term should be introduced for revision to better meet the requirements of the
RBF identification performance. Additionally, the width and output weight coefficients
were modified using the gradient descent method. The corresponding expressions were
modified as

∆wj = [y(k)− ym(k)]hj
wj(k) = wj(k− 1) + η0∆wj + α0

[
wj(k− 1)− wj(k− 2)

]
+

β0
[
wj(k− 2)− wj(k− 3)

]
 (29)

∆bj = [y(k)− ym(k)]wjhj
‖X−Cj‖2

b3
j

bj(k) = bj(k− 1) + η0∆bj + α0
[
bj(k− 1)− bj(k− 2)

]
+

β0
[
bj(k− 2)− bj(k− 3)

]
 (30)

∆cji = [y(k)− ym(k)]wj
xj−cji

b2
j

cji(k) = cji(k− 1) + η0∆cji + α0
[
cji(k− 1)− cji(k− 2)

]
+

β0
[
cji(k− 2)− cji(k− 3)

]
 (31)

where η0 is the learning rate and α0 and β0 are inertia coefficients, η0, α0, β0 ∈ (0, 1). The
Jacobian formula of the output result to the sensitivity of the input is

∂y(k)
∂∆u(k)

≈ ∂y1(k)
∂∆u(k)

=
P

∑
j=1

wjhj
cji − x1

b2
j

(32)



Sensors 2022, 22, 9066 12 of 23

As shown in Figure 10, the neural network controller was composed of two parts:

Sensors 2022, 22, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 10. Adaptive PID control system based on the RBF neural network. 

The control error of the incremental PID controller is 

error( ) r ( ) y( )k k k= −  (33)

The proportional term, integral term, and differential term in the PID control algo-
rithm can be expressed as 

(1) error( ) error( 1)
(2) error( )
(3) error( ) 2error( 1) error( 2)

xc k k
xc k
xc k k k

= − −
=
= − − + −  

(34)

The control algorithm is 

pk p( ) [ error ( )  error ( 1)]u k k k k= − −
 (35) 

ik i( )  error ( )u k k k=
 (36) 

dk d( ) [ error ( ) 2 error ( 1)  error ( 2)]u k k k k k= − − + −
 (37) 

p i dk k k( ) ( 1) ( ) ( ) ( )u k u k u k u k u k= − + + +
 (38) 

The performance indicator function of the RBF neural network is 

21( ) error( )
2

E k k=
 

(39)

, , and  were adjusted using the gradient descent method: 

out
p

p ou p

error( )
t

yE E u yk k xc
k y u k u

η η η∂∂ ∂ ∂ ∂Δ = − = − =
∂ ∂ ∂ ∂ ∂

 
(40)

out
i

i out i

error( )yE E u yk k xc
k y u k u

η η η∂∂ ∂ ∂ ∂Δ = − = − =
∂ ∂ ∂ ∂ ∂  

(41)

out
d

d out d

error( )yE E u yk k xc
k y u k u

η η η∂∂ ∂ ∂ ∂Δ = − = − =
∂ ∂ ∂ ∂ ∂  

(42)

where  is the branch output sensitivity information of the control input of the branch, 
or the Jacobian information of the accused object. 

2
1

( 1)
u

m
ji

j j
j j

c u ky w h
b=

− −∂ =
∂   (43)

pk ik dk

u
y∂

∂

Figure 10. Adaptive PID control system based on the RBF neural network.

1. Neural network controller. Incremental PID controller, four-rotor trajectory-tracking
closed-loop control, and online PID tuning of kp, ki, and kd;

2. PID controller parameters are adjusted by the RBF neural network controller
through neural network self-learning to achieve an optimal control performance.

The control error of the incremental PID controller is

error(k) = r(k)− y(k) (33)

The proportional term, integral term, and differential term in the PID control algorithm
can be expressed as

xc(1) = error(k)− error(k− 1)
xc(2) = error(k)

xc(3) = error(k)− 2error(k− 1) + error(k− 2)
(34)

The control algorithm is

ukp(k) = kp[ error (k)− error (k− 1)] (35)

uki(k) = ki error (k) (36)

ukd
(k) = kd[ error (k)− 2 error (k− 1) + error (k− 2)] (37)

u(k) = u(k− 1) + ukp(k) + uki(k) + ukd
(k) (38)

The performance indicator function of the RBF neural network is

E(k) =
1
2

error(k)2 (39)

kp, ki, and kd were adjusted using the gradient descent method:

∆kp = −η
∂E
∂kp

= −η
∂E

∂yout

∂yout

∂u
∂u
∂kp

= ηerror(k)
∂y
∂u

xc (40)

∆ki = −η
∂E
∂ki

= −η
∂E

∂yout

∂yout

∂u
∂u
∂ki

= ηerror(k)
∂y
∂u

xc (41)

∆kd = −η
∂E
∂kd

= −η
∂E

∂yout

∂yout

∂u
∂u
∂kd

= ηerror(k)
∂y
∂u

xc (42)

where ∂y
∂u is the branch output sensitivity information of the control input of the branch, or

the Jacobian information of the accused object.

∂y
∂u

=
m

∑
j=1

wjhj
cji − u(k− 1)

b2
j

(43)
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On the whole, the PID tuning process based on the RBF network can be presented as
follows:

1. The node parameter N of the RBF network is first determined with the learning rate η0
and inertia coefficients α0 and β0 appropriately selected on the basis of the simulation
analysis. Then, initial values, such as the center vector Cj, width parameter bj, and
weight coefficient wj, are set for a series of parameters of hidden nodes.

2. The learning rate η0 is clarified after initializing the number of nodes and weights of
the network. Note that k = l at the beginning.

3. y(k) and r(k) are obtained by sampling as required, which are then included in the
expression for determining e(k).

4. Three coefficients of PID are obtained after the input and output parameters of each
layer are determined. On that basis, the corresponding u(k) is analyzed and calculated.
Then, the obtained result is transmitted to the control object for the purpose of realizing
the real-time control of the system. At the same time, the target Jacobian information
is obtained through the input of the RBF identification network to obtain the output
y(k + 1) at the second stage.

5. The width parameters and weight coefficients of the RBF network are adjusted.
6. The weight coefficient of the BP network is adjusted.
7. Let k = k + l and return to the first step for loop iteration.

6. Simulation Experiment of RBF-PID Control

The RBF-PID controller module was added to the “Theta Command Control”, the
“Phi Command Control” module, and the “Altitude (Z) Control” module of the attitude
controller module in the simulation platform‘s position controller module. Additionally,
the “switch” module was utilized to switch with the initial PID module for the subsequent
control performance comparison. The simulation time was set to 160 s, with the fixed step
size t = 0.02 s as the solver sampling period; and the initial values of the Kp0, Ki0, and Kd0
parameters were Kp0 = 0.6, Ki0 = 0.01, and Kd0 = 0.2, respectively. The system input signal
was from the path-generation module “Path Command”. Additionally, the spiral line of
the preset trajectory was the desired path. The simulation results are shown in Figure 11.

By observing the roll angle ϕ controller, the pitch angle θ controller, and the height Z
controller KP, KI , and KD response curves in the simulation of Figure 11, and with the RBF-
PID controller, the KP, KI and KD parameter values were adjusted by the RBF-PID controller
according to the input error e, the error rate of change, etc. The numerical value fluctuated
less. Yet, the Xb and Yb direction speed error fluctuated greatly within 5 s at the end of the
simulation (the endpoint hovering) (as shown in Figure 11d,h). The control performance
during the flight is satisfied, with the error controlled within the range of 0.3. The error
approaches 0 (as shown in Figure 11l) after the initial stage (take-off from the origin) of the
speed error of the altitude Z controller in the Zb direction fluctuates momentarily.
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actual flight trajectory with high accuracy in tracking the expected trajectory can be ob-
served from the position of the response curves in the X, Y, and Z directions. Only the 
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Figure 12. Mission UAV 1~4# motor input throttle command and output speed. 

Figure 11. Simulation results response curves (The abscissa represents time).

The response curves of the velocities, angles, and positions of the controller based on
RBF-PID in various directions were simulated, as shown in Figures 12 and 13. The actual
flight trajectory with high accuracy in tracking the expected trajectory can be observed
from the position of the response curves in the X, Y, and Z directions. Only the initial stage
of the simulation (take-off from the origin) has a slight overshoot, as shown in Figure 14,
with almost no overshoot in the other stages of the process. Additionally, the mission UAV
based on RBF-PID control can achieve a high-precision 3D trajectory-tracking performance.
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The step signal module and the integral module were introduced into the simulation
platform to simulate the disturbance of the blade airflow on the platform UAV because of
the continuously downward increasing force of the mission UAV landing on the platform
UAV, as show in Figure 15. A disturbance was applied to the design after the 100th second
of the simulation cycle. Figures 16 and 17 show that the variations in the velocity error
increased significantly in the Z direction. The error range was maintained at 0.3 by using
the RBF-PID controller. Then, the error was suppressed, gradually reduced, and controlled
within 0.2 with the intervention of the RBF-PID controller. According to Figure 17, a certain
error was generated between the position tracking in the Z direction and the expected
trajectory at the 100th second after the continuously downward and increasing disturbance
was applied, which was under control without spreading.
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7. Design of the Vision Pilot System Based on YOLOv3

The main idea of the you-only-look-once (YOLO) system is to solve the target detection
problem as a regression problem. YOLOv3 accesses the network by directly inputting the
entire image and then directly regressing the frame position and the target category [17].
The YOLOv3 network divides the input image into S × S grid cells. If the geometric center
of a target falls in a cell, the cell will be responsible for detecting the target. Each cell
predicts the B bounding boxes and the confidence [18]. Here, B is the number of categories
identified by the target in the dataset, and the confidence reflects the regression accuracy of
the predicted position of the bounding box. The accuracy is the product of the probability
of the target being detected and the intersection ratio of the bounding box and the real
position (see Equation (44)). The confidence is defined as follows:

Confidence =Pr(Object) × IoUtruth
pred (44)

where Pr(Object) is the possibility of the target existing in the box. If there is no object in
the box, then Pr(Object)= 0; if there is an object, then Pr(Object)= 1.

The YOLOv3 network, which features a strong capability of feature expression and
transfer, can learn to detect an object in the detection image upon training with large
numbers of image training sets that contain a certain object [19]. We expected that YOLOv3
would detect only the target area on the platform UAV in the image detection of the video
image. Therefore, the network was trained on the constructed dataset of the target area on
the prepared platform where the UAV landed. Then, the trained network could detect and
identify the target area in the video stream. Figure 18 shows the training set of the positive
samples in the landing area.
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8. Aerial Autonomous Docking and Landing Flight Experiment

The designed aerial autonomous docking and landing system operated well in the
field flight test. The docking and landing system recorded average system identification,
positioning, and tracking during the day, which reached 8.83 FPS and 8.24 FPS, respectively,
at night. The distribution of the landing points of the mission UAV on the platform UAV
reached 15 cm on average in comparison with the distance accuracy from the center point
of the landing surface of the platform UAV. Clearly, design expectations were satisfied in
the field test. Figure 19 shows the aerial autonomous docking and landing test image in the
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field (see the video screenshot), and Figure 20 shows the aerial autonomous docking and
landing test image under the infrared mode at night (see video snapshot of the onboard
image processing system of the mission UAV).
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of the onboard image processing system of the mission UAV).

9. Conclusions

This study examined the aerial autonomous docking take-off and landing technology
based on multiple rotors. The precise autonomous docking and landing process control of
the mission UAV is implemented on the platform UAV. First, a simulation platform is built
in the MATLAB Simulink environment; the design was that of a preset, expected trajectory
according to the overall design and modeling results of the mission UAV and platform UAV.
Then, an autonomous docking and landing trajectory tracker based on BP-PID control was
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designed with the flight control influence of the rotor airflow disturbance of the platform
UAV used as a key interference factor in the dual UAV’s autonomous docking and landing
process. The influence of airflow disturbance on the control performance of the mission
UAV was simulated with the introduction of a continuously changing disturbing quantity.
The BP-PID control technology conformed with the tracking accuracy requirements of
the landing trajectory under the influence of the disturbance. Moreover, a visual pilot
system based on YOLOv3 was also designed to ensure that the real-time image positioning
calibration rate could reach 8 FPS during the dynamic docking and landing process of the
mission UAV on the platform UAV. This provides the real-time positioning requirements
of the landing area where the mission UAV landed in the dynamic take-off and landing
process. Finally, flight experiments were conducted. The control stability and positioning
accuracy of take-off and landing proved to conform with the design expectations based
on the dynamic take-off and landing tests conducted during the day and at night under
the infrared mode(see Supplementary Materials). This lays a technical foundation for UAV
transportation, autonomous take-off and landing in the air, and collaborative networking.

The research in this paper still has limitations, and more exploration is needed in
the future.

1. In the aerial autonomous docking and landing experiment in this paper, only one
mission UAV took off and landed from the platform UAV. In the future, multiple mission
UAVs will take off and land together from the platform UAV, which may have new technical
difficulties to be solved.

2. In the current experiment, the movement rate of the platform in flight was low, so
docking and landing experiments with higher speed and complex environmental conditions
are needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//youtu.be/rCrgNV2GRFg, Flight experiment video.
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